The present invention relates to a tube which is charged with explosives and a method of blasting bedrock using the same, and more particularly, to an explosive tube, which is charged with explosives and is inserted into a hole bored in a bedrock, and a method of blasting a bedrock using the same.
In general, blasting construction means construction for blasting bedrocks, such as cutting work of raw stones in a mine or a quarry, tunneling work in a rock field, cutting work of a concrete structure and road opening work, and recently, blasting construction, such as underground excavation work, power cable work and pipe construction for a building, and subway construction, has been frequently carried out in downtown areas.
The blasting construction includes not only work to crunch big stones into little pieces but also a larger work to explode several tons of stones at the same time, and has been carried out through designs using construction methods defined by each pattern.
Conventional bedrock blasting methods which have been widely used are divided into a general blasting method of drilling a blast hole in a bedrock, charging the inside of the blast hole with explosives and tamping materials and carrying out explosion, a blasting method by deck charge of arranging explosives and tamping materials by turns inside a hole and carrying out explosion in order to reduce vibration, and a pre-split blasting method carried out to arrange the slope.
Moreover, for blasting, ammonium nitrate fuel oil (ANFO) explosives, bulk explosives, water gel explosives and so on have been used. The ANFO explosives have been the most generally used due to economic feasibility because being ammonium explosives in which ammonium nitrate is mixed with fuel oil, but need primers or boosters, are difficult to be stored for a long time because of absorptiveness and weak in water resistance.
In order to overcome the above disadvantages,
Moreover, Korean Patent No. 10-0882851 published on Feb. 10, 2009 discloses a method for blasting rocks using an air deck filled with rocks, which forms an air deck space between an explosive and an explosive or between an explosive and a tamping material inside a charge hole. However, the blasting method is a method of directly charging explosives and tamping materials inside the charge hole, in case of ANFO explosives which have weak water resistance, the method cannot be easily applied to geographical features of Korea which have lots of underground water and cavities, and it is difficult to realize quantification of explosives.
Furthermore, in general, in order to crush rocks, explosives are excessively concentrated on the lower part. Additionally, the existing cushion blasting method is a method of blasting by binding explosives to detonating fuses at regular intervals, but is not used widely because it is complicated and uneconomical due to a high price of the detonating fuses.
Accordingly, the present invention has been made in an effort to solve the above-mentioned problems occurring in the prior arts, and it is an object of the present invention to provide an explosive tube having an air gap and a method of blasting a bedrock using the same, which can quantify explosives and reduce an explosive usage by forming an air gap onto an upper part of a tube so as to increase blasting efficiency and significantly reduce expenses, increase the length of a cartridge of the explosives in comparison with the same amount of the explosives and enlarge a projection area at the time of explosion so as to increase blasting effect, and reduce blasting pollution, such as blast pressure, scattered stones, vibration and noise, generated during explosion by applying a cushion blasting method.
It is another object of the present invention to provide an explosive tube having an air gap and a method of blasting a bedrock using the same, which can set a charge amount and a charging location of explosives in various ways so as to precisely control explosion according to characteristics of rocks by controlling power of explosion, prevent back break that rocks are destroyed beyond a design, and effectively crush rocks with a small amount of explosives by positively utilizing a free face.
It is a further object of the present invention to provide an explosive tube having an air gap and a method of blasting a bedrock using the same, which are easy, safe and convenient to insert and pull explosives into and out of the bored hole because the detonator is inserted into the tube not to be separated and quantified explosives are produced previously, and which can increase waterproofing property by blocking an insertion hole with a lid.
To achieve the above objects, the present invention provides an explosive tube which is used to crush a bedrock by blasting explosives after a plurality of the tubes charged with the explosives are connected with one another and are inserted into a blast hole bored in a bedrock, the explosive tube including: a charge tube having a charging space charged with explosives; and an air tube which is formed integrally above the charge tube, has a space of an air gap formed therein when another tube is connected to the upper part of the former tube, and has an insertion hole formed in the bottom to charge the charging space with the explosives.
In this instance, preferably, the tube has an induction groove formed in a longitudinal direction of the tube to induce a blasting direction to the outer circumference. Moreover, preferably, the charge tube has a weight inserted and mounted to the lower part thereof and a scale indicated on the outer circumferential surface thereof.
Furthermore, preferably, the charge tube is rounded at a lower end portion thereof.
Additionally, preferably, the inner circumferential surface of the air tube is tapered downward.
In addition, preferably, the air tube further has a lid for blocking the insertion hole after the charge tube is charged with the explosives.
Moreover, preferably, the explosive tube further includes a connection tube for connecting the tubes with each other.
Furthermore, the charge tube is charged with mixture of an ammonium nitrate fuel oil (ANFO) explosive and an emulsion-based explosive.
In another aspect of the present invention, the present invention provides a method of crushing a bedrock by blasting explosives after connecting a plurality of tubes, each of which includes a charge tube having a charging space charged with explosives and an air tube formed integrally above the charge tube and having an insertion hole formed in the bottom to put in the explosives, with one another and inserting the tubes into a blast hole bored in a bedrock, the method including: a blast hole boring step for boring a plurality of blast holes in the bedrock in predetermined arrangement and depth; an explosive charging step for charging the charging spaces of the plural tubes with explosives through the insertion holes; a tube connecting step for connecting a plurality of the tubes charged with the explosives with one another, wherein another tube is connected to the upper part of the tube so as to form a space of an air gap inside the air tube; a tube inserting step for inserting the tubes into the blast hole; a primer inserting step for inserting a primer to which a detonator is connected into the charge tube of the tube inserted into the blast hole or into the upper part of the tube which is inserted into the uppermost part of the blast hole; a tamping material charging step for charging the remaining space of the blast hole with tamping materials; and a detonating step for detonating the detonator by a blasting machine from the outside in order to crush the bedrock.
In a further aspect of the present invention, the present invention provides a method of crushing a bedrock by blasting explosives after connecting a plurality of tubes, each of which includes a charge tube having a charging space charged with explosives and an air tube formed integrally above the charge tube and having an insertion hole formed in the bottom to put in the explosives, with one another and inserting the tubes into a blast hole bored in a bedrock, the method including: a blast hole boring step for boring a plurality of blast holes in the bedrock in predetermined arrangement and depth; an explosive charging step for charging the charging spaces of the plural tubes with explosives through the insertion holes; a tube connecting step for connecting a plurality of the tubes charged with the explosives with one another, wherein another tube is connected to the upper part of the tube so as to form a space of an air gap inside the air tube; a tube inserting step for inserting the tubes into the blast hole; a detonator installing step for inserting and installing a detonator into the charge tube of the tube inserted into the blast hole; a tamping material charging step for charging the remaining space of the blast hole with tamping materials; and a detonating step for detonating the detonator by a blasting machine from the outside in order to crush the bedrock.
Here, preferably, the method of blasting the bedrock further includes an insertion hole blocking step for blocking the insertion hole with a lid after the explosive charging step.
Additionally, preferably, a connection tube is interposed between the two tubes in the tube connecting step.
In addition, the charge tube is charged with mixture of an ammonium nitrate fuel oil (ANFO) explosive and an emulsion-based explosive.
As described above, the explosive tube and the method of blasting a bedrock using the same according to the present invention can quantify explosives and reduce an explosive usage by forming an air gap onto an upper part of a tube so as to increase blasting efficiency and significantly reduce expenses, increase the length of a cartridge of the explosives in comparison with the same amount of the explosives, and enlarge a projection area at the time of explosion so as to increase blasting effect, and reduce blasting pollution, such as blast pressure, scattered stones, vibration and noise, generated during explosion by applying a cushion blasting method.
Moreover, the explosive tube and the method of blasting a bedrock using the same according to the present invention can set a charge amount and a charging location of explosives in various ways so as to precisely control explosion, for instance, by controlling power of explosion, prevent back break that rocks are destroyed beyond a design, and carry out concentrated crushing toward a crushing direction of rocks.
Furthermore, the explosive tube and the method of blasting a bedrock using the same according to the present invention can be easily applied to varied geographies with lots of underground water or cavities through an increase of waterproofing property by blocking the insertion hole with the lid.
Additionally, when blasting is carried out using direct priming after the detonator is located at the inlet of the blast hole, because shock waves reach the free face rapidly, the explosive tube and the method of blasting a bedrock using the same according to the present invention can increase blasting power and make insertion of the detonators and arrangement of the detonator leads easy and convenient.
Explanation of numerals of essential parts in drawings
1: charge hole, 2: initial explosive,
3: detonator, 4: explosive
5: tamping material, 10: charge tube
11: charging space, 12: weight
13: scale, 14: round part
20: air tube, 21: air gap
22: insertion hole, 23: lid
30: connection tube, 31: upper connection part
32: lower connection part, A: tamping material
D: detonator, E: explosive
G: induction groove, H: blast hole
L: detonator lead, P: primer
R: rock, T: tube
To achieve the above objects, the present invention provides an explosive tube which is used to crush a bedrock by blasting explosives after a plurality of the tubes charged with the explosives are connected with one another and are inserted into a blast hole bored in a bedrock, the explosive tube including: a charge tube having a charging space charged with explosives; and an air tube which is formed integrally above the charge tube, has a space of an air gap formed therein when another tube is connected to the upper part of the former tube, and has an insertion hole formed in the bottom to charge the charging space with the explosives.
Furthermore, the present invention provides a method of crushing a bedrock by blasting explosives after connecting a plurality of tubes, each of which includes a charge tube having a charging space charged with explosives and an air tube formed integrally above the charge tube and having an insertion hole formed in the bottom to put in the explosives, with one another and inserting the tubes into a blast hole bored in a bedrock, the method including: a blast hole boring step for boring a plurality of blast holes in the bedrock in predetermined arrangement and depth; an explosive charging step for charging the charging spaces of the plural tubes with explosives through the insertion holes; a tube connecting step for connecting a plurality of the tubes charged with the explosives with one another, wherein another tube is connected to the upper part of the tube so as to form a space of an air gap inside the air tube; a tube inserting step for inserting the tubes into the blast hole; a primer inserting step for inserting a primer to which a detonator is connected into the charge tube of the tube inserted into the blast hole or into the upper part of the tube which is inserted into the uppermost part of the blast hole; a tamping material charging step for charging the remaining space of the blast hole with tamping materials; and a detonating step for detonating the detonator by a blasting machine from the outside in order to crush the bedrock.
Hereinafter, reference will be now made in detail to the preferred embodiment of the present invention with reference to the attached drawings.
Referring to
In this instance, the tube (T) is formed to be opened at the upper part and is elongated in a longitudinal direction, can prevent that explosives which have weak water resistance melt by water, such as underground water, inside a blast hole 2. The tube (T) is made of transparent synthetic resin, such as PP or PE, but is not limited to the above.
Moreover, the tube (T) may be cut and manufactured to fit to the diameter and depth of the blast hole (H), but, as shown in
The tube (T) may be charged with various kinds of explosives in different arrangements. For instance,
Furthermore,
Additionally,
As shown in
The charge tube 10 includes a charging space 11 which is charged with explosives (E), and the explosives (E) may be ANFO explosives, bulk explosives, water gel explosives and so on, but are not limited to the above.
In this instance, it is preferable that a weight be inserted and mounted into a lower part of the charge tube 10. The weight 12 facilitates that the tube (T) is inserted into the bottom surface of the blast hole (H), and especially, even though water, such as underground water, exist inside the blast hole (H), the tube (T) containing the ANFO explosives, which is smaller in specific gravity than water, can be easily inserted. The weight 12 may be made of metal or rock.
In addition, it is preferable that the charge tube 10 have a scale 13 indicated on the outer circumferential surface thereof, and the scale 13 is to check an amount of the explosives (E) filling the charging space 11 so as to quantify the explosives and reduce usage of the explosives.
Moreover, the charge tube 10 includes a round part 14 that a lower end is rounded, and the round part 14 prevents that the lower end of the charge tube 10 is damaged by being caught to an inwardly protruding part of the blast hole (H) when the tube (T) is inserted into the blast hole (H) bored in the rock (R).
It is preferable that the air tube 20 be formed integrally to the upper part of the charge tube 10, and has an inlet opened and an outlet which is formed at the bottom and has an insertion hole 22 to put the explosives into the charging space 11. Furthermore, after the charging space 11 is charged with the explosives (E), a lid 23 blocks the insertion hole 22 in order to increase waterproofing property.
In this instance, the air tube 20 has an inner surface formed to get upwardly wider, is tapered downward and has a reversed trapezoidal cross section, so that the explosives can be easily put into the charging space 11 communicated with the insertion hole 22.
Furthermore, as shown in
In general, the cushion blasting is mainly used for open pit blasting. The cushion blasting is carried out through the steps of well-arranging an explosive charge of a small amount in a completely tamped space, blasting a main blast hole and setting off a cushion blast hole, and in this instance, tamping materials absorbs shock applied from explosion of the bedrock to minimize cracking and tension, so that the bedrock is evenly cut by uniform explosive power of the explosive charge to form a clean cut surface.
However, the general cushion blasting is different from blasting using the explosive tube (T) having the air gap according to the present invention because the cushion blasting must explode the main blast hole before setting off the cushion blast hole.
In general, excavation through blasting is to remove the bedrock of the excavation section using shock pressure and gas pressure generated during explosion of the explosives. Because the shock pressure and the gas pressure are propagated deep inside the bedrock in the form of seismic waves, it causes blasting pollution, such as blast pressure and noise, as well as vibration.
In order to control the blasting pollution, there are blasting design, limitation in charge weight, division of firing methods, use of slower explosives, use of MS detonators, and so on. The explosive tube (T) having the air gap according to the present invention can considerably reduce usage of the explosives so as to enhance blasting efficiency and greatly reduce costs of explosives because the tube (T) is charged only with the explosives of a fixed amount necessary for blasting the bedrock(R), can vary the charging amount and the location of the explosives (E) in the plural tubes (T) inserted into the blast hole (H) so as to precisely control blasting through control and uniform distribution of blasting power according to locations, and can enhance the blasting effect due to extension of the blasting length of the explosives in comparison with the same amount of the explosives and expansion of the projection area at the time of blasting using ANFO explosives, which are slower explosives, so as to restrain generation of blasting pressure, scattered stones, vibration and noise generated during explosion.
Additionally, as shown in
The connection tube 30 includes an upper connection part 31 and a lower connection part 32, and it is preferable that the diameter of the upper connection part 31 is larger than that of the lower connection part 32.
The tube (T) which is arranged at the upper part is connected to the inside of the upper connection part 31, and the tube (T) which is arranged at the lower part is connected to the outside of the lower connection part 32, and preferably, the tubes (T) are respectively connected to the upper connection part 31 and the lower connection part 32 in a forced fitting manner. However, the connection method is not limited to the above, and the tubes (T) can be respectively connected to the upper connection part 31 and the lower connection part 32 in one of various well-known connection methods, such as a screw coupling method, a tonguing-and-grooving coupling method, and so on.
Therefore, a plurality of the tubes are consecutively connected with one another in the longitudinal direction of the blast hole (H) in correspondence with the depth of the blast hole (H) so as to prevent that the connected tubes are easily separated from one another in the middle of the connected tubes before explosion and to extend the space of the air gap 21.
Hereinafter, referring to the drawings, a method of blasting the bedrock according to the present invention will be described in detail.
The method of blasting the bedrock using the explosive tube having the air gap according to the present invention is a method including the steps of connecting a plurality of tubes, each of which has a charge tube 10 having a charging space charged with explosives and an air tube 20 being integrally formed above the charge tube and having an insertion hole 22 formed in the bottom to put explosives into the tube, with one another, inserting the tubes into a blast hole bored in a bedrock, and blasting the explosives to crush the bedrock.
As shown in
First, a design for blasting in relation with a bedrock to be crushed is established according to variables, such as geographical features, geological features, ground conditions, blasting methods and surrounding conditions. In this instance, in order to verify the suitability of the blasting design and correct the blasting design, test blasting is carried out in advance, results of the test blasting is analyzed, a prediction equation of blasting vibration is calculated, and then, whether or not the blasting design is suitable for the blasting spot is reviewed.
After that, according to the blasting design, the blast hole boring step (S10) for boring a plurality of blast holes (H) deep into a bedrock (R) in a predetermined arrangement is carried out.
As shown in
After the blast hole boring step (S10), the explosive charging step (S20) for charging explosives (E) into a charging space 11 of the tube (T) through the insertion hole 22 is carried out.
In the explosive charging step (S20), like the conventional method, the charging space 11 of the charge tube 10 is charged with the explosive using a tamping bar or an explosive charger.
In this instance, blasting power can be controlled according to locations when charging amounts and charging locations of the explosives are varied.
After the explosive charging step (S20), the insertion hole blocking step (S30) for blocking the insertion hole 22, which is formed in the bottom of an outlet of the air tube 20, with a lid 23 is carried out.
In the insertion hole blocking step (S30), the insertion hole 22 is blocked by the lid 23 made of a sealing material, such as rubber or silicon, in order to increase waterproofing property by blocking inflow of water, such as underground water.
After the insertion hole blocking step (S30), the tube connecting step (S40) for connecting the plural tubes (T), which are charged with the explosives, with one another is carried out.
In this instance, another tube (T) is connected to an opening of the upper part of the tube (T) so as to form a space for the air gap 21 inside the air tube 20.
Moreover, a connection tube 30 may be interposed between the tubes (T), so that a plurality of the tubes are consecutively connected with one another in the longitudinal direction of the blast hole (H) in correspondence with the depth of the blast hole (H) so as to prevent that the connected tubes are easily separated from one another in the middle of the connected tubes.
After the tube connecting step (S40), the tube inserting step (S50) for inserting a plurality of the tubes (T) into the blast hole (H) is carried out.
Furthermore, as shown in
In general, in case of ANFO explosives, because it is difficult to completely explode the ANFO explosives just by a detonator, after a primer which has large detonation pressure is put between the detonator and a main explosive, the primer is first exploded, and then, the main explosive is surely exploded.
In this instance, preferably, emulsion-based explosives which have been used widely and recently is used as the primer (P).
Furthermore, because a plurality of the tubes (T) are connected and mounted inside the blast hole (H), a position of a detonation point may be selected freely to carry out all of direct priming, middle priming and indirect priming, but preferably, direct priming which has a detonation point at the inlet of the blast hole (H) is used.
Therefore, the present invention has economic effects because shock waves reach the free face rapidly, explosive power is great due to great intensity of a reflecting plate reflected from the free face, insertion of the detonator (D) and arrangement of detonator leads (L) are easy and convenient and the detonator leads (L) get shorter.
On the contrary, as shown in
After the primer inserting step (S60) or the detonator installing step (S60′), the tamping material charging step (S70) for charging tamping materials (A) in the remaining space of the blast hole (H) is carried out.
The tamping materials (A) serve to prevent a loss of explosive power and reduce explosive noise by putting nonflammable materials into the remaining space after the explosives are charged, and so, the tamping materials (A) may be sand, mud or debris.
After the tamping material charging step (S70), the detonating step (S80) for detonating the detonator (D) by a blasting machine from the outside to crush the bedrock (R) is carried out. The blasting machine is a tool to detonate the detonator, and is divided into electric blasting machines and nonelectric blasting machines. In case of the ANFO explosives, it is good to use the nonelectric detonator due to the problem of static electricity.
In the meantime, the order to insert or charge the tubes (T), the primers (P) and the explosives (E) into the blast hole (H) may be varied in consideration of kinds of blasting, characteristics of rocks and surrounding environment.
For instance, the tubes (T) are inserted into the blast hole (H) after the primer (P) to which the detonator (D) is connected is arranged at the upper part of the blast hole (H) or the primer (P) to which the detonator (D) is connected is arranged at the lower part of the blast hole (H), or the primer (P) to which the detonator (D) is connected is arranged in the middle of the blast hole (H). That is, the present invention may have various structure to carry out detonation, and the detonator (D) may be directly connected not to the inside of the blast hole (H) but to the inside of the tube (T).
Finally, the explosive tube and the method of blasting a bedrock using the same according to the present invention can quantify explosives and reduce an explosive usage by forming an air gap onto an upper part of a tube so as to increase blasting efficiency and significantly reduce expenses, increase the length of a cartridge of the explosives in comparison with the same amount of the explosives, and enlarge a projection area at the time of explosion so as to increase blasting effect, and reduce blasting pollution, such as blast pressure, scattered stones, vibration and noise, generated during explosion by applying a cushion blasting method. Moreover, the explosive tube and the method of blasting a bedrock using the same according to the present invention can set a charge amount and a charging location of explosives in various ways so as to precisely control explosion, for instance, by controlling power of explosion, prevent back break that rocks are destroyed beyond a design, and carry out concentrated crushing toward a crushing direction of rocks. Furthermore, the explosive tube and the method of blasting a bedrock using the same according to the present invention can be easily applied to varied geographies with lots of underground water or cavities through an increase of waterproofing property by blocking the insertion hole with the lid. Additionally, when blasting is carried out using direct priming after the detonator is located at the inlet of the blast hole, because shock waves reach the free face rapidly, the explosive tube and the method of blasting a bedrock using the same according to the present invention can increase blasting power and make insertion of the detonators and arrangement of the detonator leads easy and convenient.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that the present invention is not restricted to the embodiments and various changes in form and details may be made therein without departing from the technical idea and scope of the present invention as defined by the following claims.
According to the present invention, the explosive tube and the method of blasting a bedrock using the same can quantify explosives and reduce an explosive usage by forming an air gap onto an upper part of a tube so as to increase blasting efficiency and significantly reduce expenses, increase the length of a cartridge of the explosives in comparison with the same amount of the explosives, and enlarge a projection area at the time of explosion so as to increase blasting effect, and reduce blasting pollution, such as blast pressure, scattered stones, vibration and noise, generated during explosion by applying a cushion blasting method. Moreover, the explosive tube and the method of blasting a bedrock using the same according to the present invention can set a charge amount and a charging location of explosives in various ways so as to precisely control explosion, for instance, by controlling power of explosion, prevent back break that rocks are destroyed beyond a design, and carry out concentrated crushing toward a crushing direction of rocks. Furthermore, the explosive tube and the method of blasting a bedrock using the same according to the present invention can be easily applied to varied geographies with lots of underground water or cavities through an increase of waterproofing property by blocking the insertion hole with the lid. Additionally, when blasting is carried out using direct priming after the detonator is located at the inlet of the blast hole, because shock waves reach the free face rapidly, the explosive tube and the method of blasting a bedrock using the same according to the present invention can increase blasting power and make insertion of the detonators and arrangement of the detonator leads easy and convenient.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0162208 | Dec 2013 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2014/012052 | 12/9/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/099319 | 7/2/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1851122 | Tese | Mar 1932 | A |
3580171 | Maes | May 1971 | A |
3832950 | Hurst | Sep 1974 | A |
3926119 | Hurst | Dec 1975 | A |
4006687 | Ridgeway | Feb 1977 | A |
6901865 | Thomson | Jun 2005 | B1 |
9181790 | Mace | Nov 2015 | B2 |
9354029 | Mace | May 2016 | B2 |
9476685 | Mace | Oct 2016 | B2 |
9488456 | Mace | Nov 2016 | B2 |
9593924 | Mace | Mar 2017 | B2 |
Number | Date | Country |
---|---|---|
20010069741 | Apr 2001 | KR |
20040001724 | Jan 2004 | KR |
100882851 | Feb 2009 | KR |
101022251 | Mar 2011 | KR |
Number | Date | Country | |
---|---|---|---|
20160377392 A1 | Dec 2016 | US |