Zeilinger et al. Different inducibility of expression of th etwo xylanase genes xyn1 and xyn2 in Trichodermal reesei. J. Biol. Chem. vol. 271(41):25624-25629, 1996.* |
S.J. Gurr et al., “The structure and organization of nuclear genes of filamentous fungi”, in Kinghorn. J.R. (ed). Gene Structure in Eukaryotic Microbes, IRL Press, pp. 93-139, 1987. |
J D Beggs, “Transformation of yeast by a replicating hybrid plasmid”, Nature, vol. 275, Sep.1978, pp. 104-108. |
Kryoshi Ito et al., “Biosci. Biotech Biochem., 56(6)”, Cloning and Sequencing of the xynA Gene Encoding Xylanase A of Aspergillus kawachii, pp. 906-912, (1992). |
R.J. Gouka et al., “Appl Microbiol Biotechnol, 46”, An expression system based on the promoter region of the Aspargillus awamori 1,4-E-endoxylanase A gene, pp. 28-35, (1996). |
L.M. de Graaff et al, “Xylans and Xylanases”, Structure and Regulation of an Aspergillus Xylanase Gene, pp. 235-246, (1992). |
L.H. de Graaff et al., “Molecular Microbiology 12(3)”. Regulation of the xylanase-encoding xINA gene of Aspergillus tublgensis, pp. 479-490, (1994). |
D Gems et al., “Gene 03883”, An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency, pp. 61-67, (1991). |
J. Rambosek et al., “CRC Cnt Rev. Biotechnol. vol. 6, Issue 4”, Recombinant DNA Filamentous Fungi: Progress and Prospects, pp. 357-393, (1987). |
R.W. Davies, Heterologous Gene Expression and Protein Secretion in Aspergillus Chapter 21, pp. 527-561, (1994). |
D J Ballance, “Delta Biotechnology Limited”, Transformation Systems for Filamentous Fungi and an Overview of Fungai Gene Structure, pp. 1-29, (1991). |
G Turner. Vectors for Genetic Manipulation, Chapter 24, pp. 641-665, (1994). |
M.P Broekhuijsen et al., “Journal of Biotechnology. 31”. Secretion of heterologous proteins by Aspergillus niger, Production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL 6 fusion protein, pp. 135-145, (1993). |
A.R. Goodey et al., “Yeast Biotechnoloy. 13”. Expression and secretion of foreign polypeptides in yeast. pp. 400-429 (1987). |
D J King et al., “Molecular and Cell Biology of Yeast, Chapter 4”, The production of proteins and peptides from Saccaromyces cerevisiae, pp. 107-132, (1989). |
A Hinnen et al., “Proc. Natl. Acad. Sci. USA, vol 74, No. 4”, Transformation of yeast. pp. 1929-1933, (Apr. 1978). |
M Ito et al, “Journal of Bacteriology, vol. 163, No. 1”, Transformation of Intact Yeast Cells Treated with Alkali Cations, pp. 163-169. (Jan. 1983). |
K Wernars et al., “Mol Gen Genet, 209”. Cotransformation of Asperigillus nidulans: a tool for replacing fungai genes. pp 71-77. (1987). |
F P. Buxton et al, “Gene, 37”, Tranformation of Aspergillus niger using the argB gene of Aspergillus nidulans, pp. 207-215, (1985). |
M.J. Daboussi et al, “Current Genet, 15”, Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans, pp. 453-456, (1989). |
P.J. Punt et al., “Methods in Enzymology, vol. 216, Chapter 39”, Transformation of Filamentous Fungi Based on Hygromycin B and Phleomycin Resistance Markers, pp. 447-457, (1992). |
W V Hartingsvedt et al, “Mol Gen Genet, 206”, Development of a homologous transformation system for Aspergillus niger based on the pyrG gene, pp. 71-75, (1987). |
W. Vishniac et al., “Bacteriol. Rev., 21”, The Thiobacilli, pp. 195-213, (1957). |