1. Field of the Invention
The present invention relates to semi-automatic firearms. Particularly it concerns hand-held pistols or repeating handguns having a slide action mechanism. More particularly, the present invention relates to facilitating the pulling or “racking” of a pistol slide using an extendable slide member on the slide action.
2. Description of Related Art
Conventionally designed pistols generally have a breech in the form of an exposed slide, which is movably arranged on a frame in the longitudinal direction, that is, in the direction along the length of the barrel. The frame, consisting of metal or plastic, serves to hold the mechanical parts of the firearm, such as the trigger housing and bolt carrier group. The frame includes a grip portion that receives the magazine. The frame provides support for the control and guide elements for the slide.
The slide is the part of the weapon on a majority of semi-automatic pistols that moves during the operating cycle and generally houses the firing pin or striker and the extractor, and serves as the bolt. A bolt is a mechanical part of a firearm that blocks the rear of the chamber while the propellant burns, but moves out of the way to allow another cartridge or shell to be inserted in the chamber.
In an automatic or semi-automatic firearm, the bolt cycles back and forward between each shot, propelled by recoil or expanding gas (back) or the recoil spring (forward). When it moves back, an extractor pulls the spent casing from the chamber. When it moves forward, it strips a cartridge from the magazine and pushes it into the chamber. Once the cartridge case is clear of the chamber, the ejector kicks the case out of the weapon. The extractor and firing pin are often integral parts of the bolt. The slide of a semi-automatic pistol is a form of bolt. It is spring-loaded so that once it has moved to its rearmost position in the firing cycle, spring tension brings it back to the starting position chambering afresh cartridge during the motion, provided that the magazine is not empty.
The majority of semi-automatic pistols in use are essentially of the single action type in which a firing pin, typically impacted by a hammer, is cocked into firing position by recoil of the slide when the weapon is discharged by the pull of the trigger. Some of these weapons may be double action on loading of the first round, but single action thereafter for all rounds in the magazine, and thus, are not double action only weapons.
Operation of a semi-automatic pistol requires one to first load bullets into a magazine. Next, a magazine is inserted into the pistol, usually within the pistol grip portion. A magazine is an ammunition storage and feeding device within or attached to a repeating firearm, such as a semi-automatic pistol. Magazines may be integral to the firearm (fixed) or removable (detachable). The magazine functions by moving the cartridges stored in the magazine into a position where they may be loaded into the chamber by the action of the firearm. The slide is pulled back and released, which serves to load the cartridge or round into the chamber and cocks the hammer. The function of the hammer is to strike the firing pin, which in turn detonates the impact-sensitive cartridge primer. With each trigger pull, a round is fired and a new one is automatically loaded, ready for another trigger pull.
In order to fire a double action pistol, the magazine is first loaded, the slide is then pulled back or “racked”, and a cartridge or round is placed in the chamber. Firing is then initiated by pulling the trigger. The trigger pull is cocking the hammer first. Then after it fires, the pistol will load afresh round in and cock the hammer, so the second trigger pull is much shorter and lighter.
In a striker fire pistol, a striker is similar to a firing-pin with the exception of a spring being located in back of the striker and forcing it to the front. When the pistol is cocked a sear holds the striker in a rearward position. When the pistol is fired the sear releases the striker, which flies forward under the impetus of its spring and strikes the primer.
In a double-action striker-fired pistol, when the slide is racked, the striker is latched back far enough to be clear of the breech face when feeding a round into the chamber, but not far enough to fire the pistol if released. When the trigger is pulled, the striker is pulled back farther, and then released.
It is sometimes difficult for some people to pull or “rack” the slide on pistols, due to weak hand strength, grip, age, and/or related medical conditions, like arthritis or joint tenderness. New shooters are sometimes too gentle with a pistol and are afraid of slide “bite” to definitively and aggressively rack the slide as they should. It is understood, however, that shooters cannot operate a semi-automatic pistol efficiently for loading, unloading, and clearing malfunctions without racking the slide properly and quickly. Thus, there remains a need in the art for facilitating proper racking of the slide on a pistol.
Racking the slide simply means manipulating and moving the slide back and forth on its guide rails. There are many ways and considerations for racking the slide. Even some experienced competitors have demonstrated that they cannot optimally rack the slide to perform reloads. Others have concluded that they have no choice but to use a revolver, rather than a semi-automatic pistol, especially for concealed carry purposes, because they cannot rack the slide. Consequently, racking the slide is a prevalent issue in pistol ownership and shooting, and the user must be confident to perform this function effectively.
Two common methods for racking the slide are the “sling shot” method and the “over-the-top” method. For the sling shot method, the thumb and index finger of the support hand are in a “V” position to grasp or pinch the back of the slide on the slide grip portion, which is generally a serrated section of the breech end of the slide, and quickly pull the slide to the rear, not unlike shooting a slingshot. A length of the slide is pinched and grasped for better control. Concurrently with the grasping of the slide with the support hand, the strong hand is quickly pushed forward away from the shooters body. Throughout this action, the grasped slide must be tightly held.
In the over-the-top method, the shooter's support hand is used to grasp the rear slide serrations over the top of the slide. For a right-handed shooter, the heel of the support hand rests on the left-side serrations, while the outside, right-side serrations, are grasped with the four fingers of the support hand. This method yields a more powerful grip on the slide because more fingers and the heel of the support hand are used for added strength. Again, throughout this action, the grasped slide must be tightly held.
Moreover, the slide must be moved back to a lock position in order to insert a new loaded magazine, for cleaning purposes, or to insert a new magazine when a magazine follower automatically locks the slide back when the spent magazine becomes empty. To lock the slide to the rear, the slide stop lever is pushed up as the slide is racked backwards by the support hand, and before it travels forward. Many shooters will shift their strong grip hand around to the left (for a right-handed shooter) so they can lift up the slide stop lever with their strong-hand thumb.
It is apparent from these methods that proper technique and a strong grip are required to rack the slide. Older shooters, shooters with certain medical conditions, weaker shooters, younger shooters, and others with difficulty racking the slide would benefit from an easier way to reduce the grasping force while securing the grip.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a pistol slide that allows a user to more easily and efficiently pull or rack the slide back.
It is another object of the present invention to provide a modified pistol slide to facilitate racking.
It is a further object of the present invention to incorporate an extendable member on a pistol slide that enables a user to establish a firm grip for pulling the slide in relation to the pistol frame.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to a pistol slide having a top surface facing upwards when the pistol is held in an upright firing position, side surfaces adjacent the top surface and facing outwards left and right in a direction perpendicular to the top surface, a breech end, and a muzzle end opposite the breech end, the slide including: at least one partially walled aperture located proximate the breech end of the slide having an opening accessible from the slide top surface or the slide side surface, or both; at least one extendable, retractable slide member, the slide member extendable approximately laterally outwards from the side surface in a direction approximately perpendicular to the top surface when the slide member is in an extended position, the slide member including: a top edge, a holding portion, and an attachment segment, the attachment segment being insertable within the at least one partially walled aperture for rotatably attaching to the slide; and a resilient bias member providing a restoring force to the at least one slide member when the at least one slide member is extended laterally outwards, the restoring force acts to retract the at least one slide member laterally inwards towards the slide side surface.
The slide includes: a receiving slot in at least one side of the slide to receive the slide member holding portion when the slide member is in its fully retracted or closed position; and a sloped indent located on at least one side of the slide top surface, and extending in a sloping fashion from a point proximate a center of the slide top surface toward the slide side surface to a position below the slide member top edge.
The slide member is approximately flush-mounted with the side surface of the slide when the at least one slide member is in a retracted position within the receiving slot.
The receiving slot is indented within the slide side surface, the receiving slot formed by a bottom surface, a breech end side wall, and a muzzle end side wall, such that the slide member is received within the receiving slot. A top segment extends from the slide side surface and the breech end side wall of the receiving slot form the at least one partially walled aperture. The attachment segment comprises an approximate cylindrically shaped column for rotatably attaching to the slide at the partially walled aperture.
The partially walled aperture extends circumferentially more than 180° about the approximate cylindrically shaped column of the attachment segment, securing the attachment segment within the partially walled aperture while simultaneously allowing the attachment segment to rotate relative to the slide.
The pistol slide further includes: an aperture within the slide accessible from the slide breech end and extending to the receiving slot; the resilient bias member insertably supportable within the aperture, forming a biased detent for the attachment segment; and a plunger biased by the resilient bias member insertably supportable within the aperture and slideably movable within the aperture toward the slide muzzle end to a position where the plunger is exposed to the receiving slot.
The attachment segment includes a notch having a mating surface; and the plunger includes a complementary mating surface in contact with the attachment segment mating surface. The attachment segment mating surface and the plunger complementary mating surface, when in contact, cause the plunger and resilient bias member combination to move in an axial direction parallel to the slide side surface when the slide member is rotated outwards, away from the slide, which provides the restoring force to the slide member. The plunger includes a peg extending radially therefrom for assembling a side member/plunger/resilient bias member combination within the slide, the peg insertable within a slot located within a bottom portion of the attachment segment.
In a second aspect, the present invention is directed to a pistol comprising: a frame for holding mechanical parts of the pistol, including a trigger housing and a bolt carrier group, the frame further includes a grip portion that receives a magazine; a slide, longitudinally slidable with respect to the frame, the slide housing a firing pin or striker of the pistol and an extractor, the slide serves as a bolt for the pistol, the slide having a top surface facing upwards when the pistol is held in an upright firing position, side surfaces adjacent the top surface and facing outwards left and right in a direction perpendicular to the top surface, a breech end, and a muzzle end opposite the breech end, the slide including: at least one partially walled aperture located proximate the breech end of the slide having an opening accessible from the slide top surface or the slide side surface, or both; at least one extendable, retractable slide member, the slide member extendable approximately laterally outwards from the side surface in a direction approximately perpendicular to the top surface when the slide member is in an extended position, the slide member including: a top edge, a holding portion, and an attachment segment, the attachment segment being insertable within the at least one partially walled aperture for rotatably attaching to the slide; and a resilient bias member providing a restoring force to the at least one slide member when the at least one slide member is extended laterally outwards, the restoring force acts
The pistol slide includes a receiving slot within the slide for receiving the slide member, the slot defined by a bottom surface, a breech end side wall, a muzzle end side wall, and a top segment, and formed such that the slide member is received within the slot and approximately flush-mounted with the side surface when the slide member is in the retracted position.
In a third aspect, the present invention is directed to a method of assembling a pistol slide having a slide member rotatably attached thereto, the method comprising: providing an insertion force to a resilient bias member and a plunger within an aperture accessible from a breech end of the pistol slide; pushing the resilient bias member and the plunger towards a muzzle end of the pistol slide such that the plunger is partially exposed in a receiving slot located on a side surface of the slide; inserting the slide member in a partially walled aperture accessible from a top surface of the slide top surface, the side surface, or bath, and aligning a slot within the slide member with a segment extending radially from the plunger during insertion such that the slide member is fully insertable within the receiving slot when the plunger and the side member segment are aligned; and removing the insertion force, such that the resilient bias member provides a restoring force to the plunger.
In a fourth aspect, the present invention is directed to a method of racking a pistol having a pistol slide and a slide member rotatably attached to the pistol slide comprising: grasping a portion of the slide member by sliding a finger laterally outwards along a recessed indent on a top surface of the pistol slide to contact a top portion of the slide member with the finger; extending the slide member laterally outwards away from a side surface of the pistol slide; pulling the slide member towards a breech end of the pistol thereby racking the pistol; and releasing the slide member to allow the slide member to return to a retracted position to ready the pistol for firing.
In a fifth aspect, the present invention is directed to a pistol slide having a top surface, side surfaces adjacent the top surface, a breech end, and a muzzle end opposite the breech end, the pistol slide including at least one extendable and retractable slide member located proximate the breech end of the slide, the slide member rotatable approximately vertically upwards from the top surface to place the slide member in an extended position for grasping.
Preferably, the slide member is approximately flush-mounted with the top surface of the slide when the slide member is in a retracted position.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the preferred embodiment of the present invention, reference will be made herein to
In one embodiment, the present invention introduces an extendable slide member on at least one side of a pistol slide action, and preferably on both sides of a pistol slide action that provides leverage and a gripping base for a user to pull back or “rack” the slide along guides on a pistol frame, in a longitudinal motion relative to the pistol frame.
Pistol 10 represents a common pistol construction with general components including a barrel 18, a forward sight 20, a muzzle 22, a slide 12 with an ejection aperture 24, a rear sight 26, a grip 28, trigger 30, and trigger guard 32, to name a few. In this first embodiment, the present invention introduces at least one slide member 34, and in this illustrative example, two slide members 34, that essentially extend a gripping or grasping portion of slide 12 in the lateral direction to facilitate gripping or holding the slide when a user attempts to rack the slide. In this embodiment, two slide members 34 are used, one on each side of slide 12, for delivering a balanced retraction force during racking. Slide members 34 may be integral with slide 12. Slide members 34 may be in a fixed position, extending laterally outwards from slide 12; however, more preferably, slide members 34 are movably attached to slide 12 so that each is an extendable and retractable member. In this manner, slide member 34 provides an extended grip portion or finger-hold for assisting the user in racking the slide without slipping or instigating “slide bite”, and can be fully retracted so as not to affect the slim-lined nature of the pistol.
Slide 12 with slide members 34 may still include serrations 42 for enhancing the user's hand grip on the slide. These serrations 42 may further be formed on slide members 34 as well in the event the user elects to rack slide 12 by conventional gripping, without extending slide members 34 laterally outwards.
In
When slide member 34 is in the retracted position, lever arm 46 is secured within slot 52 of slide 12. Slot 52 is defined on slide 12 by sidewall 54, located at the breech end of slot 52, and sidewall 56, located at the muzzle end of slot 52. A top segment 58 on slide 34 defines a top portion of slot 52. At one end, top segment 58 extends to, and partially forms, groove 38 with sidewall 54, to assist in securing connection segment 36. At the forward or breech end of slot 52, top portion 58 extends to groove 60 to form a gap with sidewall 56 for securing a handle portion 50 of slide member 34 opposite connection segment 36.
Handle portion 50 of slide member 34 is at an end of slide member 34, opposite connection segment 36, and is an upward extending portion adjacent to, and integral with, lever arm 46. Handle portion 50 is designed to extend at least to the top surface of slide 12 and top segment 58 in order to provide a vertical extension 51 for grasping slide member 34 to extend slide member 34 laterally outwards. Handle portion 50 may further form a snug or snap fit with groove 60, allowing slide member 34 to be held securing in place when in the retracted position.
The bottom surface of slot 52 preferably includes an indentation 64 positioned to receive the center of connection segment 36 when connection segment 36 is placed within groove 38 of slot 52. Indentation 64 is adapted to receive a detent or pin 66 located on the bottom of connection segment 36 of slide member 34 to secure the bottom of connection segment 36 in the bottom of slot 52. Conversely, a detent may be located on the bottom surface of slot 52 and received by an indentation in the bottom of connection segment 36. The combination of the detent/indentation forms a pivot point that secures the bottom of connection segment 36 while allowing for rotation. Curved groove 38 at the upper portion of slot 52 wraps partially around connection segment 36 at the top portion of connection segment 36 and serves to hold rotatable slide member 12.
This attachment mechanism applies a bias force against connection segment 36 to hold slide member 34 in position. Grasping handle portion 50 and extending lever arm 46 laterally outwards will slightly compress bearing 74 against spring 72, allowing connection segment 36 to rotate more easily. Connection segment 36 may include an indentation to receive bearing 74 and secure connection segment 36 in place.
Alternatively, connection segment 36 may include at least one flattened side 68 to assist in forming a “locking” or “secured” indication when slide member 34 is fully retracted within slot 52 (Refer:
Additionally, at the opposite end of slide member 34, handle portion 50 may be configured to firmly fit or snap in place within groove 60, providing another securing mechanism and physical indication of attachment. Both fits are sufficient to hold slide member 34 in its retracted position during normal handling of the firearm and during shooting, but resilient enough to allow for hand release and extension of slide member 34.
In another embodiment slide member 34 may be removably secured to the slide by a magnetic contact 78 located within an aperture 76 of slide 12, or complementary magnetic contacts located respectively on slide member 34 and the slide 12.
In a second embodiment, slide member or winged extensions are mounted from the back or breech end of the pistol.
Slide member 80 includes a holding or grasping portion 81, which preferably is an approximately flat surface (in the current embodiment, a quasi-rectangular shaped portion) that allows a user to hold the slide member and pull back the slide towards the breech end.
Slide members 80 each have attachment segment 84 that is rotatably held within partially walled aperture 86 in the slide 82. Partially walled aperture 86 extends a portion of the way down from the top surface of the slide, along the slide's side surface. The curved shape of partially walled aperture 86 engulfs a portion of the circumference of the attachment segment 84, which in this example is the preferred cylindrical column 84, thus holding slide member 80 within slide 82. The partially walled aperture does not extend to the bottom of the slide member so that a gap is present to receive the holding portion 81. This configuration secures the slide member to the slide while allowing the slide member to rotate with respect to the slide.
A resilient bias member, such as a spring 88, is used to perform a restoring force to the slide member. The resilient bias member 88 acts to retract an extended slide member back towards the slide. Springs 88 and plungers 90 are inserted from the breech end 94 of slide 82 within apertures 92 that are accessible from breech end 94, and extend to partially walled aperture 86. As will be discussed further herein, resilient bias members 88 provide a retraction or restoration force for open slide members 80 to close, and once closed, to maintain a closing force to ensure each slide member remains within its receiving slot 96 of slide 82. This removes the retraction responsibility from the user, while simultaneously protecting against an inadvertent extension of slide member 80 that could otherwise catch on clothing or other objects.
The receiving slot 96 is an indentation within the slide's side surface, defined by a bottom edge 97a, a breech end side wall 97b, and a muzzle end side wall 97c, formed such that the slide member is received within the receiving slot, and mounts approximately flush with the sidewall surface of the slide.
The slide 82 includes a top segment 93 extending from the upper portion of the slide side surface, which with the breech end side wall 97b of the receiving slot forms the partially walled aperture 86. The partially walled aperture is curved to receive arid hold the cylindrical column 84 of slide member 80. Top segment 93 does not extend to the receiving slot bottom edge 97a. This gap allows for the rotation of slide member 80 relative to the slide side surface.
The user is able to grasp and extend the slide members by sliding fingers along sloped indentations 83 which traverse from the top surface of slide 82 to a point on the side surface of slide 82 just below the top surface of slide member 80. In this manner, the top surface of slide member 80 is readily accessible for quick extension.
When in the closed position, the force of spring 88 in the breech direction (toward the breech end of slide 82) holds slide member 80 tightly within receiving slot 96 (not shown), such that any extension of slide member 80 will be against the restoring force, which would tend to close the slide member back within receiving slot 96.
Once the plunger peg is aligned and visible within receiving slot 96 and centered about partially walled aperture 86, attachment segment 84 of slide member 80 is inserted within partially walled aperture 86. The attachment segment (cylindrical column) 84 includes a receiving groove or keyway 87 that aligns with plunger peg 95 during insertion. Keyway 87 extends from the bottom of cylindrical column 84 to a center radial groove 89. Keyway 87 is perpendicular to center radial groove 89. As cylindrical column 84 is inserted into partially walled aperture 86, keyway 87 aligns with peg 95.
The geometry between the slide member and the plunger creates a locking feature such that the slide member cannot come loose, or be pulled out, without first pressing the plunger within aperture 92 deep enough to expose the aligned plunger peg to the hole.
The pistol slide and slide member of the present invention present a unique method for racking the slide. Essentially, a portion of the slide member initially placed in a retracted position is grasped, and the slide member is rotated laterally outwards from a side surface of the slide or vertically upwards from a top surface of the slide, such that said slide member is placed in an extended position. At this point, the slide member is grasped by the shooter, and pulled towards a breech end of the pistol. Upon release, the slide member is restored to its retracted position under spring tension.
In a separate embodiment, a slide member may be top mounted as depicted in
While the present invention has been particularly described, in conjunction with a specific preferred embodiment, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications and variations as falling within the true scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
885436 | Clement | Apr 1908 | A |
1187888 | Diehm | Jun 1916 | A |
1226478 | Diehm | May 1917 | A |
1290855 | Wesson | Jan 1919 | A |
1680186 | Frommer | Apr 1924 | A |
2744448 | Allen | May 1956 | A |
5050481 | Knight, Jr. et al. | Sep 1991 | A |
5275084 | Ruger | Jan 1994 | A |
6561073 | Høgmoe | May 2003 | B1 |
7451683 | Kellermann et al. | Nov 2008 | B2 |
8015741 | Hooks | Sep 2011 | B2 |
8191301 | Hatfield | Jun 2012 | B2 |
8312803 | Oz | Nov 2012 | B2 |
8438774 | Sharp | May 2013 | B2 |
8448373 | Matthews | May 2013 | B2 |
8468734 | Meller | Jun 2013 | B2 |
8549785 | Sharp | Oct 2013 | B2 |
8650794 | Swan | Feb 2014 | B2 |
8887432 | Oz | Nov 2014 | B2 |
9121662 | Love | Sep 2015 | B1 |
9157691 | Parnell | Oct 2015 | B2 |
9194636 | McAninch | Nov 2015 | B2 |
9194654 | Viani | Nov 2015 | B1 |
9239207 | Kresser | Jan 2016 | B2 |
9267759 | Speroni | Feb 2016 | B2 |
9291413 | Viani | Mar 2016 | B1 |
9297613 | Maentymaa | Mar 2016 | B2 |
9328991 | Gale | May 2016 | B2 |
20040200109 | Vasquez | Oct 2004 | A1 |
20110010978 | Hooks | Jan 2011 | A1 |
20110088539 | Oz | Apr 2011 | A1 |
20110107644 | Faifer | May 2011 | A1 |
20110154710 | Hatfield | Jun 2011 | A1 |
20110283587 | Sharp | Nov 2011 | A1 |
20120198744 | Meller et al. | Aug 2012 | A1 |
20130061737 | Brown | Mar 2013 | A1 |
20130081318 | Morando | Apr 2013 | A1 |
20130111799 | Lee | May 2013 | A1 |
20130255478 | McAninch | Oct 2013 | A1 |
20130327798 | Lee | Dec 2013 | A1 |
20140047753 | Grossman | Feb 2014 | A1 |
20140150325 | Keng | Jun 2014 | A1 |
20140298703 | Gale | Oct 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20160102938 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14073099 | Nov 2013 | US |
Child | 14971408 | US |