The present invention relates generally to leads for stimulating or monitoring tissue. More particularly, it pertains to an extendable/retractable lead having a downsized lead body.
Leads implanted in or about the heart have been used to reverse certain life threatening arrhythmias, or to stimulate contraction of the heart. Electrical energy is applied to the heart via the leads to return the heart to normal rhythm. Leads have also been used to sense in the atrium or ventricle of the heart and to deliver pacing pulses to the atrium or ventricle.
Cardiac pacing may be performed by the transvenous method or by leads implanted directly onto the epicardium. Permanent transvenous pacing is performed using a lead positioned within one or more chambers of the heart. One or more leads may be positioned in the ventricle or in the atrium through a subclavian vein, and the lead terminal pins are attached to a pacemaker, which is implanted subcutaneously.
The leads include an outer insulative lead body for electrically insulating the conductor, and allowing only the electrodes to make electrical contact with the body tissue. The insulation of the conductor must be reliable, to prevent inadvertent shorting of the conductor. The outer insulation affects the several aspects of the lead structure, for example, lead flexibility and abrasion resistance, and the outer dimensions of the lead body. It is preferable that the lead is flexible since, the more flexible a lead is, the less trauma is induced to the patient as a result of lead pressure. Furthermore, flexibility is an important consideration in light of the repeated movements of the heart, and also the tortuous path through which the lead is inserted. In addition, the outer body must be resistant to abrasive wear, for example, in the event that the lead rubs against another lead, implanted device, or anatomical structure while the lead is in use after it is implanted within a patient.
Some leads incorporate silicone as an insulator for the conductor. However, while silicone is a flexible and biostable material, silicone has poor tensile and wear characteristics. Furthermore, silicone has a high coefficient of friction, which is a drawback, for example when two leads are placed within the patient, or when silicone is used in proximity with moving parts.
Another consideration is the lead body diameter. Physicians prefer smaller leads because a smaller introducer can be used, and a smaller incision for the introducer is used. Furthermore, smaller leads are necessary when the relevant therapies require two or more leads to be implanted.
Accordingly, there is a need for a lead, which has improved flexibility. What is also needed is a lead having a smaller outer diameter that does not sacrifice insulation.
A lead assembly is provided herein which includes a flexible lead body extending from a proximal end to a distal end, and the lead body includes two or more conductors disposed therein. A first conductor and a second conductor form two of the conductors, where the first conductor is co-axial and non co-radial with the second conductor. An electrode assembly is further included with the lead assembly. The electrode assembly includes at least one extendable and/or retractable electrode electrically coupled with one of the conductors. The second conductor is disposed within the first conductor, and the second conductor has a coating of insulation on the second conductor.
Several options for the lead assembly are as follows. For instance, in one option, the second conductor comprises one or more filars in a coiled configuration, and the one or more filars are coated with insulative material. In another option, the lead assembly further includes an insulative sleeve disposed between the first conductor and the second conductor, where the sleeve optionally comprises tubing. The lead assembly, in another option, further includes a means for facilitating rotation of the first conductor relative to the second conductor. In yet another option, the first conductor comprises one or more filars in a coiled configuration, and the one or more filars are coated with insulative material.
A lead assembly is provided herein which includes a flexible lead body extending from a proximal end to a distal end, and the lead body includes two or more conductors disposed therein. A first conductor and a second conductor form two of the conductors, and an electrode assembly is further included with at least one of the conductors of the lead assembly. The electrode assembly includes at least one extendable and/or retractable electrode electrically coupled with one of the conductors. The second conductor is disposed within the first conductor. The second conductor or the first conductor has a coating of insulation on its outer surface. A tubular insulative sleeve is disposed between the first conductor and the second conductor.
Several options for the lead assembly are as follows. For instance, in one option, the first conductor is co-axial and non co-radial with the second conductor. In another option, the first conductor and the second conductor include a coating of insulative material thereon. In yet another option, the second conductor is rotatable relative to the first conductor. In another option, the first conductor has a coiled configuration having an outer coil diameter, and the first conductor has an outer filar diameter, and a coating of EFTE or PFTE is disposed on the outer filar diameter. Optionally, in the lead assembly, the second conductor has a coiled configuration having an outer coil diameter, and the second conductor has an outer filar diameter, and a coating of EFTE or PFTE is disposed on the outer filar diameter.
In another embodiment, a method is provided herein. The method includes providing a second conductor having a coiled configuration having a second outer coil diameter, and the second conductor has a second outer filar diameter. The method further includes providing insulation on the second outer filar diameter, and disposing the second coiled conductor within a first coiled conductor to form a conductor assembly, where the first coiled conductor is non co-radial with the second coiled conductor. In addition, the method includes disposing the conductor assembly within a flexible lead body, coupling an electrode assembly with the first and/or the second conductor, and extending and/or retracting an at least one electrode from and/or within the flexible lead body.
Several options for the method are as follows. For instance, in one option, the method further includes disposing insulative tubing between the first conductor and the second conductor, and optionally further includes disposing insulation on a first outer filar diameter of the first conductor. In yet another option, the method further includes disposing polyimide or polyurethane tubing between the first conductor and the second conductor. In another option, the method further includes heat shrinking PTFE or ETFE on the second outer coil diameter.
In another embodiment, a method includes providing a second conductor having a coiled configuration having a second outer coil diameter, and the second conductor has a second outer filar diameter. The method further includes providing insulation on the second outer filar diameter, and disposing the second coiled conductor within a first coiled conductor to form a conductor assembly. In addition, the method includes disposing the conductor assembly within a flexible lead body, coupling an electrode assembly with the first and/or the second conductor, and disposing tubing between the first conductor and the second conductor.
Several options for the method are as follows. For instance, in one option, the method further includes extending and/or retracting the at least one electrode from and/or within the flexible lead body. In another option, the method further includes providing insulation on the second outer filar diameter. Optionally, the method includes heat shrinking PTFE or ETFE on the second outer coil diameter and over the insulation, and/or disposing insulation on a first outer filar diameter of the first conductor. In yet another option, the method includes disposing insulation on the first outer filar diameter of the first conductor.
The lead provides for a smaller lead body diameter due to the new manner in which insulation or layers of insulation are distributed within the lead body. For instance, smaller lead bodies, such as 6 French, are achievable. In addition, the above-described device allows for a secondary or redundant layer of insulation, for added reliability. The tubular sleeve, and also the ETFE/PTFE material or non-silicone material, facilitates rotation of the first conductor relative to the second conductor, for instance, for extending and/or retracting an electrode from and to the lead body.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims and their equivalents.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
The lead 100 includes a lead body 115, for instance a flexible lead body 115, at least one elongate conductor 160 (
The at least one electrode 120 is electrically coupled with the at least one elongate conductor 160 (
The stylet is used to stiffen the lead 100, and is manipulated to facilitate the insertion of the lead 100 into and through a vein and through an intracardiac valve to advance the distal end 102 of the lead 100 into, for example, the ventricle of the heart 101. Optionally, a stylet knob is coupled with the stylet for rotating the stylet, advancing the conductor into tissue of the heart, and for manipulating the lead 100. Alternatively, the at least one elongate conductor 160 comprises other forms of conductors, such as a cable conductor, or a braided conductor as further discussed below.
The first outer conductor 152, in one option, is co-axial but not co-radial with the second conductor 154, for example, the first outer conductor 152 and/or the second conductor 154 have a coiled configuration. For example, the second conductor 154 is disposed within the first outer conductor 152. In another option, the second conductor 154 includes one or more filars, which collectively have a second outer filar diameter 156. The second outer filar diameter 156 optionally includes a layer of insulation 158. Suitable materials for the layer of insulation 158 include, but are not limited to, PTFE, ETFE, or polyimide.
In one option, an inner sleeve of insulation 172 is disposed between the first outer conductor 152 and the second conductor 154. The inner sleeve of insulation 172 is in addition to the lead body 115. The inner sleeve of insulation 172, in one option, is disposed adjacent to the first outer conductor 152 and to the second conductor 154. In another option, the inner sleeve of insulation 172 comprises a tube of material. Suitable materials for the inner layer of insulation 172 include, but are not limited to, polyurethane or polysiloxane urethane, or a non-silicone material. In yet another option, the one or more conductors are co-radial, and the outer conductor includes a coating of insulation, such as ETFE, PTFE, or polyimide. The inner insulation 172 may or may not rotate with the second conductor 154 when it is used to rotate or extend or retract the electrode.
Referring to
In one option, an inner sleeve of insulation 172 is disposed between the first outer conductor 152 and the second conductor 154. The inner sleeve of insulation 172 is in addition to the lead body 115. The inner sleeve of insulation 172, in one option, is disposed adjacent to the first outer conductor 152 and to the second conductor 154. In another option, the inner sleeve of insulation 172 comprises a tube of material. Suitable materials for the inner layer of insulation 172 include, but are not limited to, polyurethane, polyimide, polysiloxane urethane, or a non-silicone material.
An inner sleeve of insulation 172 is disposed between the first outer conductor 152 and the second conductor 154. The inner sleeve of insulation 172 is in addition to the lead body 115. The inner sleeve of insulation 172, in one option, is disposed adjacent to the first outer conductor 152 and to the second conductor 154. In another option, the inner sleeve of insulation 172 comprises a tube of material. Suitable materials for the inner layer of insulation 172 include, but are not limited to, polyurethane or polysiloxane urethane. The inner layer of insulation 172 may or may not rotate with the second inner conductor 154 when it is used to rotate, extend, or retract the electrode.
Referring to
In another embodiment, a method includes providing a second conductor having a coiled configuration having a second outer coil diameter, and the second conductor has a second outer filar diameter. The method further includes providing insulation on the second outer filar diameter, and disposing the second coiled conductor within a first coiled conductor to form a conductor assembly, where the first coiled conductor is non co-radial with the second coiled conductor. In addition, the method includes disposing the conductor assembly within a flexible lead body, coupling an electrode assembly with the first and/or the second conductor, and extending and/or retracting an at least one electrode from and/or within the flexible lead body.
Several options for the method are as follows. For instance, in one option, the method further includes disposing insulative tubing between the first conductor and the second conductor, and optionally further includes disposing insulation on an first outer filar diameter of the first conductor. In yet another option, the method further includes disposing polyimide or polyurethane tubing between the first conductor and the second conductor. In another option, the method further includes heat shrinking PTFE or ETFE on the second outer coil diameter.
In another embodiment, a method includes providing a second conductor having a coiled configuration having a second outer coil diameter, and the second conductor has a second outer filar diameter. The method further includes providing insulation on the second outer filar diameter, and disposing the second coiled conductor within a first coiled conductor to form a conductor assembly. In addition, the method includes disposing the conductor assembly within a flexible lead body, coupling an electrode assembly with the first and/or the second conductor, and disposing tubing between the first conductor and the second conductor.
Several options for the method are as follows. For instance, in one option, the method further includes extending and/or retracting the at least one electrode from and/or within the flexible lead body. In another option, the method further includes providing insulation on the second outer filar diameter. Optionally, the method includes heat shrinking PTFE or ETFE on the second outer coil diameter and over the insulation, and/or disposing insulation on an first outer filar diameter of the first conductor. In yet another option, the method includes disposing insulation on the first outer filar diameter of the first conductor.
Advantageously, the above-described lead provides for a smaller lead body diameter due to the new manner in which insulation or layers of insulation are distributed within the lead body. For instance, smaller lead bodies, such as 6 French, are achievable. In addition, the above-described device allows for a secondary or redundant layer of insulation, for added overall reliability. Furthermore, the tubular sleeve provides a cost efficient lead design, which further improves ease of manufacturability. The tubular sleeve, and also the ETFE/PTFE material or non-silicone material, facilitates rotation of the first conductor relative to the second conductor, for instance, for extending and/or retracting an electrode from and to the lead body.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For instance, the leads described above include, but are not limited to, tachy, brady, or coronary sinus leads. It should be noted that features of the various above-described embodiments may be interchanged to form additional combinations. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. patent application Ser. No. 09/870,376, filed on May 30, 2001, now issued as U.S. Pat. No. 7,257,449 the specification of which is incorporated herein by reference. This application is related to U.S. patent application Ser. No. 09/870,369, filed on May 30, 2001, now issued as U.S. Pat. No. 6,701,191, and to U.S. patent application Ser. No. 10/717,978, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4295270 | Cammarata | Oct 1981 | A |
4452254 | Goldberg et al. | Jun 1984 | A |
4547193 | Rydell | Oct 1985 | A |
4559951 | Dahl et al. | Dec 1985 | A |
4640983 | Comte | Feb 1987 | A |
4699157 | Shonk | Oct 1987 | A |
4840186 | Lekholm et al. | Jun 1989 | A |
4960134 | Webster, Jr. | Oct 1990 | A |
5005587 | Scott | Apr 1991 | A |
5014721 | Hirschberg | May 1991 | A |
5040544 | Lessar et al. | Aug 1991 | A |
5057092 | Webster | Oct 1991 | A |
5181920 | Mueller et al. | Jan 1993 | A |
5275171 | Barcel | Jan 1994 | A |
5336254 | Brennen et al. | Aug 1994 | A |
5397304 | Truckai | Mar 1995 | A |
5425755 | Doan | Jun 1995 | A |
5476498 | Ayers | Dec 1995 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5545201 | Helland et al. | Aug 1996 | A |
5554178 | Dahl et al. | Sep 1996 | A |
5569220 | Webster | Oct 1996 | A |
5591142 | Van Erp | Jan 1997 | A |
5609621 | Bonner | Mar 1997 | A |
5628774 | Helland et al. | May 1997 | A |
5662621 | Lafontaine | Sep 1997 | A |
5674272 | Bush et al. | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5755762 | Bush | May 1998 | A |
5779699 | Lipson | Jul 1998 | A |
5796044 | Cobian et al. | Aug 1998 | A |
5814090 | Latterell et al. | Sep 1998 | A |
5843076 | Webster, Jr. et al. | Dec 1998 | A |
5843149 | Ebert et al. | Dec 1998 | A |
5845396 | Altman et al. | Dec 1998 | A |
5851226 | Skubitz et al. | Dec 1998 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5891135 | Jackson et al. | Apr 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5925038 | Panescu et al. | Jul 1999 | A |
5931862 | Carson | Aug 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
6002969 | Machek et al. | Dec 1999 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6052625 | Marshall | Apr 2000 | A |
6055457 | Bonner | Apr 2000 | A |
6083216 | Fischer, Sr. | Jul 2000 | A |
6104961 | Conger et al. | Aug 2000 | A |
6122552 | Tockman et al. | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6181965 | Loeb et al. | Jan 2001 | B1 |
6213995 | Steen et al. | Apr 2001 | B1 |
6217528 | Koblish et al. | Apr 2001 | B1 |
6249708 | Nelson et al. | Jun 2001 | B1 |
6249709 | Conger et al. | Jun 2001 | B1 |
6256542 | Marshall et al. | Jul 2001 | B1 |
6259954 | Conger et al. | Jul 2001 | B1 |
6295476 | Schaenzer | Sep 2001 | B1 |
6326587 | Cardineau et al. | Dec 2001 | B1 |
6445958 | Machek et al. | Sep 2002 | B1 |
6477428 | Skinner et al. | Nov 2002 | B1 |
6606522 | Schell | Aug 2003 | B2 |
6701191 | Schell | Mar 2004 | B2 |
7257449 | Bodner | Aug 2007 | B2 |
20010044646 | Marshall et al. | Nov 2001 | A1 |
20020183822 | Bodner | Dec 2002 | A1 |
20040230277 | Schell | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
0709111 | May 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20080011504 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09870376 | May 2001 | US |
Child | 11780398 | US |