This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2016-130671, filed on Jun. 30, 2016.
The present invention relates to an exposure device, an image forming apparatus, and a manufacturing method for the exposure device.
An aspect of the present invention provides an exposure device including:
a substrate that includes a plate-shaped main body that extends in one direction, a plurality of light emitting elements that are mounted on one surface of the main body, and a heating element that is mounted on the other surface of the main body and generates heat in accordance with light emission of the light emitting elements;
a housing that extends in the one direction, has a frame shape in which a through hole is formed, and to an inside of the through hole of which the substrate is fixed so that a thickness direction of the main body is a penetrating direction of the through hole;
a facing member that is fixed to the housing so as to be opposed to the other surface of the main body; and
a contact member that is in contact with the facing member and the heating element,
wherein an injection portion to inject a soft member which is the contact member is formed between the substrate and the facing member on at least one of the facing member and the housing, and
wherein when viewed a substrate side through the injection portion, the contact member covers at least partially the heating element.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
An example of an exposure device and an image forming apparatus according to an first exemplary embodiment of the invention will be described with reference to
(Overall Configuration)
As illustrated in
(Storage Unit)
The storage unit 14 is provided with a storage member 26 which can be drawn out to the front side of the apparatus depth direction from an apparatus main body 10A of the image forming apparatus 10, and the sheet member P is loaded on the storage member 26. Furthermore, the storage member 26 is provided with a delivery roll 30 that feeds the sheet member P loaded on the storage member 26 to a transporting path 28 configuring the transport unit 16.
(Transport Unit)
The transport unit 16 is provided with plural transport rolls 32 that transports the sheet member P along the transporting path 28 in which the sheet member P fed from the storage unit 14 is transported.
(Image Forming Unit)
The image forming unit 20 is provided with four image forming units 18Y, 18M, 18C, and 18K of yellow (Y), magenta (M), cyan (C), and black (K). In the following description, in a case where there is no need to be described to distinguish Y, M, C, and K, it may be described by omitting Y, M, C, and K.
The image forming units 18 of each color are respectively detachable from the apparatus main body 10A. The image forming units 18 of each color are provided with an image holding member 36, a charging member 38 that charges a front surface of the image holding member 36, and an exposure device 42 that irradiates respectively an exposure light on the image holding member 36. Furthermore, the image forming units 18 of each color are provided with a developing device 40 that develops an electrostatic latent image formed by the exposure device 42 irradiating the exposure light on the charged image holding member 36 to make and visualize a toner image.
The image forming unit 20 is provided with an endless transfer belt 22 revolving in the arrow A direction in the figure and a primary transfer roll 44 that transfers the toner image formed by the image forming units 18 of each color onto the transfer belt 22. Furthermore, the image forming unit 20 is provided with a secondary transfer roll 46 that transfers the toner image transferred onto the transfer belt 22 onto the sheet member P and a fixing unit 50 that heats and presses the sheet member P onto which the toner image is transferred to fix the toner image on the sheet member P.
A configuration of the exposure device 42 will be described later in detail.
(Effect of the Image Forming Apparatus)
An image is formed as follows in the image forming apparatus 10.
Firstly, the charging member 38 of each color to which a voltage is applied uniformly negatively charges a front surface of the image holding member 36 of each color by a scheduled potential. Subsequently, based on an image data received from an outside, the exposure device 42 irradiates the exposure light on the front surface of the charged image holding member 36 of each color to form the electrostatic latent image.
Thereby, the electrostatic latent image corresponding to data is formed on the front surface of the image holding member 36 of each color. Furthermore, the developing device 40 of each color develops the electrostatic latent image to visualize as the toner image. The toner image formed on the front surface of the image holding member 36 of each color is transferred onto the transfer belt 22 by the primary transfer roll 44.
Therefore, the sheet member P fed to the transporting path 28 from the storage member 26 by the delivery roll 30 is fed to a transfer position T where the transfer belt 22 and the secondary transfer roll 46 are in contact with each other. The sheet member P is transported between the transfer belt 22 and the secondary transfer roll 46 at the transfer position T, and thus the toner image on the front surface of the transfer belt 22 is transferred onto the front surface of the sheet member P.
The toner image transferred onto the front surface of the sheet member P is fixed on the sheet member P by the fixing unit 50. The sheet member P on which the toner image is fixed is discharged to the outside of the apparatus main body 10A.
(Configuration of Main Part)
Next, the exposure device 42 will be described.
The exposure device 42 which is an LED print head, as illustrated in
The exposure device 42, as illustrated in
(Substrate)
The substrate 60 includes a plate-shaped main body 70, plural light emitting elements 72 that are mounted on an upper surface 70A (one surface) of the main body 70 directed upward, and plural heating elements 74 (refer to
Furthermore, the substrate 60 includes a connector 76 that is connected to a harness-side connector (not illustrated) and is mounted on the lower surface 70B of the main body 70 and a leaf spring 78 as an example of a regulation member that regulates a position of the facing member 64 in the apparatus up-and-down direction.
The main body 70 which is a printed wiring substrate has a rectangular shape of which the apparatus depth direction extends as viewed from the upper side.
The light emitting element 72 which is a light emitting diode (LED), as illustrated in
The heating element 74 is an active element or a passive element that generates heat in accordance with light emission of the light emitting element 72. In the exemplary embodiment, as illustrated in
The integrated circuit 74A is disposed in a central portion of the housing 66 in the apparatus depth direction and is disposed at a front side in the apparatus depth direction (left side in the figure) compared with a center line C (imaginary line) of the housing 66 in the apparatus depth direction.
The voltage control element 74B is small compared with the integrated circuit 74A and two voltage control element 74B are provided side by side in the apparatus width direction. The voltage control element 74B is disposed in a central portion of the housing 66 in the apparatus depth direction and is disposed at a rear side in the apparatus depth direction (right side in the figure) compared with a center line C of the housing 66. In this manner, the integrated circuit 74A and the voltage control element 74B sandwich the center line C to be disposed on opposite sides.
The connector 76 is disposed at the front side in the apparatus depth direction (left side in the figure) compared with the integrated circuit 74A, as illustrated in
The leaf spring 78 is provided a pair separated from in the apparatus depth direction. One of the leaf springs 78 (herein after ‘the leaf spring 78A’) is disposed at a portion of the rear side in the apparatus depth direction on the lower surface 70B of the main body 70 and the other of the leaf springs 78 (hereinafter ‘the leaf spring 78B’) is disposed between the integrated circuit 74A and the connector 76 in the apparatus depth direction.
As viewed from the apparatus width direction, the leaf spring 78A and the leaf spring 78B have a symmetrical shape with respect to the center line C. The leaf springs 78A and 78B of which base end portions are fixed to the lower surfaces 70B of the main body 70 to extend downward while bending.
(Lens Array)
The lens array 62, as illustrated in
(Housing)
The housing 66 is molded of a liquid crystal polymer which is resin material and extends in the apparatus depth direction. Furthermore, a through hole 84 penetrating in the apparatus up-and-down direction is formed in the housing 66, and the through hole 84 extends in the apparatus depth direction. In this manner, the housing 66 has a frame shape.
A cross-sectional shape of the housing 66 that is perpendicular to the apparatus depth direction, as illustrated in
The lens array 62 is fixed by using an adhesive (UV-curable adhesive, not illustrated) to an upper end portion (one end portion) of the through hole 84 formed in the housing 66. A gap between the housing 66 and the lens array 62 is filled with a sealant 88 over the entire circumference of the lens array 62. Therefore, dust from a portion between the housing 66 and the lens array 62 are prevented from entering the inside of the housing 66.
In the housing 66, an stepped portion 84A is formed over the entire circumference of the through hole 84 so as to widen an opening of the lower end portion of the through hole 84. The substrate 60 is fixed to the stepped portion 84A so that the light emitting element 72 and the lens array 62 are opposed to each other. Specifically, the substrate 60 is sandwiched between a pair of wall portions 66A configuring the housing 66 in the apparatus width direction, as illustrated in
Furthermore, the sealant 92 is applied over the entire circumference of the substrate 60 between the end portion of the substrate 60 and the wall portion 66A, so that the dust from the portion between the housing 66 and the substrate 60 is prevented from entering the inside of the housing 66. As illustrated in
Furthermore, as illustrated in
In this manner, both end sides of the housing 66 in the apparatus depth direction are supported, and thus the exposure device 42 is attached to the apparatus main body 10A.
(Facing Member)
The facing member 64 is formed by bending a metal plate (JIS G 3313 SECC), as illustrated in
Furthermore, as illustrated in
In this configuration, as illustrated in
Furthermore, on each of the end portions of side plate 64A, as illustrated in
Here, as illustrated in
As illustrated in
As illustrated in
The through hole 96B is formed so as to overlap at least partially the voltage control element 74B in the apparatus depth direction. Specifically, a range H3 occupied by the voltage control element 74B in the apparatus depth direction and a range H4 occupied by the through hole 96B in the apparatus depth direction overlap at least partially in the apparatus depth direction.
Furthermore, the through hole 96C is formed on the rear side in the apparatus depth direction (right side in the figure), compared with the through hole 96B.
As illustrated in
(Weight)
The weight 68, as illustrated in
Specifically, on a portion between the through hole 96A and the through hole 96B on the bottom plate 64B, the weight 68 is fixed using a caulking method. The weight 68, as illustrated in
(Contact Resin)
A contact resin 102 that is in contact with the facing member 64 is a resin member having an insulating property and, as illustrated in
The contact resin 102, as illustrated in
The contact resin 102A, as illustrated in
As the contact resin 102, for example, a room temperature moisture-curable adhesive is used.
In this configuration, heat generated in the integrated circuit 74A and the voltage control element 74B is adapted to be transmitted to the facing member 64 via the contact resins 102A and 102B, and heat transmitted to the facing member 64 is adapted to be transmitted to the main body 70 via the contact resin 102C.
(Manufacturing Method)
Next, a manufacturing method for manufacturing the exposure device 42 will be described. Arrows LIP illustrated in
Firstly, in a lens fixing process, as illustrated in
Furthermore, in a substrate fixing process, as illustrated in
Furthermore, in a member fixing process, as illustrated in
Furthermore, in a resin injection process, as illustrated in
Next, effects of the exposure device 42 will be described.
When the front surface of the image holding member 36 is charged, based on the image data received from outside of the exposure device 42, the exposure device 42 causes the light emitting element 72 to emit the light to be irradiated with the exposure light on the front surface of the image holding member 36 (refer to
Thereby, in a case where the contact resins 102A, 102B, and the facing member 64 are not disposed in the exposure device, uneven temperature occurs in the substrate 60. A light intensity of the light emitting element 72 mounted on a higher temperature portion of the main body 70 becomes smaller than the light intensity of the light emitting element 72 mounted on a lower temperature portion of the main body 70. In this case, an uneven light intensity in the apparatus depth direction occurs on the light emitting element 72.
However, the contact resin 102A is at least in contact with the integrated circuit 74A and the facing member 64 in the exposure device 42. Therefore, heat of the integrated circuit 74A is transmitted to the facing member 64 via the contact resin 102A. Thereby, compared with a case where the contact resin 102A and the facing member 64 are not disposed, due to the heat generation of the integrated circuit 74A, uneven temperature in the apparatus depth direction (longitudinal direction of the substrate) occurring in the substrate 60 is suppressed.
Uneven temperature of the substrate 60 due to the heat generation of the integrated circuit 74A is suppressed. Therefore, compared with a case where uneven temperature of the substrate 60 due to the heat generation of the integrated circuit 74A is not suppressed, the uneven light intensity of the light emitting element 72 is suppressed.
The contact resin 102B is at least in contact with the voltage control element 74B and the facing member 64. Therefore, heat of voltage control element 74B is transmitted to the facing member 64 via the contact resin 102A. Thereby, compared with a case where the contact resin 102B is not disposed, due to the heat generation of voltage control element 74B, uneven temperature in the apparatus depth direction occurring in the substrate 60 is suppressed.
Since uneven temperature of the substrate 60 due to the heat generation of voltage control element 74B is suppressed, compared with a case where uneven temperature of the substrate 60 due to the heat generation of voltage control element 74B is not suppressed, the uneven light intensity of the light emitting element 72 is suppressed.
The contact resin 102C is in contact with a portion of the rear side in the apparatus depth direction of the main body 70 and the facing member 64. Thereby, heat transmitted to the facing member 64 via the contact resins 102A and 102B is transmitted to the portion of the rear side in the apparatus depth direction of the main body 70 via the contact resin 102C. That is, heat is transmitted to the main body 70 of a portion where the heating element 74 is not mounted. Thereby, compared with a case where the contact resin 102C is not disposed, uneven temperature in the apparatus depth direction occurring in the substrate 60 is suppressed.
Since uneven temperature in the apparatus depth direction occurring in the substrate 60 is suppressed by disposing the contact resin 102C in this manner, compared with a case where the contact resin 102C is not disposed, the uneven light intensity of the light emitting element 72 is suppressed.
The through hole 96 is formed in order to inject a soft resin that becomes the contact resin 102 when cured between the substrate 60 and the facing member 64 in the facing member 64. Thereby, even after the facing member 64 is fixed to the housing 66, the soft resin that becomes the contact resin 102 when cured is injected between the substrate 60 and the facing member 64 via the through hole 96.
If fixing the facing member 64 to the housing 66 is tried after the contact resin 102 is applied (injected) to the substrate 60, the contact resin 102 and the facing member 64 may interfere with each other, and the facing member 64 may not be disposed at a fixed position.
The contact resin 102 is surrounded by the substrate 60, a pair of wall portions 66A, and the facing member 64. Therefore, compared with a case where the contact resin 102 is not surrounded by the substrate 60, the pair of wall portions 66A, and the facing member 64, resin injected between the substrate 60 and the facing member 64 via the through hole 96 is prevented from leaking outside of the exposure device 42.
The through hole 96 is formed on the facing member 64 formed of metal. Therefore, for example, compared with a case where the through hole is formed on the housing 66 formed of resin, decrease in bending rigidity of the exposure device 42 is suppressed.
In the apparatus depth direction, the through hole 96A and the integrated circuit 74A are at least partially overlapped with each other. Therefore, in the apparatus depth direction, compared with a case where the through hole 96A and the integrated circuit 74A do not overlap each other, a state in which the resin injected via the through hole 76A is separated from the integrated circuit 74A is suppressed.
The through hole 96B and the voltage control element 74B are at least partially overlapped with each other in the apparatus depth direction. Therefore, in the apparatus depth direction, compared with a case where the through hole 96B and the voltage control element 74B do not overlap each other, a state in which the resin injected via the through hole 76B is separated from the voltage control element 74B is suppressed.
The facing member 64 has a U-shape in which the substrate 60 side is open. Therefore, interference is suppressed between an element mounted on the lower surface 70B of the main body 70 and the facing member 64, compared with a case where the substrate 60 side of the facing member is not open.
The contact resin 102 as the contact member is the resin member having an insulating property. Therefore, the contact resin 102 is disposed without avoiding a conductive portion of the heating element 74, compared with a case where the contact member, for example, is a conductive paste which does not have the insulating property.
In the image forming apparatus 10, the uneven light intensity of the light emitting element 72 is suppressed, compared with a case where the exposure device 42 is not provided, and thus quality degradation of an output image is suppressed.
In the manufacturing method for the exposure device, after the facing member 64 is fixed to the housing 66, the soft resin is injected between the substrate 60 and the facing member 64 via the through hole 96. Therefore, in the process for fixing the facing member 64 to the housing 66, the facing member 64 does not interfere with the contact resin 102.
An example of an exposure device and an image forming apparatus according to a second exemplary embodiment of the invention will be described with reference to
The facing member 154 provided in the exposure device 152 of the second exemplary embodiment is configured to include a pair of side plates 154A and the bottom plate 154B. Furthermore, a position in the apparatus up-and-down direction of the facing member 154 is regulated by the leaf spring (not illustrated) as an example of the regulation member. Three through holes 156A, 156B, and 156C (through hole 156A is illustrated in the figure) penetrating a front and back of the side plate 154A are formed on one (right side in the figure) of the side plate 154A.
The through hole 156A is formed so as to overlap at least partially with the integrated circuit 74A in the apparatus depth direction. The through hole 156B is formed so as to overlap at least partially with the voltage control element 74B in the apparatus depth direction. Furthermore, the through hole 156C is formed on the portion of the rear side in the apparatus depth direction on the side plate 154A.
An effect of the second exemplary embodiment is the same as the effect of the first exemplary embodiment.
An example of an exposure device and an image forming apparatus according to a third exemplary embodiment of the invention will be described with reference to
The facing member 174 provided in the exposure device 172 of the third exemplary embodiment has a plate shape and both end portions in the apparatus width direction is in contact with the end surface 67 of the wall portion 66A. Furthermore, the leaf spring that regulates a position in the apparatus up-and-down direction of the facing member 174 is not disposed.
Three through holes 176A, 176B, and 176C (through hole 176A is illustrated in the figure) penetrating a front and back of the facing member 174 are formed on the facing member 174.
The through hole 176A is formed so as to overlap at least partially with the integrated circuit 74A in the apparatus depth direction. The through hole 176B is formed so as to overlap at least partially with the voltage control element 74B in the apparatus depth direction. Furthermore, the through hole 176C is formed on the portion of the rear side in the apparatus depth direction on the facing member 174.
An effect of the third exemplary embodiment is the same as the effect of the first exemplary embodiment.
An example of an exposure device and an image forming apparatus according to a fourth exemplary embodiment of the invention will be described with reference to
The facing member 194 provided in the exposure device 192 of the fourth exemplary embodiment is configured to include a pair of side plates 194A and the bottom plate 194B. A pair of side plates 194A sandwich the housing 66 in the apparatus width direction. Furthermore, both end portions of the bottom plate 194B in the apparatus width direction is in contact with the end surface 67 of the wall portion 66A.
The end portion of a pair of side plates 194A and the wall portion 66A are point-bonded using the adhesive 198 which is the UV-curable adhesive. Furthermore, the leaf spring that regulates a position in the apparatus up-and-down direction of the facing member 194 is not disposed. Three through holes 196A, 196B, and 196C (through hole 196A is illustrated in the figure) penetrating a front and back of the bottom plate 194B are formed on the bottom plate 194B.
The through hole 196A is formed so as to overlap at least partially with the integrated circuit 74A in the apparatus depth direction. The through hole 196B is formed so as to overlap at least partially with the voltage control element 74B in the apparatus depth direction. Furthermore, the through hole 196C is formed on the portion of the rear side in the apparatus depth direction on the bottom plate 194B.
An effect of the fourth exemplary embodiment is the same as the effect of the first exemplary embodiment.
An example of an exposure device and an image forming apparatus according to a fifth exemplary embodiment of the invention will be described with reference to
The facing member 214 provided in the exposure device 212 of the fifth exemplary embodiment has a plate shape and both end portions in the apparatus width direction are in contact with the end surface 67 of the wall portion 66A. Furthermore, the leaf spring that regulates a position in the apparatus up-and-down direction of the facing member 214 is not disposed.
Three through holes 216A, 216B, and 216C (through hole 216A is illustrated in the figure) penetrating a front and back of wall portion 66A are formed on one (right side in the figure) of the wall portion 66A.
The through hole 216A is formed so as to overlap at least partially with the integrated circuit 74A in the apparatus depth direction. The through hole 216B is formed so as to overlap at least partially with the voltage control element 74B in the apparatus depth direction. Furthermore, the through hole 216C is formed on the portion of the rear side in the apparatus depth direction on the wall portion 66A.
An effect of the fifth exemplary embodiment is the same as the effect of the first exemplary embodiment, except for an effect caused by forming the through hole on the facing member formed of the metal.
Although the invention is described in detail for a specific exemplary embodiment, the present invention is not limited to the exemplary embodiment according to the invention, and it is apparent to those skilled in the art that it is possible to take various other exemplary embodiments within the scope of the invention. For example, although the contact resin 102C is disposed in the above exemplary embodiment, the contact resin 102C may not be disposed. In this case, an effect caused by providing the contact resin 102C, does not occur.
Although both of the contact resin 102A and the contact resin 102B are provided in the above exemplary embodiment, at least any one may be provided. In this case, only effects by the contact resin 102 disposed, occur.
In the above exemplary embodiment, although not specifically described, the longitudinal direction of the facing member 64 may not be the apparatus depth direction. The facing member 64 may be in contact with the contact resin 102.
Although the contact resin 102 which is an example of the contact member has the insulating property in the above exemplary embodiment, the contact member, for example, may be a conductive paste having a conductivity. However, in this case, an effect caused by the contact member which has the insulating property, does not occur.
Although it is described with reference to the integrated circuit 74A and the voltage control element 74B as an element generating heat in the above exemplary embodiment, it may be a member that generates heat in accordance with causing the light emitting element 72 to emit the light, and may broadly be any of the active element and the passive element.
Although the light emitting element 72 is disposed in a zigzag shape, and extends in the apparatus depth direction in the above exemplary embodiment, the element may not be disposed in a zigzag shape, and may be disposed to extend in the apparatus depth direction.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2016-130671 | Jun 2016 | JP | national |