The present invention relates to wearable devices. More particularly, but not exclusively, the present invention relates to earpieces.
Hearing loss due to extremely high decibel sound pressure levels (dB SPL) is a common occupational and safety concern. These explosive sounds can damage the stereocilia found in the organ of Corti, causing temporary or even permanent hearing loss. While hearing loss due to short bursts of high dB sound, commonly referred to as a temporary threshold shift, typically only lasts a few minutes, prolonged exposure to high dB sound can create temporary threshold shifts possibly lasting several days. Repeated exposure to explosive high dB sound can cause permanent threshold shifts, resulting in total hearing loss. Clearly workers exposed to such noise are at heightened risk for both short term and long term hearing loss, potentially rendering such workers unable to fulfill their occupational duties. What is needed are methods, systems, and/or devices minimizing or even eliminating the hearing risks such workers face in the fulfillment of their duties.
It is a primary object, feature, or advantage of the present invention to improve over the state of the art.
It is a further object, feature, or advantage of the present invention to provide an earpiece capable of modulation of an ambient microphone to accommodate for the detection and presence of a suprathreshold dB SPL input.
It is a still further object, feature, or advantage to provide an earpiece configured for activation of a noise cancellation function specific to the suprathreshold dB SPL frequency.
Another object, feature, or advantage is to provide an earpiece configured for shutting off the ambient microphone upon the detection of the suprathreshold dB SPL frequency.
Yet another object, feature, or advantage is to provide an earpiece configured for maintaining the shutdown of the ambient microphone throughout the duration of the offending suprathreshold SPL frequency.
A still further object, feature, or advantage is to provide an earpiece configured for monitoring of the overall ambient environmental noise level to determine safe levels of ambient environmental noise transmission via the speaker system.
One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the specification and following claims. No single embodiment need provide every object, feature, or advantage. Different embodiments may have different objects, features, or advantages. Therefore, the present invention is not to be limited to or by any objects, features, or advantages stated herein.
In one implementation, a system includes an earpiece configured to isolate an ambient environment within a tympanic membrane in an ear canal. The system also includes a microphone disposed within the earpiece and configured to receive at least one ambient signal, a processor operatively connected to the microphone and configured to receive the at least one ambient signal and determine if the sound level of the ambient signal is higher than a threshold sound level, a speaker proximate the tympanic membrane and operatively connected to the processor wherein the speaker is configured to reproduce the at least one ambient signal if its sound level is not higher than or equal to the threshold sound level, and at least one power source such as a battery operatively connected to the microphone, the processor, and the speaker.
One or more of the following features may be included. The earpiece of the system may comprise an earpiece housing. In addition, the earpiece may consist of a left earpiece and a right earpiece, be composed of a material with low thermal or electrical conductivity and may further comprise at least one additional microphone. Also, the maximum sound level of the system may be programmed by a user. In addition, the microphone may be configured to detect both air conduction vibrations and bone conduction vibrations.
The system may also have the processor configured to combine the at least one ambient signal with a second signal to create a combined signal if the sound level of the ambient signal is higher than or equal to the threshold sound level. The second signal may also be a noise cancellation signal. In addition, the system may include the processor configured to attenuate the ambient signal if the sound level of the ambient signal is higher than or equal to the threshold sound level. The system may also include the processor configured to instruct the microphone to cease reception and the speaker to cease transmission if the sound level of the ambient signal is higher than or equal to the threshold sound level.
In another implementation, a method of modulating sound within an earpiece includes receiving, via a microphone, at least one ambient signal and transmitting the at least one ambient signal to a processor. The processor compares the sound level of the at least one ambient signal with the maximum sound level and transmits the at least one ambient signal to a speaker if the sound level of the at least one ambient signal is lower than the maximum sound level. The speaker then transmits the at least one ambient signal to a tympanic membrane within an ear canal of a user.
One or more of the following features may be included. The earpiece may include an extra microphone which may be used to detect an ambient sound level. Also, the microphone or the extra microphone may be used to continuously monitor an ambient sound level and the maximum sound level may be programmable by a user.
The method may also include the cessation of reception by the microphone if the ambient sound level is equal to or higher than the maximum sound level and instructing the processor to, in lieu of not transmitting the at least one ambient signal to a speaker if the sound level of the at least one ambient signal is equal to or higher than the maximum sound level, combine the at least one ambient signal with a second signal generated by the processor to produce a combined signal if the processor received the at least one ambient signal from the microphone, wherein the combined signal has a sound level lower than the maximum sound level. The combined signal may then be transmitted to the speaker and then transmitted to the tympanic membrane of the user. If the ambient sound level falls below the maximum sound level, the microphone may resume reception of the at least one ambient signal. The processor may also attenuate the at least one ambient signal in lieu of creating the combined signal. The processor may also instruct the speaker to cease transmission if the ambient sound level is equal to or higher than the maximum sound level, and then resume transmission when the ambient sound level drops below the maximum sound level.
According to another aspect, a system includes a first earpiece having an earpiece housing configured to isolate an ambient environment from a tympanic membrane by physically blocking ambient sound, a microphone disposed within the housing and configured to receive a first ambient audio signal from the ambient environment, a processor operatively connected to the microphone wherein the processor is configured to receive the first ambient audio signal from the microphone and determine if the first ambient signal exceeds a threshold sound level, and a speaker operatively connected to the processor. In a first mode of operation the processor determines the first ambient audio signal exceeds the threshold sound level and processes the first ambient audio signal to modify the first ambient audio signal. In a second mode of operation the processor determines the first ambient audio signal does not exceed the threshold sound level and reproduces the first ambient audio signal at the speaker.
The first earpiece may further include a transceiver disposed within the earpiece housing for operative communication with a second earpiece, the second earpiece having a microphone, a speaker, and a transceiver. The second earpiece may communicate a second ambient audio signal from the microphone of the second earpiece through the transceiver of the second ear piece, and wherein the transceiver of the first ear piece receives the second ambient audio signal and wherein in the first mode of operation the processor further processes the second ambient audio signal to modify the second ambient audio signal and provide a processed second ambient audio signal and then communicate the processed second ambient signal to the second ear piece and reproduces the processed second ambient signal at the speaker of the second earpiece.
The transceiver of the first earpiece may be a near field magnetic induction (NFMI) transceiver and the transceiver of the second earpiece may be an NFMI transceiver. In the first mode of operation the processor may determine the first ambient audio signal exceeds the threshold sound level and processes the first ambient audio signal to modify the first ambient audio signal by reducing a signal level of the first ambient audio signal. The processing may also or alternatively modify the first ambient audio signal by filtering frequencies from the first, add a noise cancellation signal to the first ambient audio signal, or otherwise process.
In the first mode of operation the processor may further communicate through the transceiver the first ambient audio signal exceeds the threshold sound level. In a third mode of operation the processor may receive from the transceiver a communication a second ambient audio signal from the microphone of the second earpiece exceeds the threshold sound level and processes the first ambient audio signal to modify the first ambient audio signal. The threshold sound level may be a user adjustable setting.
A system and method are provided to protect the user's ears from the damaging effects of high level dB SPL noise exposures using a device designed to utilize the external microphone or microphones of an earpiece worn at the external canal and well fitting. In addition to closure of the microphone when a loud noise is detected at a level above a preset threshold, the system would shut off the microphone and/or otherwise prevent transmission of the sound through the device speaker. In addition to this, transient anti-sound may also be delivered to the speaker so an additive effect of active noise cancellation to the passive noise cancellation already provided by the fit of the external auditory canal device. Such cancellation may provide transient and reproducible levels of protection to the user. After the suprathreshold level of sound input has passed, the system may respond by opening the auditory channel once again for transmission of ambient environmental sounds, albeit at lower and non-damaging levels of dB SPL inputs.
It is also to be understood in some embodiments a wireless earpiece is in operative communication with another wireless earpiece. Where two earpieces are present, one earpiece may perform all the audio processing with its processor and thus when the processor of the earpiece determines either the ambient audio from the left earpiece or the ambient audio from the right earpiece exceeds the threshold, the ambient audio is reproduced or else shutoff either by disabling the microphone and/or speaker. Where two earpieces are present, and each earpiece performs its own audio processing, a signal may be communicated from one earpiece to the other earpiece to indicate the threshold has been met. Thus, the earpiece receiving the signal or communication indicating the threshold has been met for the other earpiece may then perform the same processing. Thus, the two earpieces may process ambient audio in the same way, so the user hears the same experience in both ears as opposed to having each earpiece work independently without coordination between the two. This processing based on what is determined from another earpiece may be considered a third mode of operation.
The first earpiece may further include a transceiver disposed within the earpiece housing for operative communication with a second earpiece, the second earpiece having a microphone, a speaker, and a transceiver. The second earpiece may communicate a second ambient audio signal from the microphone of the second earpiece through the transceiver of the second ear piece, and wherein the transceiver of the first ear piece receives the second ambient audio signal and wherein in the first mode of operation the processor further processes the second ambient audio signal to modify the second ambient audio signal and provide a processed second ambient audio signal and then communicate the processed second ambient signal to the second ear piece and reproduces the processed second ambient signal at the speaker of the second earpiece.
Thus, a method of modulating sound within an earpiece includes receiving, via a microphone, at least one ambient signal and transmitting, via the microphone, the at least one ambient signal to a processor. The method further includes comparing, via the processor, a sound level or other property of the at least one ambient signal and a maximum sound level or other sound property with a threshold level. The method further includes communicating, via the processor, the at least one ambient signal to a speaker if the sound level of the at least one ambient signal is lower than the threshold or maximum sound level, and transmitting, via the speaker, the at least one ambient signal to a tympanic membrane.
The threshold or maximum sound level may be determined in various ways. For, example, it may be a universal maximum sound level. Alternatively, it may be programmed into an individual earpiece for an individual after an audiometric analysis performed either by the earpiece itself (alone or in combination with one or more computing devices), or by audiologist or other appropriate personnel. Where the setting is a user setting, the user may communicate with one or both earpieces in various ways. This may include through voice control, through use of gestural commands, through settings on a connected device such as a mobile device, or otherwise.
Therefore, various apparatus, system, and methods have been shown and described herein. Although specific embodiments have been shown, the present invention contemplates numerous variations, options, and alternatives.
This application is a continuation of U.S. patent application Ser. No. 15/458,905 filed on Mar. 14, 2017 which claims priority to U.S. Provisional Patent Application 62/308,106, filed on Mar. 14, 2016, all of which are titled Explosive Sound Pressure Level Active Noise Cancellation Utilizing Completely Wireless Earpieces System and Method and all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2325590 | Carlisle et al. | Aug 1943 | A |
2430229 | Kelsey | Nov 1947 | A |
3047089 | Wislocki | Jul 1962 | A |
D208784 | Sanzone | Oct 1967 | S |
3586794 | Michaelis | Jun 1971 | A |
3696377 | Wall | Oct 1972 | A |
3934100 | Harada | Jan 1976 | A |
3983336 | Malek et al. | Sep 1976 | A |
4069400 | Johanson et al. | Jan 1978 | A |
4150262 | Ono | Apr 1979 | A |
4334315 | Ono et al. | Jun 1982 | A |
D266271 | Johanson et al. | Sep 1982 | S |
4375016 | Harada | Feb 1983 | A |
4588867 | Konomi | May 1986 | A |
4617429 | Bellafiore | Oct 1986 | A |
4654883 | Iwata | Mar 1987 | A |
4682180 | Gans | Jul 1987 | A |
4791673 | Schreiber | Dec 1988 | A |
4852177 | Ambrose | Jul 1989 | A |
4865044 | Wallace et al. | Sep 1989 | A |
4984277 | Bisgaard et al. | Jan 1991 | A |
5008943 | Amdt et al. | Apr 1991 | A |
5185802 | Stanton | Feb 1993 | A |
5191602 | Regen et al. | Mar 1993 | A |
5201007 | Ward et al. | Apr 1993 | A |
5201008 | Arndt et al. | Apr 1993 | A |
D340286 | Seo | Oct 1993 | S |
5280524 | Norris | Jan 1994 | A |
5295193 | Ono | Mar 1994 | A |
5298692 | Ikeda et al. | Mar 1994 | A |
5343532 | Shugart | Aug 1994 | A |
5347584 | Narisawa | Sep 1994 | A |
5363444 | Norris | Nov 1994 | A |
5444786 | Raviv | Aug 1995 | A |
D367113 | Weeks | Feb 1996 | S |
5497339 | Bernard | Mar 1996 | A |
5606621 | Reiter et al. | Feb 1997 | A |
5613222 | Guenther | Mar 1997 | A |
5654530 | Sauer et al. | Aug 1997 | A |
5692059 | Kruger | Nov 1997 | A |
5721783 | Anderson | Feb 1998 | A |
5748743 | Weeks | May 1998 | A |
5749072 | Mazurkiewicz et al. | May 1998 | A |
5771438 | Palermo et al. | Jun 1998 | A |
D397796 | Yabe et al. | Sep 1998 | S |
5802167 | Hong | Sep 1998 | A |
5844996 | Enzmann et al. | Dec 1998 | A |
D410008 | Almqvist | May 1999 | S |
5929774 | Charlton | Jul 1999 | A |
5933506 | Aoki et al. | Aug 1999 | A |
5949896 | Nageno et al. | Sep 1999 | A |
5987146 | Pluvinage et al. | Nov 1999 | A |
6021207 | Puthuff et al. | Feb 2000 | A |
6054989 | Robertson et al. | Apr 2000 | A |
6081724 | Wilson | Jun 2000 | A |
6084526 | Blotky et al. | Jul 2000 | A |
6094492 | Boesen | Jul 2000 | A |
6111569 | Brusky et al. | Aug 2000 | A |
6112103 | Puthuff | Aug 2000 | A |
6157727 | Rueda | Dec 2000 | A |
6167039 | Karlsson et al. | Dec 2000 | A |
6181801 | Puthuff et al. | Jan 2001 | B1 |
6185152 | Shen | Feb 2001 | B1 |
6208372 | Barraclough | Mar 2001 | B1 |
6230029 | Yegiazaryan et al. | May 2001 | B1 |
6275789 | Moser et al. | Aug 2001 | B1 |
6339754 | Flanagan et al. | Jan 2002 | B1 |
D455835 | Anderson et al. | Apr 2002 | S |
6408081 | Boesen | Jun 2002 | B1 |
6424820 | Burdick et al. | Jul 2002 | B1 |
D464039 | Boesen | Oct 2002 | S |
6470893 | Boesen | Oct 2002 | B1 |
D468299 | Boesen | Jan 2003 | S |
D468300 | Boesen | Jan 2003 | S |
6542721 | Boesen | Apr 2003 | B2 |
6560468 | Boesen | May 2003 | B1 |
6563301 | Gventer | May 2003 | B2 |
6654721 | Handelman | Nov 2003 | B2 |
6664713 | Boesen | Dec 2003 | B2 |
6690807 | Meyer | Feb 2004 | B1 |
6694180 | Boesen | Feb 2004 | B1 |
6718043 | Boesen | Apr 2004 | B1 |
6738485 | Boesen | May 2004 | B1 |
6748095 | Goss | Jun 2004 | B1 |
6754358 | Boesen et al. | Jun 2004 | B1 |
6784873 | Boesen et al. | Aug 2004 | B1 |
6823195 | Boesen | Nov 2004 | B1 |
6852084 | Boesen | Feb 2005 | B1 |
6879698 | Boesen | Apr 2005 | B2 |
6892082 | Boesen | May 2005 | B2 |
6920229 | Boesen | Jul 2005 | B2 |
6952483 | Boesen et al. | Oct 2005 | B2 |
6987986 | Boesen | Jan 2006 | B2 |
7010137 | Leedom et al. | Mar 2006 | B1 |
7113611 | Leedom et al. | Sep 2006 | B2 |
D532520 | Kampmeier et al. | Nov 2006 | S |
7136282 | Rebeske | Nov 2006 | B1 |
7203331 | Boesen | Apr 2007 | B2 |
7209569 | Boesen | Apr 2007 | B2 |
7215790 | Boesen et al. | May 2007 | B2 |
D549222 | Huang | Aug 2007 | S |
D554756 | Sjursen et al. | Nov 2007 | S |
7403629 | Aceti et al. | Jul 2008 | B1 |
D579006 | Kim et al. | Oct 2008 | S |
7463902 | Boesen | Dec 2008 | B2 |
7508411 | Boesen | Mar 2009 | B2 |
7532901 | LaFranchise et al. | May 2009 | B1 |
D601134 | Elabidi et al. | Sep 2009 | S |
7825626 | Kozisek | Nov 2010 | B2 |
7859469 | Rosener et al. | Dec 2010 | B1 |
7965855 | Ham | Jun 2011 | B1 |
7979035 | Griffin et al. | Jul 2011 | B2 |
7983628 | Boesen | Jul 2011 | B2 |
D647491 | Chen et al. | Oct 2011 | S |
8095188 | Shi | Jan 2012 | B2 |
8108143 | Tester | Jan 2012 | B1 |
8140357 | Boesen | Mar 2012 | B1 |
8238967 | Arnold et al. | Aug 2012 | B1 |
D666581 | Perez | Sep 2012 | S |
8300864 | Müllenborn et al. | Oct 2012 | B2 |
8406448 | Lin et al. | Mar 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8436780 | Schantz et al. | May 2013 | B2 |
D687021 | Yuen | Jul 2013 | S |
8679012 | Kayyali | Mar 2014 | B1 |
8719877 | VonDoenhoff et al. | May 2014 | B2 |
8774434 | Zhao et al. | Jul 2014 | B2 |
8831266 | Huang | Sep 2014 | B1 |
8891800 | Shaffer | Nov 2014 | B1 |
8994498 | Agrafioti et al. | Mar 2015 | B2 |
D728107 | Martin et al. | Apr 2015 | S |
9013145 | Castillo et al. | Apr 2015 | B2 |
9037125 | Kadous | May 2015 | B1 |
D733103 | Jeong et al. | Jun 2015 | S |
9081944 | Camacho et al. | Jul 2015 | B2 |
9317241 | Tranchina | Apr 2016 | B2 |
9461403 | Gao et al. | Oct 2016 | B2 |
9510159 | Cuddihy et al. | Nov 2016 | B1 |
D773439 | Walker | Dec 2016 | S |
D775158 | Dong et al. | Dec 2016 | S |
9524631 | Agrawal et al. | Dec 2016 | B1 |
D777710 | Palmborg et al. | Jan 2017 | S |
9544689 | Fisher et al. | Jan 2017 | B2 |
D788079 | Son et al. | May 2017 | S |
9684778 | Tharappel et al. | Jun 2017 | B2 |
9711062 | Ellis et al. | Jul 2017 | B2 |
9729979 | Özden | Aug 2017 | B2 |
9767709 | Ellis | Sep 2017 | B2 |
9821767 | Nixon | Nov 2017 | B2 |
9848257 | Ambrose et al. | Dec 2017 | B2 |
20010005197 | Mishra et al. | Jun 2001 | A1 |
20010027121 | Boesen | Oct 2001 | A1 |
20010043707 | Leedom | Nov 2001 | A1 |
20010056350 | Calderone et al. | Dec 2001 | A1 |
20020002413 | Tokue | Jan 2002 | A1 |
20020007510 | Mann | Jan 2002 | A1 |
20020010590 | Lee | Jan 2002 | A1 |
20020030637 | Mann | Mar 2002 | A1 |
20020046035 | Kitahara et al. | Apr 2002 | A1 |
20020057810 | Boesen | May 2002 | A1 |
20020076073 | Taenzer et al. | Jun 2002 | A1 |
20020118852 | Boesen | Aug 2002 | A1 |
20030002705 | Boesen | Jan 2003 | A1 |
20030065504 | Kraemer et al. | Apr 2003 | A1 |
20030100331 | Dress et al. | May 2003 | A1 |
20030104806 | Ruef et al. | Jun 2003 | A1 |
20030115068 | Boesen | Jun 2003 | A1 |
20030125096 | Boesen | Jul 2003 | A1 |
20030218064 | Conner et al. | Nov 2003 | A1 |
20040070564 | Dawson et al. | Apr 2004 | A1 |
20040102931 | Ellis et al. | May 2004 | A1 |
20040160511 | Boesen | Aug 2004 | A1 |
20050017842 | Dematteo | Jan 2005 | A1 |
20050043056 | Boesen | Feb 2005 | A1 |
20050094839 | Gwee | May 2005 | A1 |
20050125320 | Boesen | Jun 2005 | A1 |
20050148883 | Boesen | Jul 2005 | A1 |
20050165663 | Razumov | Jul 2005 | A1 |
20050196009 | Boesen | Sep 2005 | A1 |
20050197063 | White | Sep 2005 | A1 |
20050212911 | Marvit et al. | Sep 2005 | A1 |
20050251455 | Boesen | Nov 2005 | A1 |
20050266876 | Boesen | Dec 2005 | A1 |
20060029246 | Boesen | Feb 2006 | A1 |
20060073787 | Lair et al. | Apr 2006 | A1 |
20060074671 | Farmaner et al. | Apr 2006 | A1 |
20060074808 | Boesen | Apr 2006 | A1 |
20060166715 | Engelen et al. | Jul 2006 | A1 |
20060166716 | Seshadri et al. | Jul 2006 | A1 |
20060220915 | Bauer | Oct 2006 | A1 |
20060258412 | Liu | Nov 2006 | A1 |
20070102009 | Wong et al. | May 2007 | A1 |
20070239225 | Saringer | Oct 2007 | A1 |
20070247800 | Smith et al. | Oct 2007 | A1 |
20070269785 | Yamanoi | Nov 2007 | A1 |
20080076972 | Dorogusker et al. | Mar 2008 | A1 |
20080090622 | Kim et al. | Apr 2008 | A1 |
20080102424 | Holljes | May 2008 | A1 |
20080137873 | Goldstein | Jun 2008 | A1 |
20080146890 | LeBoeuf et al. | Jun 2008 | A1 |
20080187163 | Goldstein et al. | Aug 2008 | A1 |
20080215239 | Lee | Sep 2008 | A1 |
20080253583 | Goldstein et al. | Oct 2008 | A1 |
20080254780 | Kuhl et al. | Oct 2008 | A1 |
20080255430 | Alexandersson et al. | Oct 2008 | A1 |
20080298606 | Johnson et al. | Dec 2008 | A1 |
20090003620 | McKillop et al. | Jan 2009 | A1 |
20090008275 | Ferrari et al. | Jan 2009 | A1 |
20090017881 | Madrigal | Jan 2009 | A1 |
20090041313 | Brown | Feb 2009 | A1 |
20090073070 | Rofougaran | Mar 2009 | A1 |
20090097689 | Prest et al. | Apr 2009 | A1 |
20090105548 | Bart | Apr 2009 | A1 |
20090154739 | Zellner | Jun 2009 | A1 |
20090182913 | Rosenblatt et al. | Jul 2009 | A1 |
20090191920 | Regen et al. | Jul 2009 | A1 |
20090226017 | Abolfathi et al. | Sep 2009 | A1 |
20090240947 | Goyal et al. | Sep 2009 | A1 |
20090245559 | Boltyenkov et al. | Oct 2009 | A1 |
20090261114 | McGuire et al. | Oct 2009 | A1 |
20090296968 | Wu et al. | Dec 2009 | A1 |
20090303073 | Gilling et al. | Dec 2009 | A1 |
20090304210 | Weisman | Dec 2009 | A1 |
20100007805 | Vitito | Jan 2010 | A1 |
20100033313 | Keady et al. | Feb 2010 | A1 |
20100075631 | Black et al. | Mar 2010 | A1 |
20100166206 | Macours | Jul 2010 | A1 |
20100203831 | Muth | Aug 2010 | A1 |
20100210212 | Sato | Aug 2010 | A1 |
20100215198 | Ngia | Aug 2010 | A1 |
20100290636 | Mao et al. | Nov 2010 | A1 |
20100320961 | Castillo et al. | Dec 2010 | A1 |
20110018731 | Linsky et al. | Jan 2011 | A1 |
20110103609 | Pelland et al. | May 2011 | A1 |
20110137141 | Razoumov et al. | Jun 2011 | A1 |
20110140844 | McGuire et al. | Jun 2011 | A1 |
20110239497 | McGuire et al. | Oct 2011 | A1 |
20110286615 | Olodort et al. | Nov 2011 | A1 |
20110293105 | Arie et al. | Dec 2011 | A1 |
20120057740 | Rosal | Mar 2012 | A1 |
20120155670 | Rutschman | Jun 2012 | A1 |
20120159617 | Wu et al. | Jun 2012 | A1 |
20120162891 | Tranchina et al. | Jun 2012 | A1 |
20120163626 | Booij et al. | Jun 2012 | A1 |
20120197737 | LeBoeuf et al. | Aug 2012 | A1 |
20120235883 | Border et al. | Sep 2012 | A1 |
20120309453 | Maguire | Dec 2012 | A1 |
20130106454 | Liu et al. | May 2013 | A1 |
20130154826 | Ratajczyk | Jun 2013 | A1 |
20130178967 | Mentz | Jul 2013 | A1 |
20130200999 | Spodak et al. | Aug 2013 | A1 |
20130204617 | Kuo et al. | Aug 2013 | A1 |
20130293494 | Reshef | Nov 2013 | A1 |
20130316642 | Newham | Nov 2013 | A1 |
20130346168 | Zhou et al. | Dec 2013 | A1 |
20140002357 | Pombo et al. | Jan 2014 | A1 |
20140004912 | Rajakarunanayake | Jan 2014 | A1 |
20140014697 | Schmierer et al. | Jan 2014 | A1 |
20140020089 | Perini, II | Jan 2014 | A1 |
20140072136 | Tenenbaum et al. | Mar 2014 | A1 |
20140072146 | Itkin et al. | Mar 2014 | A1 |
20140073429 | Meneses et al. | Mar 2014 | A1 |
20140079257 | Ruwe et al. | Mar 2014 | A1 |
20140106677 | Altman | Apr 2014 | A1 |
20140122116 | Smythe | May 2014 | A1 |
20140146973 | Liu et al. | May 2014 | A1 |
20140153768 | Hagen et al. | Jun 2014 | A1 |
20140163771 | Demeniuk | Jun 2014 | A1 |
20140185828 | Helbling | Jul 2014 | A1 |
20140219467 | Kurtz | Aug 2014 | A1 |
20140222462 | Shakil et al. | Aug 2014 | A1 |
20140235169 | Parkinson et al. | Aug 2014 | A1 |
20140237518 | Liu | Aug 2014 | A1 |
20140270227 | Swanson | Sep 2014 | A1 |
20140270271 | Dehe et al. | Sep 2014 | A1 |
20140276227 | Pérez | Sep 2014 | A1 |
20140279889 | Luna | Sep 2014 | A1 |
20140310595 | Acharya et al. | Oct 2014 | A1 |
20140321682 | Kofod-Hansen et al. | Oct 2014 | A1 |
20140335908 | Krisch et al. | Nov 2014 | A1 |
20140348367 | Vavrus et al. | Nov 2014 | A1 |
20150028996 | Agrafioti et al. | Jan 2015 | A1 |
20150035643 | Kursun | Feb 2015 | A1 |
20150036835 | Chen | Feb 2015 | A1 |
20150056584 | Boulware et al. | Feb 2015 | A1 |
20150110587 | Hori | Apr 2015 | A1 |
20150124058 | Okpeva et al. | May 2015 | A1 |
20150148989 | Cooper et al. | May 2015 | A1 |
20150181356 | Krystek et al. | Jun 2015 | A1 |
20150230022 | Sakai et al. | Aug 2015 | A1 |
20150245127 | Shaffer | Aug 2015 | A1 |
20150256949 | Vanpoucke et al. | Sep 2015 | A1 |
20150264472 | Aase | Sep 2015 | A1 |
20150264501 | Hu et al. | Sep 2015 | A1 |
20150317565 | Li et al. | Nov 2015 | A1 |
20150358751 | Deng et al. | Dec 2015 | A1 |
20150359436 | Shim et al. | Dec 2015 | A1 |
20150364058 | Lagree et al. | Dec 2015 | A1 |
20150373467 | Gelter | Dec 2015 | A1 |
20150373474 | Kraft et al. | Dec 2015 | A1 |
20150379251 | Komaki | Dec 2015 | A1 |
20160033280 | Moore et al. | Feb 2016 | A1 |
20160034249 | Lee et al. | Feb 2016 | A1 |
20160071526 | Wingate et al. | Mar 2016 | A1 |
20160072558 | Hirsch et al. | Mar 2016 | A1 |
20160073189 | Lindén et al. | Mar 2016 | A1 |
20160094550 | Bradley et al. | Mar 2016 | A1 |
20160100262 | Inagaki | Apr 2016 | A1 |
20160119737 | Mehnert et al. | Apr 2016 | A1 |
20160124707 | Ermilov et al. | May 2016 | A1 |
20160125892 | Bowen et al. | May 2016 | A1 |
20160140870 | Connor | May 2016 | A1 |
20160142818 | Park | May 2016 | A1 |
20160162259 | Zhao et al. | Jun 2016 | A1 |
20160209691 | Yang et al. | Jul 2016 | A1 |
20160226713 | Dellinger et al. | Aug 2016 | A1 |
20160253994 | Panchapagesan et al. | Sep 2016 | A1 |
20160324478 | Goldstein | Nov 2016 | A1 |
20160353196 | Baker et al. | Dec 2016 | A1 |
20160360350 | Watson et al. | Dec 2016 | A1 |
20170021257 | Gilbert et al. | Jan 2017 | A1 |
20170046503 | Cho et al. | Feb 2017 | A1 |
20170059152 | Hirsch et al. | Mar 2017 | A1 |
20170060262 | Hviid et al. | Mar 2017 | A1 |
20170060269 | Förstner et al. | Mar 2017 | A1 |
20170061751 | Loermann et al. | Mar 2017 | A1 |
20170061817 | Mettler May | Mar 2017 | A1 |
20170062913 | Hirsch et al. | Mar 2017 | A1 |
20170064426 | Hviid | Mar 2017 | A1 |
20170064428 | Hirsch | Mar 2017 | A1 |
20170064432 | Hviid et al. | Mar 2017 | A1 |
20170064437 | Hviid et al. | Mar 2017 | A1 |
20170078780 | Qian et al. | Mar 2017 | A1 |
20170078785 | Qian et al. | Mar 2017 | A1 |
20170096065 | Katsuno et al. | Apr 2017 | A1 |
20170100277 | Ke | Apr 2017 | A1 |
20170108918 | Boesen | Apr 2017 | A1 |
20170109131 | Boesen | Apr 2017 | A1 |
20170110124 | Boesen et al. | Apr 2017 | A1 |
20170110899 | Boesen | Apr 2017 | A1 |
20170111723 | Boesen | Apr 2017 | A1 |
20170111725 | Boesen et al. | Apr 2017 | A1 |
20170111726 | Martin et al. | Apr 2017 | A1 |
20170111740 | Hviid et al. | Apr 2017 | A1 |
20170127168 | Briggs et al. | May 2017 | A1 |
20170131094 | Kulik | May 2017 | A1 |
20170142511 | Dennis | May 2017 | A1 |
20170146801 | Stempora | May 2017 | A1 |
20170150920 | Chang et al. | Jun 2017 | A1 |
20170151085 | Chang et al. | Jun 2017 | A1 |
20170151447 | Boesen | Jun 2017 | A1 |
20170151668 | Boesen | Jun 2017 | A1 |
20170151918 | Boesen | Jun 2017 | A1 |
20170151930 | Boesen | Jun 2017 | A1 |
20170151957 | Boesen | Jun 2017 | A1 |
20170151959 | Boesen | Jun 2017 | A1 |
20170153114 | Boesen | Jun 2017 | A1 |
20170153636 | Boesen | Jun 2017 | A1 |
20170154532 | Boesen | Jun 2017 | A1 |
20170155985 | Boesen | Jun 2017 | A1 |
20170155992 | Perianu et al. | Jun 2017 | A1 |
20170155993 | Boesen | Jun 2017 | A1 |
20170155997 | Boesen | Jun 2017 | A1 |
20170155998 | Boesen | Jun 2017 | A1 |
20170156000 | Boesen | Jun 2017 | A1 |
20170164890 | Leip et al. | Jun 2017 | A1 |
20170178631 | Boesen | Jun 2017 | A1 |
20170180842 | Boesen | Jun 2017 | A1 |
20170180843 | Perianu et al. | Jun 2017 | A1 |
20170180897 | Perianu | Jun 2017 | A1 |
20170188127 | Perianu et al. | Jun 2017 | A1 |
20170188132 | Hirsch et al. | Jun 2017 | A1 |
20170193978 | Goldman | Jul 2017 | A1 |
20170195829 | Belverato et al. | Jul 2017 | A1 |
20170208393 | Boesen | Jul 2017 | A1 |
20170214987 | Boesen | Jul 2017 | A1 |
20170215016 | Dohmen et al. | Jul 2017 | A1 |
20170230752 | Dohmen et al. | Aug 2017 | A1 |
20170251295 | Pergament et al. | Aug 2017 | A1 |
20170251933 | Braun et al. | Sep 2017 | A1 |
20170257698 | Boesen et al. | Sep 2017 | A1 |
20170258329 | Marsh | Sep 2017 | A1 |
20170263236 | Boesen et al. | Sep 2017 | A1 |
20170263376 | Verschueren et al. | Sep 2017 | A1 |
20170266494 | Crankson et al. | Sep 2017 | A1 |
20170273622 | Boesen | Sep 2017 | A1 |
20170280257 | Gordon et al. | Sep 2017 | A1 |
20170297430 | Hori et al. | Oct 2017 | A1 |
20170301337 | Golani et al. | Oct 2017 | A1 |
20170361213 | Goslin et al. | Dec 2017 | A1 |
20170366233 | Hviid et al. | Dec 2017 | A1 |
20180007994 | Boesen et al. | Jan 2018 | A1 |
20180008194 | Boesen | Jan 2018 | A1 |
20180008198 | Kingscott | Jan 2018 | A1 |
20180009447 | Boesen et al. | Jan 2018 | A1 |
20180011006 | Kingscott | Jan 2018 | A1 |
20180011682 | Milevski et al. | Jan 2018 | A1 |
20180011994 | Boesen | Jan 2018 | A1 |
20180012228 | Milevski et al. | Jan 2018 | A1 |
20180013195 | Hviid et al. | Jan 2018 | A1 |
20180014102 | Hirsch et al. | Jan 2018 | A1 |
20180014103 | Martin et al. | Jan 2018 | A1 |
20180014104 | Boesen et al. | Jan 2018 | A1 |
20180014107 | Razouane et al. | Jan 2018 | A1 |
20180014108 | Dragicevic et al. | Jan 2018 | A1 |
20180014109 | Boesen | Jan 2018 | A1 |
20180014113 | Boesen | Jan 2018 | A1 |
20180014140 | Milevski et al. | Jan 2018 | A1 |
20180014436 | Milevski | Jan 2018 | A1 |
20180034951 | Boesen | Feb 2018 | A1 |
20180040093 | Boesen | Feb 2018 | A1 |
20180042501 | Adi et al. | Feb 2018 | A1 |
20180056903 | Mullett | Mar 2018 | A1 |
20180063626 | Pong et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
204244472 | Apr 2015 | CN |
104683519 | Jun 2015 | CN |
104837094 | Aug 2015 | CN |
1469659 | Oct 2004 | EP |
1017252 | May 2006 | EP |
2903186 | Aug 2015 | EP |
2074817 | Apr 1981 | GB |
2508226 | May 2014 | GB |
06292195 | Oct 1998 | JP |
2008103925 | Aug 2008 | WO |
2008113053 | Sep 2008 | WO |
2007034371 | Nov 2008 | WO |
2011001433 | Jan 2011 | WO |
2012071127 | May 2012 | WO |
2013134956 | Sep 2013 | WO |
2014046602 | Mar 2014 | WO |
2014043179 | Jul 2014 | WO |
2015061633 | Apr 2015 | WO |
2015110577 | Jul 2015 | WO |
2015110587 | Jul 2015 | WO |
2016032990 | Mar 2016 | WO |
2016187869 | Dec 2016 | WO |
Entry |
---|
Stretchgoal—The Carrying Case for the Dash (Feb. 12, 2014). |
Stretchgoal—Windows Phone Support (Feb. 17, 2014). |
The Dash + The Charging Case & The BARGI News (Feb. 21, 2014). |
The Dash—A Word From Our Software, Mechanical and Acoustics Team+ An Update (Mar. 11, 2014). |
Update From BRAGI—$3,000,000—Yipee (Mar. 22, 2014). |
Weisiger; “Conjugated Hyperbilirubinemia”, Jan. 5, 2016. |
Wertzner et al., “Analysis of fundamental frequency, jitter, shimmer and vocal intensity in children with phonological disorders”, V. 71, n.5, 582-588, Sep./Oct. 2005; Brazilian Journal of Othrhinolaryngology. |
Wikipedia, “Gamebook”, https://en.wikipedia.org/wiki/Gamebook, Sep. 3, 2017, 5 pages. |
Wikipedia, “Kinect”, “https://en.wikipedia.org/wiki/Kinect”, 18 pages, (Sep. 9, 2017). |
Wikipedia, “Wii Balance Board”, “https://en.wikipedia.org/wiki/Wii_Balance_Board”, 3 pages, (Jul. 20, 2017). |
Akkermans, “Acoustic Ear Recognition for Person Identification”, Automatic Identification Advanced Technologies, 2005 pp. 219-223. |
Alzahrani et al: “A Multi-Channel Opto-Electronic Sensor to Accurately Monitor Heart Rate against Motion Artefact during Exercise”, Sensors, vol. 15, No. 10, Oct. 12, 2015, pp. 25681-25702, XPO55334602, DOI: 10.3390/s151025681 the whole document. |
Announcing the $3,333,333 Stretch Goal (Feb. 24, 2014). |
Ben Coxworth: “Graphene-based ink could enable low-cost, foldable electronics”, “Journal of Physical Chemistry Letters”, Northwestern University, (May 22, 2013). |
Blain: “World's first graphene speaker already superior to Sennheiser MX400”, htt://www.gizmag.com/graphene-speaker-beats-sennheiser-mx400/31660, (Apr. 15, 2014). |
BMW, “BMW introduces BMW Connected—The personalized digital assistant”, “http://bmwblog.com/2016/01/05/bmw-introduces-bmw-connected-the-personalized-digital-assistant”, (Jan. 5, 2016). |
BRAGI is on Facebook (2014). |
BRAGI Update—Arrival of Prototype Chassis Parts—More People—Awesomeness (May 13, 2014). |
BRAGI Update—Chinese New Year, Design Verification, Charging Case, More People, Timeline(Mar. 6, 2015). |
BRAGI Update—First Sleeves From Prototype Tool—Software Development Kit (Jun. 5, 2014). |
BRAGI Update—Lets Get Ready to Rumble, A Lot to Be Done Over Christmas (Dec. 22, 2014). |
BRAGI Update—Memories From April—Update on Progress (Sep. 16, 2014). |
BRAGI Update—Memories from May—Update on Progress—Sweet (Oct. 13, 2014). |
BRAGI Update—Memories From One Month Before Kickstarter—Update on Progress (Jul. 10, 2014). |
BRAGI Update—Memories From the First Month of Kickstarter—Update on Progress (Aug. 1, 2014). |
BRAGI Update—Memories From the Second Month of Kickstarter—Update on Progress (Aug. 22, 2014). |
BRAGI Update—New People @BRAGI—Prototypes (Jun. 26, 2014). |
BRAGI Update—Office Tour, Tour to China, Tour to CES (Dec. 11, 2014). |
BRAGI Update—Status on Wireless, Bits and Pieces, Testing—Oh Yeah, Timeline(Apr. 24, 2015). |
BRAGI Update—The App Preview, The Charger, The SDK, BRAGI Funding and Chinese New Year (Feb. 11, 2015). |
BRAGI Update—What We Did Over Christmas, Las Vegas & CES (Jan. 19, 2014). |
BRAGI Update—Years of Development, Moments of Utter Joy and Finishing What We Started(Jun. 5, 2015). |
BRAGI Update—Alpha 5 and Back to China, Backer Day, On Track(May 16, 2015). |
BRAGI Update—Beta2 Production and Factory Line(Aug. 20, 2015). |
BRAGI Update—Certifications, Production, Ramping Up (Nov. 13, 2015). |
BRAGI Update—Developer Units Shipping and Status(Oct. 5, 2015). |
BRAGI Update—Developer Units Started Shipping and Status (Oct. 19, 2015). |
BRAGI Update—Developer Units, Investment, Story and Status(Nov. 21, 2015). |
BRAGI Update—Getting Close(Aug. 6, 2015). |
BRAGI Update—On Track, Design Verification, How It Works and What's Next(Jul. 15, 2015). |
BRAGI Update—On Track, on Track and Gems Overview (Jun. 24, 2015). |
BARGI Update—Status on Wireless, Supply, Timeline and Open House@BRAGI(Apr. 1, 2015). |
BRAGI Update—Unpacking Video, Reviews on Audio Perform and Boy Are We Getting Close(Sep. 10, 2015). |
Healthcare Risk Management Review, “Nuance updates computer-assisted physician documentation solution” (Oct. 20, 2016). |
Hoffman, “How to Use Android Beam to Wirelessly Transfer Content Between Devices”, (Feb. 22, 2013). |
Hoyt et. al., “Lessons Learned from Implementation of Voice Recognition for Documentation in the Military Electronic Health Record System”, The American Health Information Management Association (2017). |
Hyundai Motor America, “Hyundai Motor Company Introduces A Health+ Mobility Concept for Wellness in Mobility”, Fountain Valley, Californa (2017). |
International Search Report & Written Opinion, PCT/EP16/70245 (dated Nov. 16, 2016). |
International Search Report & Written Opinion, PCT/EP2016/070231 (dated Nov. 18, 2016). |
International Search Report & Written Opinion, PCT/EP2016/070247 (dated Nov. 18, 2016). |
International Search Report & Written Opinion, PCT/EP2016/07216 (dated Oct. 18, 2016). |
International Search Report and Written Opinion, PCT/EP2016/070228 (dated Jan. 9, 2017). |
Jain A et al: “Score normalization in multimodal biometric systems”, Pattern Recognition, Elsevier, GB, vol. 38, No. 12, Dec. 31, 2005, pp. 2270-2285, XP027610849, ISSN: 0031-3203. |
Last Push Before the Kickstarter Campaign Ends on Monday 4pm CET (Mar. 28, 2014). |
Lovejoy: “Touch ID built into iPhone display one step closer as third-party company announces new tech”, “http://9to5mac.com/2015/07/21/virtualhomebutton/” (Jul. 21, 2015). |
Nemanja Paunovic et al, “A methodology for testing complex professional electronic systems”, Serbian Journal of Electrical Engineering, vol. 9, No. 1, Feb. 1, 2012, pp. 71-80, XPO55317584, YU. |
Nigel Whitfield: “Fake tape detectors, ‘from the stands’ footie and UGH? Internet of Things in my set-top box”; http://www.theregister.co.uk/2014/09/24/ibc_round_up_object_audio_dlna_iot/ (Sep. 24, 2014). |
Nuance, “ING Netherlands Launches Voice Biometrics Payment System in the Mobile Banking App Powered by Nuance”, “https://www.nuance.com/about-us/newsroom/press-releases/ing-netherlands-launches-nuance-voice-biometrics.html”, 4 pages (Jul. 28, 2015). |
Staab, Wayne J., et al., “A One-Size Disposable Hearing Aid is Introduced”, The Hearing Journal 53(4):36-41) Apr. 2000. |
Stretchgoal—Its Your Dash (Feb. 14, 2014). |
Number | Date | Country | |
---|---|---|---|
20180332382 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62308106 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15458905 | Mar 2017 | US |
Child | 16044290 | US |