The present disclosure relates to a method and apparatus for stamping concrete with a mold to develop a pattern in the surface of the concrete. More specifically, the present disclosure relates to a vibratory device and a method of using the device that imparts a force to a mold positioned on the surface of the concrete to imprint the surface of the concrete.
Stamping concrete stretches the surface to make an imprint in the surface of the concrete or other imprintable materials, for example, polymer concrete. Stamping includes the use of a mold, sometimes the mold is a form or system of forms, which is acted on by manually tamping the mold into the surface of the concrete to make the imprint. Generally, force is applied to the mold by manually tamping on the mold. Timing of the application of the tamping force is critical, as it must occur during the curing process of the concrete at a time when there is sufficient moisture in the concrete to fill the voids created by the molds. However, if the concrete is too dry, the imprint will result in cracking of the surface of the concrete which is undesirable and not acceptable.
Mechanical devices such as a vibrating plate and roller tampers are used for tamping and compacting soil and gravels. Such devices are too heavy or large for all concrete imprinting. For example, such devices are too heavy to be used on concrete stamping forms of the type that are used to imprint uncured concrete. Such devices are too large to be used in the areas where stamped concrete is normally desired, such as patios, sidewalks and the like. In addition, the magnitude of the vibration of traditional vibrating plate or rolling tampers cannot be controlled to the extent necessary to prevent damage to the concrete surface during the stamping process.
The present application discloses one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter:
According to a first aspect of the present disclosure, an imprint roller comprises a frame, a roller assembly, and a motor assembly. The roller assembly is coupled to the frame. The roller assembly includes a vibrator head and a roller tube having a roller surface. The motor assembly is coupled to the frame and operable to transfer mechanical energy through the frame to the vibrator head. The roller surface includes a mold having a pattern for imprinting a concrete surface. In some embodiments, the mold is coated in an elastomeric material.
According to a second aspect of the present disclosure, an imprint roller comprises an elongated frame, a roller assembly, and a motor assembly. The elongated frame has a first end and a second end opposite the first end. The roller assembly is coupled to the first end of the frame. The roller assembly includes a vibrator head and a roller tube having a roller surface. The motor assembly is coupled to the second end of the frame and is operable to transfer mechanical energy through the frame to the vibrator head. A weight of the motor assembly is supported by a user of the imprint roller.
According to a third aspect of the present disclosure, an imprint roller comprises a frame, a roller assembly, a motor assembly, and a frame extension. The frame has a first end and a second end opposite the first end. The roller assembly is configured to be removeably coupled to the first end of the frame. The roller assembly includes a vibrator head and a roller tube having a roller surface. The motor assembly is configured to be removeably coupled to the second end of the frame and operable to transfer mechanical energy through the frame to the vibrator head. The frame extension has a first end and a second end opposite the first end. The first end of the frame extension is configured to be removeably coupled to one of the roller assembly and the second end of the frame. The second end of the frame is configured to be removeably coupled to one of the motor assembly and the first end of the frame.
In some embodiments, the first end of the frame extension is coupled to the roller assembly and the second end of the frame extension is coupled to the first end of the frame.
In some embodiments, the first end of the frame extension is coupled to the second end of the frame and the second end of the frame extension is coupled to the motor assembly.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
a is an enlarged view of a portion of the imprint roller of
b is an enlarged view of a portion of the imprint roller of
c is an enlarged view of a portion of the imprint roller of
a is an enlarged view of a portion of the imprint roller shown in the circle marked 8a of
An imprint roller 10 is controlled by an operator 12 to apply an imprint of a pattern to a surface of concrete that is curing. Referring now to
Operator 12 controls the speed of motor 28 which controls the speed of a vibrator 24 included in vibrator head 20 which thereby controls the magnitude of vibration of vibrator head 20. Motor 28 is illustratively embodied as an internal combustion engine, but may be an electric motor in other embodiments. In some embodiments, the electric motor may be powered by an AC power source through a power cord (not shown). In other embodiments, the electric motor may be powered by a battery supported on frame 16 or integral to motor 28.
Imprint roller 10 is modularly constructed with roller assembly 18 releasably secured to a first end 26 of frame 16. Motor assembly 14 is releasably secured to a second end 32 of frame 16.
Frame 16 includes a cable drive 36 and a handle pipe 38. Cable drive 36 is configured to transfer mechanical energy from motor assembly 14 to vibrator head 20. Cable drive 36 includes a drive-cable pipe 40, a drive cable 42 positioned inside drive-cable pipe 40, and vibrator head 20. A first end 58 of drive-cable pipe 40 is configured to couple to a cable-pipe interface 48 included in motor assembly 14. A second end 60 of drive-cable pipe 40 is configured to couple to a pipe interface 62 included in vibrator head 20. A first end 52 of drive cable 42 is coupled to an output drive 50 included in motor assembly 14. A second end 54 of drive cable 42 is coupled to an input drive 56 included in vibrator head 20. Drive cable 42 is free to rotate inside drive-cable pipe 40. As such, drive cable 42 is configured to transfer mechanical energy received from output drive 50 included in motor assembly 14 to input drive 56 included in vibrator head 20 to energize vibrator 24 to cause vibrator 24 to vibrate.
Handle pipe 38 provides structural support for imprint roller 10. Handle pipe 38 has a stiffness such that handle pipe remains about straight when supporting motor assembly 14 and roller assembly 18. Drive cable 42 is free to rotate within drive-cable pipe 40 with minimum wear because handle pipe 38 assists drive-cable pipe 40 to remain straight. Handle pipe 38 is configured to be gripped by user 12 as a handle while user 12 uses imprint roller 10.
Handle pipe 38 includes a first end 68 configured to be removeably coupled to a handle interface 74 included in frame interface 72 included in motor assembly 14 and a second end 70 configured to be removeably coupled to a frame terminal 86 included in roller assembly 18. A number of clamps 100 couple handle pipe 38 to drive-cable pipe 40.
Referring now to
Frame interface 72 includes cable-pipe interface 48 and handle interface 74 coupled to cable-pipe interface 48 as shown in
Motor assembly 14 is coupled to frame 16 opposite roller assembly 18. Handle pipe 38 is configured to be gripped by user 12 when user 12 is using imprint roller 10. As such, a portion of a weight of the motor assembly 14 is supported by user 12 when user 12 is using the imprint roller 10. As motor assembly 14 is coupled to frame 16 opposite roller assembly 18, motor assembly 14 is positioned above roller assembly 18 and imparts a moment to user 12 when user 12 is using imprint roller 10.
Refereeing now to
Roller frame 84 provides structural support for supporting roller assembly 18 on frame 16 and for allowing roller tube 88 to be free to rotate. Frame terminal 86 is configured to be removeably coupled to frame 16 so that roller assembly 18 is removeably coupled to frame 16. Frame terminal 86 includes a vibrator head clamp 92 and a handle-pipe joint 94. Handle-pipe joint 94 is removeably coupled to second end 70 of handle pipe 38. Vibrator head clamp 92 is configured to clamp vibrator head 20 to roller assembly 18 such that when vibrator head 20 vibrates, the vibration is transferred to roller assembly 18.
Roller tube 88 is configured to be removeably coupled to roller frame 84 such that it is free rotate about an axis of rotation. Roller tube 88 includes a drum 102 and a roller surface 22 coupled to the circumference of drum 102.
Roller surface 22 includes a mold 106 having a pattern. The pattern may be one of any number of patterns. As shown in
In some embodiments, imprint roller 10 includes at least one frame extension 90 as shown in
As shown in
Cable drive 36E includes at least a drive-cable pipe 40E. In some embodiments, cable drive 36E includes a drive cable 42E that is longer than drive cable 42 and configured to replace drive cable 42 when frame extension 90 is included in imprint roller 10. Drive-cable pipe 40E includes a first end 114 configured to be removeably coupled to motor assembly 14 and a second end 116 configured to be removeably coupled to first end 58 of drive-cable pipe 40. In some embodiments first end 114 is configured to be removably coupled to second end 60 of drive-cable pipe 40. In some embodiments, second end 116 is configured to be removeably coupled to roller assembly 18. In the illustrative embodiment, handle pipe 38E and cable drive 36E are coupled together by clamps 100.
In use, the pattern of mold 106 of roller tube 88 is formed on a concrete slab quickly and consistently with use of imprint roller 10. The uncured concrete slab is poured and finished to form a surface at a final grade. Operator 12 selects a vibratory speed of vibrator 24 which is effective to cause the pattern of mold 106 to imprint the surface of the concrete with the pattern. Operator 12 progressively moves imprint roller 10 to roll roller tube 88 over the surface of the concrete. Moving imprint roller 10 back and forth over the surface of the concrete with a consistent oscillatory motion, operator 12 progressively stamps the desired pattern of mold 106 into the surface of the concrete. Imprint roller 10 is moved progressively across the surface of the concrete as the slab cures.
The speed of vibrator 24 is varied depending on changing conditions of the slab to provide a consistent pattern across the slab. Completed portions of the pattern may be colored or further finished by operator 12 or assistants to the operator 12.
Although certain illustrative embodiments have been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.
This application is a continuation of U.S. application Ser. No. 14/204,115, filed Mar. 11, 2014, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/779,055, filed Mar. 13, 2013, each of which are expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61779055 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14204115 | Mar 2014 | US |
Child | 14944755 | US |