This application claims priority under 35 USC 119 to Japanese Patent Application No. 2015-127273 filed on Jun. 25, 2015, the entire contents which are incorporated herein by reference.
This invention relates to an exposure device and an image forming apparatus using it, and it especially relates to an exposure device configuration.
Conventionally, in an electrophotographic image forming apparatus that uses an LED head having multiple LEDs arranged in an array, an optical system that forms erect equal magnification images of an object in a line shape is used, and used in this optical system is, for example, a rod lens array where arranged are multiple rod lenses of a cylindrical shape having a refractive index that changes from the central axis toward the outside (for example, see Patent Document 1).
[Patent Document 1] Unexamined Japanese Patent Application Publication 2012-61666 (Page 9, FIG. 6)
Because a rod lens array and a holder that holds it are long members and have different linear expansion coefficients, their size difference occurred between high temperature time and low temperature time, and cracks occurred to an adhesive bonding them at the ends of the holder, which reduced the adhesive force and made it difficult to maintain a sufficient holding powder.
An exposure device, disclosed in the application, includes an optical system member that forms an image of light from a light emitting element array having multiple light emitting elements arranged, an optical system support part that supports the optical system member, and a restraining member that restrains the optical system member to the optical system support part. The optical system support part has sliding parts, which are able to slide relative to the restraining member, formed on a light emitting element side face and an image forming side face in positions opposing the both end parts or the vicinity of both end parts in a longitudinal direction of the optical system support part, and in the both end parts or in the vicinity of the both end parts in the longitudinal direction, the restraining member is formed between the sliding parts and the optical system member, fixed to the optical system member, and slidable in the longitudinal direction relative to the optical system support part.
Another exposure device, disclosed in the application includes an optical system member that forms an image of light from a light emitting element array in which multiple light emitting elements are arranged, an optical system support part that supports the optical system member, and a restraining member that restrains the optical system member to the optical system support part. The optical system member are provided with engagement parts extending in the longitudinal direction on both end parts or the vicinity of the both end parts in the longitudinal direction, and sliding parts that allow the engagement parts to slide relative to the restraining member in regions including the engagement parts, and in the both end parts or in the vicinity of the both end parts in the longitudinal direction, the restraining member is formed between the optical system support part and the engagement parts, is fixed to the optical system support part, and is slidable in the longitudinal direction relative to the optical system member.
According to this invention, it become possible to maintain the holding power of the optical system member by the optical system support part constantly stable even if the temperature environment changes.
Inside the color printer 90, a sheet feeding cassette 60 that contains pieces of recording sheet 91 as a medium is attached, and a sheet feeding roller 61 that extracts the recording sheet 91 from the sheet feeding cassette 60, and carrying rollers 62 and 63 that carry the recording sheet 91 to image forming parts are disposed. Also, inside the color printer 90, as the image forming parts, toner image forming parts 92-95 that form toner images of individual colors of yellow (Y), magenta (M), cyan (C), and black (K) are disposed sequentially from the upstream side along the carrying path of the recording sheet 91 carried in the arrow F direction. These toner image forming parts 92-95 have the same configuration except that each of them uses a specified color toner.
For example, as shown in the toner image forming part 92 using the yellow (Y) toner, each toner image forming part is provided with a photosensitive drum 41 as an electrostatic latent image carrier that rotates in the arrow direction, a charging roller 42 that charges the photosensitive drum 41 by supplying a charge to its surface, an LED head 3 as an exposure device that forms an electrostatic latent image by selectively irradiating the charged surface of the photosensitive drum 41 with light based on the image data, a development device 52 that forms a toner image by developing the electrostatic latent image formed on the photosensitive drum 41 with the above-mentioned toner, a toner cartridge 51 that supplies the toner to the development device 52, and a cleaning blade 43 disposed in contact with the photosensitive drum 41 in order to remove the toner remaining on the surface of the photosensitive drum 41.
Also, disposed as a transfer part inside the color printer 90 are a transfer belt 81 that carries the recording sheet 91, transfer rollers 80 disposed opposing the respective photosensitive drums 41 so as to nip the transfer belt 81 for transferring onto the recording sheet 91 the toner images that are formed on the photosensitive drums 41 by visualizing the electrostatic latent image with the toners, and a cleaning blade 82 that cleans the transfer belt 81 by scraping off the toners adhering onto it. Then, disposed are a fuser device 53 that fuses the toner images formed on the recording sheet 91 by applying heat and a pressure, a carrying roller 64 that carries the recording sheet 91 that went through the fuser device 53, and an ejection roller 65 that ejects the recording sheet 91 to an ejection part 66 that retains the recording sheet 91 having the images fused.
Also, a specified voltage is applied to the charging roller 42 and the transfer roller 80 by an unshown power supply. Then, the transfer belt 81, the photosensitive drum 41, the sheet feeding roller 61, the carrying rollers 62-64, and the ejection roller 65 are each rotationally driven by unshown motors and unshown gears that transmit drive. Further, connected to the development device 52, the LED head 3, the fuser device 53, and the unshown motors are a power supply and a control device that are not shown.
Also, although the above-mentioned color printer 90 is provided with an external interface that communicates with an external device and receives print data, and a control part that receives print data from the external interface and controls the whole color printer 90, because they are not directly related with this invention, their detailed explanations are omitted.
Note that the directions of the arrow X, the arrow Y, and the arrow Z in
The LED head 3 is provided with a lens array 1 as an optical system member, a holder 31 as an optical system support part, and an LED array 32 as a light emitting element array, where the holder 31 holds the lens array 1 and the LED array 32 in a specified positional relation mentioned later. LED elements 34 as light emitting elements are disposed in an approximate line on a substrate 33 to configure the LED array 32. The LED array 32 is held so that the array direction of the multiple LED elements 34 becomes the arrow Y direction (the rotation axis direction of the photosensitive drum 41), and the lens array 1 is also held so that its longitudinal direction becomes parallel to the LED array 32.
Therefore, the LED head 3 is disposed so that the array direction of the LED elements 34 of the LED array 32 and the longitudinal direction of the lens array 1 both become parallel to the rotation axis 41a of the photosensitive drum 41. As mentioned below, the lens array 1 has multiple rod lenses 46 (
As shown in
In order to hold this lens array 1 opposing the photosensitive drum 41, the holder 31 is provided with an opening part 31a that is formed on is upper face, extends parallel to the longitudinal direction, and has the lens array 1 fit loosely with it, and holds the lens array 1 in a fitted-in state by gluing it in multiple gluing places with an adhesive 36 as the restraining members. The substrate 33 where the LED elements 34 are arranged is fixed to the holder 31 by a base member 35 so that the LED array 32 made of the LED elements 34 arranged in a line opposes the lens array 1 inside the holder 31.
In each of the gluing places, the adhesive 36 is applied to between the holder 31 and the side plates 45 of the lens array 1 as shown in
At this time, for example, if the optical axis of the rod lenses 46 is disposed so as to become the arrow Z direction, denoting the center of the lens array 1 in the longitudinal direction (arrow Y direction) as CL, a relative alignment is performed so that the LED elements 34 arranged on the substrate 33 are positioned on a reference plane CL′ that passes through CL and extends in parallel to the arrow Z direction, and further, the LED head 3 is aligned so that the rotation axis 41a of the photosensitive drum 41 is positioned on the reference plane CL′.
As shown in
Note that in the lens array 1 here, its longitudinal size is set to 219 mm supposing an LED head mounted in an LED printer of the Letter paper size for example, and adopted as the material of the side plates 45 is a glass fiber epoxy resin laminated plate having a linear expansion coefficient of 14 (10−6/° C.) for example. Also, adopted as the parent material for the material of the holder 31 here is an electrogalvanizd steel sheet having a linear expansion coefficient of 11.7 (10−6/° C.) for example, and as the adhesive 36 is a UV-curable adhesive, for example, of the acrylate system having a glass filler or the like filled as its ingredient, elongation of 80%, and Shore D hardness of 60.
As shown in these figures, the adhesive 36 is formed in a pair opposing each other in the arrow X direction so as to bridge between the side plates 45 and 45 of the lens array 1 and the holder 31 in this part, and the adhesive 36 is continuously applied to between the outer (upper) face of the holder 31 and the side plates 45, between the inner (lower) face opposing its outer face and the side plates 45, and spaces between the holder 31 and the side plates 45 in the opening part 31a that connect to the both places. That is, the adhesive 36 in this part is formed continuously on the upper face (arrow Z positive side face) of a flat plate part where the opening part 31a of the holder 31 is formed, on the lower face (arrow Z negative side face), and between the opening part 31a and the side plates 45 of the lens array 1.
Referring to
As shown in these figures, in this part, the sliding parts 37 are formed on the surface of the holder 31 in a position where the applied adhesive 36 is on these sliding parts 37 in the holder 31 side as mentioned above, and further, over a wider area in the longitudinal direction at least than the formation region of the adhesive 36. That is, the adhesive 36 in this part is formed continuously on the upper face (arrow Z positive face) of the flat plate part where the opening part 31a of the holder 31 is formed, the lower face (arrow Z negative face), and between the sliding parts 37 and the side plates 45 of the lens array 1 arranged in the opening part 31a.
The sliding parts 37 were formed with poly-α-olefin (PAO) that is a polyolefin resin as its main ingredient, using lithium soap as a thickener, and applying a lubricating oil of high releasability with its lubricity adjusted by blending in polytetrafluoroethylene (PTFE) and perfluoroalkoxy resin (PFA).
Note that although here the sliding parts 37 were formed by applying a lubricating oil having PAO as its main ingredient, this invention is not limited to this, but a lubricating oil having silicone as its main ingredient may be applied, and also a fluorine-based lubricating oil having Palm fatty acid ester (PFA) as its main ingredient and PTFE blended in may be used. Also, a coating film of high releasability may be formed. The coating film can be formed, for example, by diluting PFA in hydrofluoroether (HFE), applying it to the sliding parts 37 and drying it. Also, the sliding parts 37 may be formed by pasting a film of high releasability. As the film of high releasability there are films of polyolefin resin, PTFE, and PFA. Also, a tape made by applying an adhesive material to a film of high releasability may be used. Further, a plated layer of high releasability may be formed on the sliding parts 37. Known as the plated layer of high releasability are hard chrome plating and hard chrome plating with PTFE, PFA, or the like blended in.
Because of such a manner of formation as mentioned above, the adhesive 36 applied to the sliding parts 37 comes into a state where its adhesive power to the contact faces of the sliding parts 37 is weakened when it is cured, the lens array 1 integrated with the adhesive 36 becomes slidable, even though it is tight, in its longitudinal direction guided by a part of the holder 31 where the sliding parts 37 are formed.
Also, although not shown here, it is preferable to apply a sealing agent such as silicon rubber having flexibility between the holder 31 and the lens array 1 so as to fill a space with the lens array 1 occurring in the opening part 31a and further cover the adhesive 36.
In the above configuration, first, the operation of the color printer 90 is explained referring to
The surface of the photosensitive drum 41 of each of the toner image forming parts 92-95 is charged by the charging roller 42 to which a voltage is applied by an unshown power supply device. Subsequently, once the charged surface of the photosensitive drum 41 reaches the vicinity of the LED head 3 by the photosensitive drum 41 rotating in the arrow direction, it is exposed by the LED head 3, and an electrostatic latent image is formed on the surface of the photosensitive drum 41. This electrostatic latent image is developed by the development device 52 to form a toner image on the surface of the photosensitive drum 41.
On the other hand, the recording sheet 91 set in the sheet feeding cassette 60 is extracted by the sheet feeding roller 61 from the sheet feeding cassette 60 and carried by the carrying rollers 62 and 63 to the vicinity of the transfer roller 80 and the transfer belt 81. Then, once the toner image on the surface of the photosensitive drum 41 obtained by the development reaches the vicinity of the transfer roller 80 and the transfer belt 81 by the photosensitive drum 41 rotating, the toner image on the surface of the photosensitive drum 41 is transferred onto the recording sheet 91 by the transfer roller 80 and the transfer belt 81 to which a voltage is applied by an unshown power supply device.
The above-mentioned transfer of the toner image onto the recording sheet 91 is performed in the toner image forming parts 92-95 that form toner images of individual colors of yellow (Y), magenta (M), cyan (C), and black (K) sequentially superimposed on one another.
Subsequently, the recording sheet 91 with individual color toner images formed on its surface is carried to the fuser device 53 by the rotation of the transfer belt 81. The fuser 53 melts the toner images on the recording sheet 91 by applying heat while applying a pressure and fixes them onto the recording sheet 91. The recording sheet 91 with the fusing process performed is ejected to the ejection part 66 by the carrying roller 64 and the ejection roller 65, thereby an image forming operation is finished.
Next, the operation of the LED head 3 is explained referring to
Next, explained are a temperature test performed with multiple kinds of the LED heads 3 provided with the sliding parts 37 prepared as the experimental samples and the result.
Note that the test was performed under the following test conditions. (1) The LED heads prepared as the test samples are four LED heads in total: two LED heads 3 of Embodiments 1 and 2 provided with the sliding parts 37 based on this invention and two LED heads of Comparative Examples 1 and 2 not provided with the sliding parts 37 prepared as comparative reference examples. (2) The configuration of the LED heads 3 of Embodiments 1 and 2 is the configuration explained in
The test and evaluation result are explained referring to Table 1.
As for the LED heads 3 of Embodiments 1 and 2 provided with the sliding parts 37 based on this invention, the adhesive 36 showed no cracks and was in a fine condition on the central part (places other than the ends) and either ends of the holder 31, and even when the lens array 1 was pressed down with a finger, it did not move. On the other hand, as for the LED heads of Comparative Examples 1 and 2, the adhesive 36 developed cracks and came into a failure condition on the ends of the holder 31, and when the lens array 1 in that part, the lens array 1 moved.
As stated above, according to the LED head 3 of this embodiment, even when the lens array 1 is fixed by the adhesive 36 to the holder 31 having a different linear expansion coefficient, because provided are the sliding parts 37 where the adhesive 36 is slidable in the longitudinal direction, the occurrence of cracks to the adhesive 36 due to temperature changes is prevented, thereby the lens array 1 can be prevented from displacing in any other direction than in the longitudinal direction.
The difference of an image forming apparatus of this embodiment adopting this LED head 103 from the above-mentioned color printer 90 (
As shown in
Note that although an example of the lock parts 131b that protrude in a rectangular shape is shown here, they only need to have a form that protrudes from the side face of the opening part 131a formed extending in parallel to the longitudinal direction by being provided with a face oblique to the longitudinal direction for example.
As shown in
By forming in the above-mentioned manner, the adhesive power between the holder 131 and the lens array 1 increases in the central part of its longitudinal direction where the lock parts 131b are formed, enhancing the holding power of the lens array 1 by the holder 131, especially the holding power in the longitudinal direction.
The adhesive power increasing method in the central part of the longitudinal direction of the lens array 1 is not limited to the above-mentioned method, but the holder 131 may be provided with cuts in a direction away from the lens array 1 for example. Also, openings may be formed on the holder 131. Further, recess-projection parts extending in the optical axis direction of the lens array 1 may be formed on the holder 131, and the surfaces of the holder 131 may be roughened. In either case, the adhesive 36 that cured covering and filling the lock parts 131b formed with the cuts, the opening parts, or the recess-projection parts is securely fixed to the holder 131 in the longitudinal direction at least.
Further, although in this embodiment the sliding parts 37 were formed only in the glued positions on both end parts among the five pairs of the adhesive 36 formed in the longitudinal direction (arrow Y direction) of the lens array 1, this invention is not limited to this, but it may be configured so that the sliding parts 37 are formed in other positions than the central glued positions where the lock parts 131b are formed.
As stated above, according to the LED head 103 of this embodiment, other than obtaining the same effects as in Embodiment 1 mentioned above, because the lens array 1 is firmly held by the holder 131 on the central part in the longitudinal direction, the lens array 1 as the whole never moves in the longitudinal direction relative to the holder 131. Therefore, accuracy as the LED head 103 would never be lost due to environmental changes, passing of time, or the like.
The difference of an image forming apparatus of this embodiment adopting this LED head 203 from the color printer 90 (
As shown in
Also, spaces between the rod lenses 46 and spaces between the side plates 245 and the rod lenses 46 are formed by filling and curing an adhesive made of a silicon resin for example, and disposed so that the optical axes of the rod lenses 46 become the arrow Z direction (the vertical direction in the figure).
Because the holder 231 holds this lens array 201 opposing a photosensitive drum 41 (
These multiple grooves 501a are formed in the optical axis direction of the rod lenses 46 (
Then, as shown in
Note that although it was assumed here that the silicon coating agent was applied to the sliding parts 237, a fluorine-based coating agent may do. Also, although the slit coater was used for applying the chemical agent, the application may be performed by dipping only the surroundings of the target parts.
As shown in
The E-E cross-sectional view in
Therefore, in the glued positions on both end parts of the lens array 201, although the adhesive 236 cures in a shape conforming to the grooves 201a and their surroundings, the adhesive power between the adhesive 236 and the lens array 201 is either very small, or they are not bonded.
Further, in order to prevent light and foreign bodies from flowing onto the LED array 32 through a space occurring in the opening part 231a with the lens array 1, a sealing member 210 such as silicon rubber having flexibility is applied between the holder 231 and the lens array 201 so as to fill this space and further cover the adhesive 236.
Being formed in the above-mentioned manner, the adhesive 236 applied to the sliding parts 237 comes into a state where its adhesive power to the contact faces with the sliding parts 237 is weakened, and the lens array 201 becomes slidable in the longitudinal direction, although being tight, guided by the adhesive 236 that became integrated with the holder 231 and fits in its grooves 201a.
If the LED head 203 configured in the above-mentioned manner is left in a high temperature environment for example, due to the difference in the thermal expansion coefficient between the holder 231 and the lens array 201, a thermal stress occurs to the adhesive 236 that bonds them. At this time, its influence is great in the glued positions on both side parts of the lens array 201, and the lens array 201 tries to move in the longitudinal direction relative to the holder 231.
On these both end parts, because the grooves 201a and the sliding parts 237 are formed in the glued positions of the lens array 201 to make the lens array 201 slidable in the longitudinal direction relative to the holder 231 as mentioned above, this movement by heat is allowed. Therefore, the adhesive 236 on these parts cannot be destroyed by a thermal stress, and its bonding with the holder 231 cannot peel off.
Also, on these both end parts, because the adhesive 236 fits in the grooves 201a of the lens array 201, as mentioned above, the lens array 201 becomes movable only in the longitudinal direction that is the extending direction of the grooves, guided by the adhesive 236 integrated with the holder 231, and cannot move in any other direction than the longitudinal direction.
Conversely, when left in a low-temperature environment, the both end parts of the lens array 201 move in the opposite direction from that when left in a high-temperature environment mentioned above. Because this movement is allowed in the same manner, the adhesive 236 on these parts cannot be destroyed by a thermal stress.
Note that for the holder 231, the side plates 245 of the lens array 201, the adhesive 236, the sliding parts 237, etc. in this embodiment, the materials explained in Embodiment 1 mentioned above can be adopted.
Also, although the grooves 201a parallel to the longitudinal direction of the lens array 201 were formed as engagement parts in this embodiment, projection parts extending in the same direction, for example, can substitute for the grooves.
As stated above, according to the LED head 203 of this embodiment, even if the lens array 201 and the holder 231 having greatly different coefficients of thermal expansion are used, there occurs no irreversible changes such as destruction due to the influence of a thermal stress of the adhesive 236 on the gluing places on the lens array end parts, which maintains holding and fixing of the lens array 201 in any other direction than the longitudinal direction of the LED head 203 by the holder 231.
The main difference of this LED head 303 from the LED head 203 of Embodiment 3 mentioned above is the configuration of side plates 345 (corresponding to the side plates 245 in
Formed on the central part in the longitudinal direction of each groove 601a is a circular groove 601b (corresponding to a circular groove 301b after division) having a larger diameter φ (φ=1.5 mm here) than the width of the grooves 601a (1 mm here) and a depth of 0.5 mm. The depths of the grooves 601a and the circular grooves 601b are set shallower than the thickness of the side plates so as to be formed on the side plates 645.
Afterwards, formed over the entire faces of the side plates 645 are sliding parts 637 (corresponding to sliding parts 337 after division) to which applied is a chemical agent such as a silicon coating agent that worsens adhesion with an adhesive 336 using a slit coater. Afterwards, as shown in
Note that although the silicon coating agent was applied to the sliding parts 637, a fluorine-based coating agent may do. Also, although the slit coater was used for applying the chemical agent, dipping may be used for the application.
As shown in
However, in the glued position to which an adhesive 336M on the central part is applied, because the circular groove 301b as a lock part is formed in the corresponding position of the lens array 301, the adhesive 336M applied to the region covering this circular groove 301b is filled into the circular groove 301b and cures. Therefore, in this central part, the movement of the lens array 301 relative to the holder 231 is restricted in all directions including the longitudinal direction. In the other glued positions, as mentioned above, the lens array 201 is slidable only in the longitudinal direction relative to the holder 231.
According to the LED head 303 having the above-mentioned configuration, if a difference in the thermal expansion coefficient between the holder 331 and the lens array 301 causes a relative position shift in the longitudinal direction of the LED head 303 depending on the temperature environment, in the glued position of the adhesive 336M on the central part, the relative position in the same direction is fixed, and in the other glued positions where sliding is allowed, sliding occurs according to the shift.
Note that although the circular groove 301b was formed as the lock part on the central part in the longitudinal direction of the lens array 301 in this embodiment, this invention is not limited to this, but a polygonal groove may do for example. Also, it is possible to make the depth of the groove different from other groove parts or a projection part substitute for the groove. Further, the lock part is not limited to be on the central part but may be formed on other parts than the central part and may be formed on multiple places.
As stated above, according to the LED head 303 of this embodiment, in addition to the effects of Embodiment 3 mentioned above, a specified part in the longitudinal direction of the lens array 301 is firmly held by the holder 231, and the lens array 301 as a whole does not move in the longitudinal direction relative to the holder 231, therefore accuracy as the LED head 303 is not damaged due to environmental changes, passing of time, etc. Also, because it becomes possible to apply a chemical liquid to the entire faces of the lens side plates, the application and drying processes of the chemical liquid can be simplified.
Although explanations in the above-mentioned embodiments were given using examples of applications to electrophotographic color printers, this invention is not limited to those but can be applied to facsimile machines, copiers, MFPs (MultiFunction Peripherals), and even scanners and the like as reading devices.
Number | Date | Country | Kind |
---|---|---|---|
2015-127273 | Jun 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20030035667 | Izawa | Feb 2003 | A1 |
20110058877 | Sagawa | Mar 2011 | A1 |
20120062686 | Suto | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2012061666 | Mar 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20160375699 A1 | Dec 2016 | US |