The present invention relates to an expulsion device actuated by a pressure medium for expelling objects or liquid materials from a reservoir by means of a drive piston, subjected to the action of a pressure medium, comprising a pressure medium container, which is exchangeable and connected to a device body enabling the pressure medium to act on the drive piston.
A device of the type set out above embodied as an driving device for driving in mechanical fastening means, such as, for example, staples, is known from EP 0 191 186 A2. In the known device a device body is fitted with a pressure medium container, which, when actuated by means of a valve system, serves to exert pressure on a piston, which is connected to an impact ram. In the known expulsion device the pressure medium container is in the form of a CO2 cartridge, the filling pressure of which acts on the piston connected to the impact ram when an actuating device is operated, thereby bringing about a forward movement of the impact ram. In order to implement a return movement of the piston, so as to move the impact ram back into its initial position for repeating the expulsion procedure, the piston is returned to its initial position by means of a mechanical carrier device.
As a result of the mechanically brought about return of the piston into the initial position, only relatively low expulsion frequencies are possible with the known expulsion device. Furthermore, returning the piston into the initial position assumes the application of a corresponding manual force. Overall in this way only a relative low stapling output is possible.
The aim of the present invention is therefore to permit an increase in the expulsion frequency with an expulsion device which is fitted with an exchangeable pressure medium container and can therefore be operated independently of the mains.
In the expulsion device according to the invention the action of the pressure medium serves both to implement a forward movement and to implement a backward movement of the drive piston, so that in contrast to manually actuated return, a much faster backward movement is achieved. This results in considerably shortened cycle times for the return of the piston, so that overall a clear increase in the expulsion frequency is made possible.
A further increase in the efficiency of the expulsion device can be achieved if the device body of the expulsion device has pressure chamber, separated from the pressure medium container by means of a pressure-reducing device, for subjecting the drive piston to the action of a pressure medium with an operating pressure that is lower than the filling pressure of the pressure medium container. Through the intermediate arrangement of the pressure-reducing device the filling pressure in the pressure medium container can be increased to many times the operating pressure so that a considerably increase in the operating time of the expulsion device is achieved before it becomes necessary to exchange the pressure medium container.
If, in order to initiate the action of the pressure medium on the drive piston an actuating device is provided, which at the same time serves to operate a ventilation valve arrangement for ventilating a drive cylinder accommodating the drive piston, a synchronization between the pressure medium action and control of the ventilation valve arrangement is achieved in a simple manner. A particularly direct form of mechanical implementation of this synchronisation, and thereby also particularly short operating cycles of the expulsion device, become possible if the ventilation valve is connected to the actuating device by means of a ram device.
In a particularly preferred form of embodiment of the expulsion device the ventilation valve arrangement is designed as a piston valve with a valve axis intersecting the piston cylinder axis. On the one hand, by embodying the valve arrangement as a piston valve very high hysteresis figures can be achieved for the valve arrangement. On the other hand with the valve arrangement intersecting the drive cylinder axis particularly effective and thus rapid ventilation of the drive cylinder over the cylinder base is permitted.
If the drive piston simultaneously serves as a control piston for carrying out the pressure-actuated backward movement of the drive piston in the piston cylinder, the structural implementation of pressure medium-actuated drive piston return is made possible with particularly few mechanical components because of the functionally integrated effect of the drive piston. In terms of further simplified structural assembly, it also proved to be advantageous if the expulsion end of the drive cylinder is surrounded by a ring chamber with an inflow system, arranged at a distance from the end cross-section of the piston displacement of the drive cylinder, and an outflow system arranged in the area of the end-cross-section and merging into the piston displacement area, whereby the distance between the inflow system and the outflow system corresponds at least to the axial extent of the drive piston.
A further increase in the efficiency of use of the pressure potential provided by the pressure medium container is possible if the drive cylinder has, at its expulsion end, a cylinder base with a ram opening for a drive ram connected to the drive piston, with a radial sealing device arranged in the ram opening. This allows largely pressure medium-tight sealing of the annular gap between the drive ram and the drive opening necessary for the relative movement of the drive ram, so that leakage through the annular gap can be largely prevented. If, in addition, the sealing device is arranged in the cylinder base, any embodiment of the sealing seat is possible, irrespective of an influence of the drive ram cross-section.
Depending on the type and design of the container provided for combination with the expulsion device, it is possible to use the expulsion device according to the invention for expelling objects, i.e. solid bodies, or also fluid materials.
If, in accordance with a particularly advantageous form of embodiment of the expulsion device the container is designed as a magazine device for holding mechanical fastening means, and the drive ram serves to strike an individual fastening means arranged in a feeder channel arranged on the magazine device, the expulsion device can particularly advantageously be used as a nailing device.
In a further advantageous form of embodiment of the expulsion device the container is designed as a liquid reservoir, and the drive ram exerts a pressure on quantity of liquid in a dispensing system arranged on the liquid reservoir. This quantity of liquid can, for example, be a liquid paint, which is expelled in dosed quantities to produce coloured dots for instance. It is also possible to dispense quantities of adhesive, for producing adhesive dots for example.
An advantageous from of embodiment of the expulsion device will be described below with the aid of the drawings, in which:
At its end turned away from the drive piston/cylinder unit 13, the grip section 12 is connected in a detachable manner to the pressure medium container 14 via a coupling device 16, which can, for example, be in the form of a screw-in thread. To set an operating pressure for the drive piston/cylinder unit 13, which is independent of a filling pressure in the pressure medium container 14, a separate pressure chamber 18 is provided in the grip section 12 separated from the pressure medium container 14 by means of a pressure reducing device 17.
Between the pressure chamber 18 and the drive piston/cylinder unit 13 there is arranged a tilling valve device 19 for subjecting a drive piston 20 of the drive piston/cylinder unit 13 to the operating pressure by way of operating the filling valve device 19 with an actuating device 21. The filling valve device 19 has a sealing element 67, pretensioned by a valve spring 66 in the direction of the valve opening, which is pressed against a valve opening 54 for the purpose of sealing by a valve ram 24 subject to the action of a closing spring 71. As can be seen in
As can be seen particularly from the enlargement in accordance with
As can be seen in
In this case the drive piston 20 is designed as a sleeve into which a drive ram 46 is screwed in with a screw-in end 47.
A securing pin 48 serves to prevent twisting between the screw-in end 47 of the drive ram 46 and the drive piston 20.
At the expulsion end of the drive cylinder 31 a second cylinder base 49 is arranged which is provided with a ram opening 50, into which the drive ram 46 engages with a sealing collar 51 when the drive piston 20 is positioned in the area of the expulsion end 41. To seal the ram opening 50 a radial sealing device 63, in this case in the form of an O-ring, is provided in the ram opening 50 and is in contacts with the drive ram 46 forming a seal in the axial positions of the drive piston shown in
Described below is an operating cycle of the expulsion device 10, covering an axial forward movement of the drive piston 20 up to contact with the cylinder base 49 arranged at the expulsion end 41 and a backward movement of the drive piston 20 up to contact with the cylinder base 30 (
To operate the expulsion device 10 with an axial forward movement of the drive piston 20, the starting lever 22 is moved so that the ram rod 25 is moved against the pivoting lever 26. The lever 26 then acts on a ram end 55 of the valve piston 27 of the ventilation valve arrangement 28 and, counteracting the effect of a readjusting spring 56 (FIG. 2), axially moves the valve piston 27 forward to seal the ventilation opening 29. With increasing deflection of the starting lever 22, a carrier catch 52 arranged in an articulated manner on the starting lever 22 contacts an annular beading 53 of the valve ram 24 and the valve opening 54 (
As a result of the pressure filling of the drive cylinder 31, the drive piston along with the drive ram 46 arranged on it is axially accelerated until it comes into contact against the cylinder base 49 arranged at the expulsion end 41 (FIGS. 4 and 5). As the carrier contact between the carrier catch 52 and the annular beading 53 on the valve ram 24 of the filling valve arrangement 19 is designed in such a way that there is a roll-off contact between the carrier catch 52 and the annular beading 53 when the starting lever 22 is operated, after a predetermined movement path of the starting lever 22 the annular beading engaged by the carrier catch 52 is released again and the valve opening 54 of the pressure chamber 18 is closed again by the closing spring-actuated valve ram 24.
The drive ram 46 exerts an impact on a steel pin 58 arranged in a feeder channel 59 at the lower end of the magazine device 15 which pushes the individual steel pin 58 in the feeder channel 59 out of the feeder channel 59 and into a material arranged in front of the feeder channel.
When the drive piston 20 is in its impact position on the expulsion side, as shown in
As can be seen from
Number | Date | Country | Kind |
---|---|---|---|
201 10 754 U | Jun 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTEP02/06657 | 6/17/2002 | WO | 00 | 2/26/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0300230 | 1/9/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3583496 | Fehrs | Jun 1971 | A |
3815475 | Howard et al. | Jun 1974 | A |
3850079 | Fehrs | Nov 1974 | A |
3871566 | Elliesen et al. | Mar 1975 | A |
4380313 | Klaus et al. | Apr 1983 | A |
4688645 | Muller | Aug 1987 | A |
5437339 | Tanaka | Aug 1995 | A |
Number | Date | Country |
---|---|---|
33 09 226 | Sep 1984 | DE |
0 191 186 | Aug 1986 | EP |
Number | Date | Country | |
---|---|---|---|
20030173393 A1 | Sep 2003 | US |