EXPLOSIVE PROJECTILE LAUNCH SYSTEM RACK WITH FIBER AND ADHESIVE CONNECTION AND CONNECTION REINFORCEMENT INTERLOCKING MEMBERS MODULAR REPLACEMENT SHATTER RESISTANT MATERIAL AND LIGHT EMITTING MATERIAL

Information

  • Patent Application
  • 20220113113
  • Publication Number
    20220113113
  • Date Filed
    September 10, 2021
    3 years ago
  • Date Published
    April 14, 2022
    2 years ago
  • Inventors
    • Decker; Emil Guy (Lake Stevens, WA, US)
Abstract
The invention is an explosive projectile launch system rack device for improved safety, assembly, ease of use, operations, repair, and visibility, with fiber and adhesive connection, and connection reinforcement, interlocking members, modular replacement, shatter resistant material, and light emitting material.
Description
BACKGROUND OF THE INVENTION
I. Field of the Invention

The invention relates to devices used for launching explosive projectiles, including fireworks, mortar shells, munitions, and other explosive projectiles.


I. State of the Art

Fireworks and explosive projectiles are increasingly enjoyed as a form of personal and group entertainment, and are more widely available than ever, through increases in global trade, the removal or relaxation of state regulatory mechanisms, and on native sovereign treaty lands. Where the availability and use of explosive projectiles are more widespread than ever, advances in safety have not necessarily followed in step. As home use in particular continues to rise, as well as professional uses for holidays, fairs, sporting events, private parties, and myriad other occasions. The explosive projectiles used in these celebrations can be dangerous, the exposure to risk and launch system failure rises proportionally with use. The present state of the art for explosive projectile launch systems has been largely utilitarian in nature, having emerged homemade solutions driven largely by considerations of ease of construction, ease and availability of common materials, and considerations of expense. Alternatively, some solutions have been over-engineered for safety, such as with welded steel rack systems, making them extremely difficult to transport, carry, and use.


Frequently, launching systems are used to hold an explosive projectile in place before the projectiles are fired. Launching systems are often made from lumber, nails, screws, and other components that are easily and affordably put together, which tend to get damaged when explosive projectiles are launched from them. Additionally, because these launching systems are made from lumber connected together by screws or nails, if a device explodes within the launching system, portions of a launching system become shrapnel and may hurt or kill spectators or crew members setting off the explosive projectiles.


A. Fasteners & Connectors

Explosive projectile launching systems ordinarily use mechanical connectors such as metal screws or nails to attach system pieces together. The mechanical connectors may not hold an explosive projectile, launch system, frame member, or its connectors, in place when an explosive projectile explodes inside the launching system. This is due to a low resistance to the force of the explosion within the launch system rack and between member connections. Connectors can become dangerous shrapnel projectiles upon explosion of the explosive projectile inside the launching system, causing severe physical harm to users and spectators, including wounds to vital organs, and even death.


B. Materials

Wood frame members are commonly used to construct explosive projectile launch systems, which tends to splinter and become sharp projectiles upon system launch system failure. Wooden pieces holding nails, screws, and staples also create sharp harmful shrapnel endangering humans. There are some uses of aluminum and steel launch system frames in the art as well. Aluminum is light in weight, and does not solve the problem of metal shrapnel during launch system failure. Ferrous metal frames are sturdy and do not typically fail. However, their weight is typically prohibitive for common usage and transport, except under special and unique conditions.


Launch system tubes are frequently comprised of cardboard, or occasionally fiberglass tubes, or high density polyethylene pipe tubes, with wooden base plugs. Polyvinyl Chloride launch tubes have been used in the past, and are recognized as a severe safety hazard, for their splintering properties upon explosion failure.


There is nothing in the state of the art applying novel, non-obvious, shatter-resistant materials to launch system racks, and the present invention contemplates this important need, and addresses a recognized absence in the state of the art.


C. Illumination

The state of the art in explosive projectile launch systems safety is to prepare launch systems during daylight hours, and to use handheld, head mounted, or stationary mounted light sources to view the launch system in low or no light environments.


The present invention addresses a noted absence of art in the field to address safety of the entirety of the launch system materials, with novel methods and devices of connection, reinforcement, and material use, repair, and illumination.


III. Specifics to the State of the Art

The Applicant is aware of a number of fireworks and explosive projectile launching device inventions related to the proffered invention, including U.S. Patents Numbered:

    • US Utility Patents Issued
      • U.S. Pat. No. 5,429,053A to Walker, issued Jul. 4, 1995;
      • U.S. Pat. No. 6,286,429B1 to Marietta & Crablen, issued Sep. 11, 2001;
      • U.S. Pat. No. 6,324,805B1 to Naniwa, issued Dec. 4, 2001;
      • U.S. Pat. No. 6,779,459 B2 to Werner, issued Aug. 24, 2004;
      • U.S. Pat. No. 7,011,220B2 to Deye, issued Mar. 14, 2006;
      • US20050133472A1 to Deye, issued Mar. 14, 2006
    • U.S. Pat. No. 8,807,037 to Marietta, issued Aug. 19, 2014;
    • US Utility Patent Application Publications
      • U.S. Pat. No. 6,393,990B1 by Fagan, published May 28, 2002;
      • US20080006168A1 by Chao-Chen Huang , published Jan. 10, 2008
    • US Design
      • D541898 to Marietta, issued May 1, 2007;
    • INTERNATIONAL: WIPO/PCT/National Applications
      • FR2593279A1 to Bernard, published Nov. 3, 1989;
      • WO2001096108A1 to Edwards,D'hooghe, & Miller, published Dec. 20, 2001;
      • WO2007057740A1 to Reichenpfader & Langer, published May 24, 2007;
      • WO2009046180A1 to Dagher, Cassidy, Parent, Dumais, Nagy, O'neil, & Nye, published Apr. 9, 2009;
      • WO2013026642A1 to Varmann, published Feb. 28, 2013;


Viewing the aforementioned known inventions individually and as a whole, there is no suggestion of any configuration that approximates the current invention. A need still exists for or an Explosive Projectile Launch System Rack, with Fiber and Adhesive Connection Reinforcement to enable and enhance structural integrity, without the use of metallic or other shrapnel producing fasteners, to help minimize potential harm to humans, other living organisms, property, and environments.


Furthermore, —a need still exists for launching systems assembled with Interlocking Members, to enable structural integrity, and to minimize potential harm to humans, without the use of metallic or other shrapnel producing fasteners, to help minimize potential harm to humans, other living organisms, property, and environments.


Furthermore, a need still exists for launching systems assembled in a modular fashion such that damaged launching system component members may be easily replaced.


Furthermore, a need still exists for launching systems comprising entirely of a shatter resistant material, to help minimize or eliminate the probability of launch system projectiles causing harm to humans, other living organisms, property, or environments


Furthermore, a need still exists for launching systems comprising the integration or application of luminescence, glow-in-the-dark, or other illuminating materials, to enable visual sighting, in the dark, of explosive projectile launch system racks, and other related items, including but not limited to, explosive projectiles themselves, and their packaging, for improved use in low or no light environments.


While several of the inventions cited, and the prior art, present explosive projectile launch systems with various material and configuration, they lack a device enabling an explosive projectile launch system rack, with fiber and adhesive connection connection reinforcement, interlocking members, modular replacement, shatter resistant material, and light emitting material.


SUMMARY OF THE INVENTION

The applicant claims the benefit of United States Provisional Patent Application # US 63/076,927 filed Sep. 10, 2020 for an “Explosive Projectile Launch System with Reinforced Connections without Fasteners, Glow-in-the-Dark Explosive Projectile and Launching System.”


The present invention is an explosive projectile launch system rack, and the means, modes, methods, and members comprising engendering its assembly. An explosive projectile launching system rack is typically a frame launching system having supports that are connected together. A launching system. holds an explosive projectile device (or devices), that launch from a launching system by explosive action, to achieve an intended purpose.


The explosive projectile launching system rack of the present invention comprises one or more frames of members, with reinforced fiber connections. This fiber may be comprised of single or multiple fibers, cloth, string, cord, line, or other filament, arranged in a linear, cross-linear, bundled, mesh, or any pattern to achieve a desired attachment or tensile strength objective. Reinforcement may be comprised of any material, including but not limited to glues, resins, adhesives, epoxies, tapes, or other reinforcing agents, referred to here, both generally and inclusively, as adhesives


In the preferred embodiment, reinforced fiber connections replace commonly used mechanical attachment devices such as screws and nail to join members together. Mechanical attachment devices become dangerous projectiles in the event of an unintended, accidental, or unwanted explosion, or launch system failure.


In the preferred embodiment, a connection reinforced with epoxy and fiber has a resistance to explosion that is stronger than that of commonly used mechanical attachment devices such as screws and nails. This increases the probability that a launching system will maintain its integrity and stability during an unintended or unwanted explosion. In the preferred embodiment, fibers used to reinforce an epoxy connection may be aramid, fiberglass, Kevlar, carbon fiber or a mixture of these materials.


Strong Shaped Connections Without Fasteners

Explosive launching system connections may also be reinforced with glued interconnecting joint connections of various shapes. They may be connected without fasteners, by friction alone, or with adhesive, or with additional connection reinforcements The invention contemplates shaped connection joint types that will produce a strong connection without the use of fasteners, i, eliminating dangerous shrapnel from metalic, mechanical, or other dangerous joint types, in the event of an accidental explosion within the launching system. Contemplated safer connection types include, but are not limited to, biscuit, bridle, dado, dovetail, box, finger, lap, tongue & groove, mortise & tenon, and dowel. Additionally, with the application of adequate adhesive and contact surface, these shaped joint connections can exceed the strength of mechanical fasteners, thus eliminating dangerous shrapnel in the event of an accidental explosion within the launching system.


Modularity

Also, this invention creates launching systems that fits together in a modular fashion, enabling a user to replace damaged sections of an explosive projectile launch system rack.


By designing a modular system of explosive projectile launching systems, a user can replace just the damaged sections, instead of replacing an entire launching system.


The launching system rack may be joined together in a modular fashion such that damaged component members may easily be removed and replaced in the case of accidental or unintended damage, or for any reason


Shatter Resistant Material

The explosive projectile launch system rack, and multi section explosive projectile launching system, may be constructed of shatter resistant material to minimize shrapnel and debris upon explosion. Shatter resistant material may include, though is not limited to, shatter resistant thermoplastics, and fiber and adhesive materials, Whereas shatter resistant materials are frequently used in launch system tubes, their use in constructing the entirety of a launch system rack is notably absent, and there is no evidence of their use elsewhere. The present invention contemplates this use as an improvement upon the use in the prior art of wood and metal, and addresses a recognized absent need for improved safety over wood, with improved weight considerations for transportation in relation to steel and other metals, as well as the ease of interchanging rack members that is not easily achieved with metals. The invention contemplates, and addresses, a noted absence and needs in the field of art for a an explosive projectile launch system rack comprising engendering shatter resistant material.


Vision Enhancement

Pyrotechnic explosive projectiles are commonly used at night. The application of light emitting material enables users to see launch systems, avoiding tripping hazards, accidental firing, and injury


This invention contemplates the use of light emitting, or light capturing, material to enable users or viewers to see the launching system, or its contents, components, or elements, in low or no light settings. Light emitting material may be, but is not limited to, glow-in-the-dark paint or adhesive, electric lighting, combustible material, or other illuminating or vision enhancing material, substance, devices, or processes.


The preferred embodiment for vision enhancement material in this invention contemplates applying glow-in-the-dark material to adhesives, resins, mixtures, compositions, epoxy, and paint, and applying onto, or integrating into, launch systems, racks, fireworks, and related explosive items.


These light emitting material may help users to safely identify explosive projectiles, explosive projectile parts, explosive projectile launching systems, and other explosive projectile related items, particularly in low light settings.


Also, this invention creates launching systems that fits together in a modular fashion, enabling a user to replace damaged sections of a launching system.


Though the field presents a variety of explosive projectile launch devices, none approximates the present invention as an Explosive Projectile Launch System Rack device, enabling the minimization or elimination of explosive shrapnel that harms users, audiences, and passers by, enables interlocking members without screws, metal, mechanical, or other metal fasteners, enables modular replacement in the case of partial rack destruction caused by unintended explosion , and enables a light emitting application to enable sighting the device in low or no light environments. The present device solves these recognized needs.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures together illustrate the best mode currently contemplated for the present invention. The figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form part of the specification, serve to illustrate the present invention and, together with the detailed description of the invention, explain the principles of the present invention.


FIG. 1:


FIG. 1 illustrates an angled, side, top, and front projection of the present invention in one of many possible methods and modes, and which can be implemented in accordance with the specifications herein. The invention proves an exemplary explosive projectile launching system frame in accordance with an embodiment of the present disclosure. For example, a fiber and adhesive reinforced explosive projectile launching device as shown generally at 10. The Explosive Projectile Launching device may be configured to have geometrically shaped members (displayed in the color tan) 200, configured and attached together with adhesive and fiber reinforcement (displayed in the color grey) 300, comprising engendering a connected and reinforced body frame.


FIG. 2:


FIG. 2 illustrates a side and top view of an explosive device launching rack system, with shaped, interlocking, joint connections, shown generally at 20. The illustration shows an explosive device launching rack system 100 with shaped joint connections for interlocking member attachment 410. The Figure illustrates and end plate 560, with a slotted-key-way system 410, to enable connections for the adjustment and replacement of launch frame member. This embodiment comprises a slot element 412, and an interconnecting key element 411. In the present embodiment, some of the launch frame member positions are adjustable 413, to enable different angles of projectile launch trajectory. This is a preferred embodiment of interlocking member attachments.


FIG. 3:


FIG. 3 illustrates a shaped joint connection for attaching explosive device launch rack system members, without other any other fasteners, shown generally at 30. The present embodiment is an interconnecting-key-way, with an interconnecting-key 421, and receiver-way 422, for interconnecting members.


FIG. 4:


FIG. 4 illustrates an interconnecting-T-Slot shaped joint connection for the attachment of explosive device launch system rack members, without the requirement of any other fasteners, shown generally at 40. The figure embodiment is with an interconnecting-T shaped member configuration 431, and receiver-slots 422, for interconnecting members.


FIG. 5:


FIG. 5 illustrates an alternative embodiment of interconnecting-T-Slot shaped joint connections, for the interconnection and attachment of explosive device launch rack system members, without the requirement of any other fasteners, shown generally at 50. The figure embodiment is with an interconnecting-T-shaped member configuration 441, and receiver-slots 442, for interconnecting members.


FIG. 6:


FIG. 6 illustrates a modular embodiment of an explosive projectile launch system rack, with multiple modular, replaceable, or interchangeable sections, shown generally at 60. The present embodiment illustrates a series of top horizontal plates with holes 510, middle horizontal plates with holes 520, bottom horizontal plates without holes 530, middle vertical plates 540, and end plates 550.


FIG. 7:


FIG. 7 illustrates a top, front, and side angled view of a device frame to launch explosive projectiles, shown generally at 70, comprising engendering the preferred embodiment of geometric frame members constructed of shatter resistant material 600, containing light emitting material 700 that is visible in the low and no light environments.





DETAILED DESCRIPTION OF THE INVENTION

The particular values and configurations discussed in these non-limiting examples incorporate the accompanying figures and descriptions cited above. They can be varied, and are cited merely to illustrate an embodiment of the present invention. They are not intended to limit the scope of the invention.


The Explosive Projectile Launch System Rack, with Fiber and Adhesive Connection & Connection Reinforcement, Interlocking Members, Modular Replacement, Shatter Resistant Material, and Light Emitting Material device enables the launch of pyrotechnics and other explosive projectiles in a wide variety of applications. It enables strong and reinforced rack member connections, with adhesive and fiber, to improve safety. Additionally, it enables interlocking rack member connections. Additionally, it enables rack member modularity for member replacement. Additionally it enables shatter resistance for rack member material to improve safety. And additionally, it enables light-emitting vision enhancement for improved safety and ease of use in low-light environments.


In the best mode, the exploding projectile launch system rack is comprising geometrically shaped members, variously interconnected with interlocking joint connections, having adjustable configurations, replaceable members or modules, the connections having fiber and adhesive reinforcement, replaceable member modules, and members comprising shatterproof thermoplastic, that is impregnated or coated with luminescent material.


It is appropriate to appreciate, however, that an explosive projectile launch system rack device may be comprised of one or more different parts, and that those parts may be of different materials or configurations.


It is also appropriate to appreciate that the present invention may be used as an explosive projectile launching system rack device for use in numerous and various applications, including, but not limited to launching fireworks for entertainment, and deployment in multiple industrial, commercial, military, geological, aerospace, and other applications.


It is appropriate to appreciate too, that the current configuration and application may be altered in part or in whole to utilize some or all of the various components, or by adding additional components, to effect a similar, yet alternative resulting explosive projectile launching system rack device.



FIG. 1 illustrates an angled, side, top, and front projection of the present invention in one of many possible methods and modes, and which can be implemented in accordance with the specifications herein. The invention proves an exemplary explosive projectile launching system frame in accordance with an embodiment of the present disclosure. For example, a fiber and adhesive reinforced explosive projectile launching device as shown generally at 10. The Explosive Projectile Launching device may be configured to have geometrically shaped members (displayed in the color tan) 200, configured and attached together with adhesive and fiber reinforcement (displayed in the color grey) 300, comprising engendering a reinforced body frame.


In the best mode, the exploding projectile launching system rack is comprising a geometrically shaped members, variously interconnected with interlocking joint connections, having adjustable configurations, replaceable members or modules, the connections having fiber and adhesive reinforcement, replaceable member modules, and members comprising shatterproof thermoplastic, that is impregnated or coated with luminescent material.


It is appropriate to appreciate, however, that an explosive projectile launch system rack device may be comprised of one or more different parts, and that those parts may be of different materials or configurations.



FIG. 2 illustrates a side and top view of an explosive device launching rack system, with shaped, interlocking, joint connections, shown generally at 20. The illustration shows an explosive device launching rack system 100 with shaped joint connections for interlocking member attachment 400. The Figure illustrates and end plate 560, with a slotted key way system 410, to enable connections for the adjustment and replacement of launch frame member. This embodiment comprises a slot element 411, and an interconnecting key element 411. In the present embodiment, some of the launch frame member positions are adjustable 413, to enable different angles of projectile launch trajectory. This is the preferred embodiment of interlocking member attachments.


It should be appreciated, however, that interlocking member attachments may be comprised of one or more different parts, and that those parts may be of different materials or configurations, or have different effects for attachment.



FIG. 3 illustrates a shaped joint connection for attaching explosive device launch rack system members, without other any other fasteners, shown generally at 30. The present embodiment is an interconnecting key way, with an interconnecting key 421, and receiver way 422, for interconnecting members.


It should be appreciated, however, that interlocking member attachments may be comprised of one or more different parts, and that those parts may be of different materials or configurations, or have different effects for attachment.



FIG. 4 illustrates an interconnecting T-Slot shaped joint connection for attaching explosive device launch rack system members, without the requirement of any other fasteners, shown generally at 40. The figure embodiment is with an interconnecting T shaped member configuration 431, and receiver slots 422, for interconnecting members.


It should be appreciated, however, that interlocking member attachments may be comprised of one or more different parts, and that those parts may be of different materials or configurations, or have different effects for attachment.



FIG. 5 illustrates an alternative embodiment of interconnecting T-Slot shaped joint connections, for attaching explosive projectile device launch rack system members, without the requirement of any other fasteners, shown generally at 50. The figure embodiment is with an interconnecting T shaped member configuration 441, and receiver slots 442, for interconnecting members.


It should be appreciated, however, that interlocking member attachments may be comprised of one or more different parts, and that those parts may be of different materials or configurations, or have different effects for attachment.



FIG. 6 illustrates a modular embodiment of an explosive projectile launch system rack, with multiple modular, replaceable, or interchangeable, member sections, shown generally at 60. The present embodiment illustrates a series of top horizontal plates with holes 510, middle horizontal plates with holes 520, bottom horizontal plates without holes 530, middle vertical plates 540, and end plates 550.


It should be appreciated, however, that the modular, replaceable, interchangeable, member sections may be comprised of one or more different parts, and that those parts may be of different materials or configurations, or have different effects for replacement, adjustment, or interchangeability.



FIG. 7 illustrates a top, front, and side angled view of a device to launch explosive projectiles, comprising engendering the preferred embodiment of geometric frame members constructed of shatter resistant material 600, with luminescent material 700, shown generally at 70.


It should be appreciated, however, that the shatter resistant material may be comprised of one or more different parts, and that those parts may be of different materials or configurations.


It should further be appreciated that luminescent material may be comprised of one or more different parts, or applications, or devices, and that those may be of different materials or configurations.


Conclusion

The explosive projectile device launch system rack system described here demonstrates a novel device for launching explosive projectiles that improves human safety and well-being, assembly, repair, and ease of use and operation.


The embodiments and examples set forth herein are presented to best explain the present invention and its practical application and to thereby enable those skilled in the art to make and utilize the invention. Those skilled in the art, however, will recognize that the foregoing description and examples are presented for the purpose of illustration and example only. Other variations and modifications of the present invention will be apparent to those of skill in the art, and it is the intent of the inventor that such variations and modifications be covered. The description as set forth is not intended to be exhaustive or limit the scope of the invention. Numerous variations and modifications are possible in light of the above teaching without departing from the spirit and scope of the specifications. It is contemplated that the use of the present invention can involve components having different characteristics, and intended that the scope of the present invention be defined by the claims included here, giving full cognizance to equivalents in all respects.

Claims
  • 1. A device for launching explosive projectiles, comprising engendering geometrically shaped members that are configured, and attached together, or reinforced, with adhesive and fiber.
  • 2. The Invention in claim 1, comprising engendering geometrically shaped members, configured, and attached together by interlocking shaped joint connections, independent of external fasteners.
  • 3. The Invention in claim 1, comprising engendering geometric frame members of shatter resistant material.
  • 4. The Invention in claim 1, comprising engendering the application of a light emitting substance or device.
  • 5. A device for launching explosive projectiles, comprising engendering geometrically shaped members, configured, and attached together by interlocking shaped joint connections, independent of external fasteners.
  • 6. The Invention in claim 2, comprising engendering geometrically shaped members reinforced with adhesive.
  • 7. The Invention in claim 2, comprising engendering geometrically shaped members reinforced with adhesive and fiber.
  • 8. The invention in claim 2, comprising engendering geometrically shaped members of one or more modular, replaceable, or interchangeable sections, enabling member replacement.
  • 9. The Invention in claim 2, comprising engendering geometric frame members of shatter resistant material.
  • 10. The Invention in claim 2, comprising engendering the application of a light emitting substance or device.
  • 11. A device for launching explosive projectiles comprising engendering geometric frame members of shatter resistant material.
  • 12. The Invention in claim 3, comprising engendering a launch system and the application of a light emitting substance or device.
  • 13. A device for launching an explosive projectile system in a low-light environment comprising engendering a launch system and the application of a light emitting substance or device.
Provisional Applications (1)
Number Date Country
63076927 Sep 2020 US