Not Applicable.
Not Applicable.
1. Field of the Invention
The present invention relates to multihull boats, and more particularly to multihull boats with an extendable platform.
2. Related Art
There have been many alternative designs that seek to increase the deck space for watercraft on pontoons, including laterally extending decks and longitudinally extending decks. When extending the deck space longitudinally using a ramp, many prior art ramps do not provide any buoyancy to the section of the ramp being extended and others may have negligible buoyancy and slope downward and dip to near water level or at the water level, allowing sections of the deck to be splashed and get wet. Further, such ramps are unstable, particularly in rough weather or choppy water.
The present invention provides an increase in deck space by extending a lower deck longitudinally, while also providing additional longitudinal buoyancy that maintains the elevation of the lower deck above the surface of the water in a near parallel arrangement to the main deck and avoiding the sloping of the lower deck to water level. The increased buoyancy for the lower deck compensates for the increased structure being supported, which stabilizes the lower deck, even in rough waters. The extended space does not slope toward the water, providing a stable, safe surface to sit, walk or stand.
There are a number of different designs for boats with longitudinally extending decks. As an example of a longitudinally extending deck with a flotation device, U.S. Pat. No. 6,868,799 discloses an extendable ramp with a small cylindrical float located at the end of the ramp. The ramp slopes toward the water and the end of the ramp is essentially level with the water. This patent clearly teaches away from the present invention that provides longitudinal buoyancy to lift the deck and provide stability. As an example of a longitudinally extending deck without any flotation device, U.S. Pat. No. 8,056,496 discloses an extendable deck for a pontoon boat that is stowed under the main deck. The extendable deck has no flotation devices attached, but is levered from the bow of the boat. As the deck is extended beyond its half retracted position, the end of the floating deck begins sloping down and the deck designed to require support by a beach or a boat dock when it is fully extended. This patent likewise teaches away from the claimed invention having longitudinal buoyancy and its resulting stability and safety.
None of the prior art references discloses a secondary deck that is buoyantly supported by pontoons or any other flotation device when the secondary deck is stowed beneath the main deck to which the secondary deck is slidably connected. In addition to providing extra deck space, a secondary deck that has its own buoyant support that is operative when the deck is stowed and when the deck is extended can provide increased stability to the watercraft while maintaining the loading capacity of the watercraft. Known watercraft that merely add slidable planks, ramps or decks which do not offset the weight of these features with an increase in the buoyancy of the watercraft necessarily increase the total weight and therefore reduce the loading capacity of the watercraft. When a float on a ramp is only operable when the ramp is deployed, there is no increase in the buoyancy of the watercraft when the ramp is stowed and this can reduce the stability of the watercraft if the ramp is added to an existing watercraft design. Even if the abeam pontoons are sized larger to accommodate the addition of a ramp, the extension of a ramp that is not supported while it is stowed will necessarily produce a cantilevering effect that will increase the stress on the main deck structure and will also change the boat's attitude in the water while the ramp is cantilevered.
An upper deck is supported on a bottom side by one or more abeam pontoons or a pier structure. A lower deck is located beneath the upper deck, and the decks are slidably connected through a pair of longitudinally elongated guides that are fixedly connected to the bottom side of the upper deck between the abeam pontoons or the piers. The lower deck and has a stowed position underneath the upper deck and an extended position out from underneath the upper deck. Longitudinal buoyancy is provided the lower deck by means of amidships pontoons.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings which are described in the detailed description below.
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
As generally shown in
As shown in
As shown in
The increased buoyancy and stability of multiple amidships pontoons for the lower deck may be particularly beneficial for the foldable wings' additional weight and cantilevered structure. However, as shown in
As shown in
The guide rails 40 generally described above are preferably formed from a pair of C-channels 130 as shown in
Just as there are several options to connect the lower deck to the upper deck through various guide systems, there are different ways to actuate the lower deck and move it between its retracted and extended positions. Alternative actuator systems for moving the lower deck 50 relative to the upper deck 10 are shown in
In a preferred embodiment, the actuator 150 uses ram power, a telescoping hydraulic linear actuator 154 can have a fixed outer cylinder 154a and an inner rod 154b that extends from the outer cylinder. The outer cylinder is fixed to the upper deck structure, such as through attachment to the motor housing that is connected to the upper deck. The forward end of the inner rod is connected to a mount 180 that is fixedly attached to the bottom side of the lower deck. For a powered track/gear option, a notched track can be attached beneath the lower deck and extend back to a gear mounted to the motor. For example, the gear actuator could be mounted to the bottom side of the main deck structure adjacent to the side of the lower deck, and the gear would operate on a track that is mounted to the side of the lower deck. Whichever actuator system is used, it can be operated with a switch on the console or control panel of the watercraft, selecting between the forward, reverse and neutral operations. It will also be appreciated that it is possible to manually extend the secondary deck from its stowed position and then manually retract and lock the secondary deck in its stowed position.
In the preferred operation of the present invention, the lower deck is not designed with sufficient structural strength to accommodate powered travel along the water when the lower deck is fully or partially extended. Accordingly, there could be a propulsion power kill switch which prevents the watercraft's motor from being started while the lower deck is moved from its stowed position. It will also be appreciated that there could be a mechanical failure in the actuator system which prevents the powered retraction of the lower deck into its stowed position. Therefore, a manual actuator could also be provided with the secondary deck. For example, as shown in
The overall buoyancy of the watercraft 12 does not vary depending on whether the lower deck retracted in its stowed position beneath the upper deck or is extended out from the upper deck, but as shown in
According to the present invention, the lower deck and its guide and actuator systems could be specially designed and produced with new watercraft. Alternatively, the lower deck and its accompanying systems could be designed for retrofitting existing watercraft, regardless of the age of the watercraft or the brand of watercraft. By retrofitting existing watercraft, older pontoon boats can be updated for weight capacity, horsepower and other improvements without the expense of an entirely new boat. With a standard size pontoon, there is approximately one hundred pounds (100 lbs) of buoyancy per linear foot of the additional amidships pontoons. For example, an improvement of a standard twenty-four foot (24 ft) pontoon boat according to the present invention could add as much as thirty-two hundred pounds (3,200 lbs) of buoyancy to a standard pontoon boat, and a standard tritoon conversion could add as much as one thousand pounds (1,000 lbs) of buoyancy. As discussed above, the increased buoyancy of the amidships pontoons should be at least as much as is required to maintain the weight of the lower deck in approximately the same waterline when it is extended as when it is stowed.
It will be appreciated that the present invention can be used with any multi-deck, multihull watercraft 12 as well as other floating multi-deck platforms and structures 14. An example of a triple-hulled catamaran 12b, a trimaran, is shown in
As shown in the drawings, the bow end of the lower deck and its amidships pontoons are relatively flush with the bow end of the upper deck and the abeam pontoons, respectively, when they are in their retracted positions. However, it will be appreciated that the retracted positions of the lower deck or its amidships pontoons may be slightly recessed from the upper deck and its abeam pontoons. Alternatively, the retracted positions of the lower deck or the amidships pontoons may be slightly extended from the upper deck and the abeam pontoons. The recessed lower deck and pontoon arrangement may be particularly beneficial for permanent docks where owners must comply code restrictions and association restrictions for the size of floating docks and even permanent ground-supported docks, such as the pier dock described above. The slightly extended lower deck and pontoon arrangement could be as much as approximately six inches or more and may be beneficial to improve maneuverability and turning radius of a watercraft.
When the lower deck is in the extended position, the lower deck is elevated above the surface of the water from about 10 to 20 inches. When the lower deck is used, the user is less likely to be splashed by waves. Further, because of the longitudinal buoyancy provided by the amidships pontoons, the lower deck is extremely stable and safe.
According to the description of the embodiments above, it will be appreciated that the present invention provides several benefits over existing multihull vessels and floating docks. In particular, the present invention provides additional buoyancy that more than compensates for the increase in weight of the lower deck, the guides and the actuator system which increases the hauling capacity and gross vehicle weight of the multihull vessel. The present invention can also increase the maneuverability and stability of the multihull vessel as well as increase the useable deck space when the vessel is stationary. The present invention may also increase fuel economy of the vessel, especially when compared to a vessel with the same total useable deck space. When the invention is used with permanent dock structures, it increases the usable deck space.
The embodiments were chosen and described to best explain the principles of the invention and its practical application to persons who are skilled in the art. As various modifications could be made to the exemplary embodiments, as described above with reference to the corresponding illustrations, without departing from the scope of the invention, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
This application is a utility application claiming the benefit of provisional patent application No. 61/737,245 filed Dec. 14, 2012, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3019755 | Diamond | Feb 1962 | A |
3300894 | Glass | Jan 1967 | A |
3613315 | Sturm | Oct 1971 | A |
3614937 | Schulman | Oct 1971 | A |
3767193 | Johnson | Oct 1973 | A |
3858541 | Metcalf, Jr. | Jan 1975 | A |
3877095 | Ivy | Apr 1975 | A |
3925837 | Miller | Dec 1975 | A |
4762078 | Palmer, Jr. | Aug 1988 | A |
4842735 | Hollis | Jun 1989 | A |
4909169 | Skandaliaris | Mar 1990 | A |
4971315 | Rector | Nov 1990 | A |
4981100 | Bergeron | Jan 1991 | A |
4993341 | Merkel | Feb 1991 | A |
5085164 | Whitton | Feb 1992 | A |
5085165 | Reed | Feb 1992 | A |
5628274 | Biedenweg et al. | May 1997 | A |
6003458 | Valliere | Dec 1999 | A |
6041730 | Oliverio et al. | Mar 2000 | A |
6058866 | May | May 2000 | A |
6298801 | May | Oct 2001 | B1 |
6868799 | Wright | Mar 2005 | B2 |
6874440 | Manderfeld | Apr 2005 | B1 |
7028632 | Blank | Apr 2006 | B2 |
7162969 | Houlder | Jan 2007 | B2 |
7536966 | Stryjewski | May 2009 | B2 |
7628115 | Thompson | Dec 2009 | B2 |
7987803 | Cochran | Aug 2011 | B2 |
8056496 | Bussa | Nov 2011 | B1 |
20050236835 | Williams | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20140165893 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61898373 | Oct 2013 | US | |
61737245 | Dec 2012 | US |