Electrical insulators play a vital role in the high voltage power transmission and distribution system. They maintain electrical isolation between energized equipment and earth ground potential. When insulators fail, catastrophic flashover can occur, resulting in potential damage to the system. One contributing factor leading to insulator failure is dirt or dust accumulation on the insulator disc surfaces. Particles at sufficient concentrations will form a conductive path, which the energized conductor can provide fault current to, resulting in current flowing over and along the insulator disc surfaces. This unintended current flow, resulting from surface particles which have sufficiently low resistivity to conduct current at the insulator's rated line voltage, will mechanically stress the insulator material, leading to premature mechanical failure of the insulator, as seen by a reduction of measured insulation resistance to inoperably low levels.
For the cleaning of post insulator structures, which feature stacks of discs, accessing the inter-disc region for cleaning purposes can be challenging. The concave regions between the insulator discs can accumulate particles and retain them despite initial cleaning efforts. A device which can efficiently, and completely clean bushing insulators is desirable, using glass cleaning methods which are adapted to the geometry of a bushing insulator.
The proposed device has several advantages for maintenance personnel tasked with cleaning insulation discs. The device has multiple prongs and will clean a minimum of 3 to 4 insulation discs at a time. It can be operated with one hand, which can be significant if working at heights. It introduces solvent and scrubs the insulator disc surface, with the spongiform side of its head, and then wipes and squeegees the surface with the rubber bladed side. In cooperation with a belt-mounted solvent container for continual refreshing of the sponge, the device can exhaustively clean large stacks of insulators in minimal amounts of time, optimizing the routine of an important electrical maintenance task. It can also be constructed of electrically insulating materials, such that the device is rated to operate safely at high voltages. It thus offers improvements in speed, efficiency, and safety relative to existing methods for cleaning high voltage insulator discs. The cleaning device also maintains a degree of separation between the maintenance personnel and the insulator discs, which is advantageous because it is electrically insulated and protects the user from high voltage sources, and protects the fragile nature of the often-glass insulator discs from inadvertent damage, as all contact surfaces on the device are soft and deforming. The cleaning attachments must extend sufficiently far from the support prong member to which they are attached, such that the inter-disc void regions of the insulator stack are completely covered with cleaning attachment surfaces, while the handle, support prongs, and junction member are free to travel in device-actuating cleaning movements around the insulator and surrounding equipment without physical clearance issues.
The device is intended to be constructed of non-conducting polymer, such that it has a high overall insulation rating. Maintaining the electrical non-conductivity of the device is critical to its design, such that no metallic materials would be used for its construction. Thermo-welded plastic may be used to create the geometry specified in the design, where the cleaning attachments can be changed out according to insulator design, where the inter-disc regions will have different surface geometry for the attachments to conform to.
The cleaning attachments (1) and (4) extend away from the connection ports (2) and the branched head (3) of the support prong (5) so that (1) and (4) completely fill the inter-disc region and the device can be actuated without physical clearance issues relative to the insulator stack. The device can be operated in either a push or pull manner, as the rigid support prong (5) will transmit force in either direction relative to the handle (8) and the prong junction member (6). The junction member (6) has connection points for the ends of the rigid prong (5), such that at least three prongs are equidistantly spaced along the junction member (6) which is linked with the handle (8) through an adjustable swivel bushing mechanism (7). This allows the handle to turn in any direction relative to, and along a parallel axis with, the cleaning attachments when (1),(4) are cleaning within the inter-disc region. The support prongs (5) have a nested shell structure which allows a telescoping property of extension and retraction using the positional retainer buttons shown with (9). As each cleaning attachment pair is supported by an individual telescoping support prong, the number of cleaners deployed to the insulator disk surface is variable, such as for small detailing tasks where only one may be needed. Additionally, the possibility of adjusting the length of the telescoping support prongs allows for reaching elevated or distant insulators which could otherwise be unreachable due to access or clearance issues.
Number | Name | Date | Kind |
---|---|---|---|
1568408 | Miles | Jan 1926 | A |
2856625 | Delacretaz | Oct 1958 | A |
3409925 | Bodine, Jr. | Nov 1968 | A |
4435874 | Jacobson | Mar 1984 | A |
5119851 | Paris | Jun 1992 | A |
5201090 | Jans | Apr 1993 | A |
5448793 | Mallory | Sep 1995 | A |
8261401 | Ciesielski | Sep 2012 | B1 |
11148174 | Zbinden | Oct 2021 | B1 |
20200061676 | Chundi | Feb 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20210379626 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16875248 | May 2020 | US |
Child | 17407100 | US |