This invention relates to a sprinkler system and to individual sprinklers within a system for extended coverage ordinary hazard applications.
In the fire protection industry, fire sprinklers are designed for various residential and storage applications in accordance with accepted industry standards. These standards include, for example, the Standard for the Installation of Sprinkler Systems, NFPA 13, issued by the National Fire Protection Association, and Standard 199, issued by Underwriters Laboratories, Inc. Existing versions of both standards and all prior, superseded versions of both standards are incorporated by reference herein.
NFPA-13 defines various requirements for sprinkler systems used in occupied commercial or residential interior spaces or “occupancies” with different fire hazard potentials. In particular, the standard recognizes three general hazard categories for sprinkler systems: light, ordinary and extra. Light hazard occupancies are those where the quantity and/or combustibility of contents is low and fires with relatively low rates of heat release are expected. Ordinary hazard occupancies are those where the quantity and/or combustibility of contents is equal to or greater than that of light hazard, ranging from low to high, where the quantities of combustibles are moderate and stock piles do not exceed twelve feet, such that fires with moderate to high rates of heat release are expected. Extra hazard occupancies are those where the quantity and combustibility of contents is very high and flammable or combustible liquids, dust, lint or other materials are present, such that the probability of rapidly developing fires with high rates of heat release is very high.
The present invention is directed to the protection of ordinary hazard occupancies, in both commercial and residential environments, although it may also be advantageously applied to light hazard occupancies.
Standard coverage ordinary hazard sprinklers generally protect a maximum coverage area of 130 square feet. According to the guidelines in NFPA 13, extended coverage ordinary hazard sprinklers must protect from 225 to 400 square feet. The present invention is directed to this greater degree of protection, although it may also find use in standard coverage applications.
Each different sprinkler type demands a different type of water spray pattern to achieve either fire control or suppression. The different spray patterns are achieved by varying such factors as the shape of the sprinkler frame, the k-factor and the geometry of the deflector positioned below the frame for creating a spray pattern. The deflector geometry is particularly significant, since the deflector is a main component of the sprinkler assembly and to a great extent defines the size, shape, uniformity and water droplet size of the pattern.
Some conventional sprinkler designs have been characterized by incomplete patterns, lacking water of sufficient density and drop size directly under the sprinkler. This poses a severe problem if the fire should start in this location. To remedy this, other prior art sprinkler designs have peripheral slots in the deflector to permit water to descend down through the slots. However, the shape of the slots in turn caused a reduction in the size of the water drops, a condition commonly referred to as misting or mist. This condition does not provide a pattern of uniform density with water of sufficient velocity beneath the sprinkler to achieve efficient fire control. As a result, some prior art sprinkler systems formed of individual sprinklers in a rectangular layout have used spray patterns that discharge water generally horizontally and/or generally radially outward from the sprinklers in order to provide an overlap of the individual patterns to complete the overall pattern. This setup has been inefficient.
A further difficulty created by the prior art use of adjacent sprinklers with such overlapping patterns arises from the structure used to trigger the start of water delivery. Many sprinklers use a heat-sensitive trigger that starts the flow of water when the ambient temperature reaches a set level. In this way, if a fire is localized, only the sprinklers in the immediate area activate while the more distant sprinklers remain off. This reduces the demand for water and minimizes damage to the contents of the space.
On the other hand, it is then essential that the sprinklers in the immediate area timely activate. It has been found that when the adjacent sprinklers have overlapping horizontal spray patterns, the spray from one sprinkler may impinge on the trigger of an adjacent sprinkler, cooling down that trigger so that the adjacent sprinkler is slow to activate or even fails to activate at all. This represents a serious threat to fire control known as non-operation or “skipping,” resulting in an uncontrolled fire.
It is therefore an object of the present invention to provide an individual sprinkler that may be combined with like sprinklers in a sprinkler system that avoids the above-described difficulties of the prior art.
It is a further object of the present invention to provide a sprinkler that offers improved fire protection for Extended Coverage Ordinary Hazard (ECOH) applications in a control mode scenario.
It is another object of the present invention to provide a sprinkler that produces a spray pattern that avoids the problem of skipping when a plurality of such sprinklers are combined in a sprinkler system.
The above and other objects are achieved by the present invention which, in one embodiment, is directed to a sprinkler including a frame having an exit orifice, through which a column of fire fighting liquid may be discharged downwardly, and a deflector positioned below the frame to at least partially intercept the column of liquid and to convert the column of liquid into a spray of droplets distributed in a predetermined pattern. The deflector has a generally planar central section having a generally circular periphery, and further includes first and second cutouts inboard of the periphery and positioned at radially opposed positions along a diameter of the central section. Each cutout has an edge and an inboard tab extending downwardly at a predetermined angle from that edge to partially fill the cutout, leaving an opening through which the liquid may pass.
In accordance with a further aspect of the present invention, the central section advantageously includes a plurality of tines each extending radially outwardly from a respective base at the periphery to a respective outer edge along opposed non-parallel, non-radial sides, the tines being spaced circumferentially about the periphery to define a respective tapered notch separating each adjacent pair of tines to disperse the spray of droplets at least partially in non-radial directions.
Advantageously, each tine is substantially identically shaped to taper inwardly from its outer edge to its base to define the respective tapered notch separating each adjacent pair of tines.
In accordance with yet another advantageous aspect of the present invention, the deflector includes first and second peripheral tabs that extend from the periphery and are radially opposed to each other along the diameter of the central section. The peripheral tabs incline downwardly from the central section at a second predetermined angle to depress the spray of droplets leaving the deflector in the direction of the diameter down from horizontal so as to avoid skipping.
In a preferred embodiment, the angle at which the peripheral tabs are bent is 33.45 degrees below the plane of the deflector.
In accordance with still another aspect, the present invention is directed to a sprinkler system including a plurality of the inventive sprinklers.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments taken in conjunction with the following drawings, wherein like reference numerals denote like elements.
With reference to
As shown in
The frame 12 includes a tubular body 20 defining an internal passageway 22 having the inlet orifice 16 at an upper inlet end 24. The lower discharge end 26 of the passageway 22 in the frame 12 forms the outlet orifice 18. Threads 28 are provided on the outside of the inlet end 24 to permit the sprinkler 10 to be coupled to a drop or supply pipe (not illustrated) for delivery thereto of water or another fire fighting liquid. The internal passageway 22 has a preferably straight central axis C.
As shown in
While two symmetrically positioned support arms are preferred, additional support arms may be provided, preferably symmetrically positioned around and spaced away from the central axis.
The frame 12 is preferably enlarged at the discharge end 26 of the body 20 in a circumferential boss 38, preferably hexagonally shaped to allow easy tightening from many angles, reducing the assembly effort.
Sprinkler 10 further includes an operating mechanism for closing the internal passageway 22 at the outlet orifice 18 to prevent the flow of water until a fire occurs. As shown in
The bulb 46 is filled with a heat responsive liquid. During a fire, the ambient temperature rises, causing the liquid in the bulb 46 to expand. When the ambient temperature reaches the rated temperature of the sprinkler 10, the bulb 46 shatters. As a result, the passageway 22 is cleared of all sealing parts and water is discharged towards the deflector 14. The deflector 14 is designed to distribute the water in a pattern that is most effective in controlling the fire.
Other novel features of the frame 12 that provide improved water distribution are discussed below.
As shown in
The tines 56 are spaced circumferentially about the periphery 52 and each tine 56 is advantageously substantially identically shaped from its outer edge 60 to its base 58 to define a respective tapered notch 62 separating each adjacent pair of tines 56. In one preferred embodiment, sixteen such tines 56 may be provided equally spaced about the periphery 52. However, in the preferred embodiment illustrated in
As shown in
In accordance with an advantageous feature of the present invention shown in
The face angle θ of the tapered notches 62 improves the uniformity of the distribution pattern of drops below the deflector 14 and maintains adequate drop size. In order to achieve a comparable effect with parallel-faced slots in the periphery of a deflector as in the prior art, the overall deflector diameter may have to be increased and the slots cut deeper toward the center, which in turn creates other problems, such as misting, described above. Moreover, as opposed to radially-faced slots, water streams exiting from the notches 62 crisscross, rather than flowing generally radially outward, to create more of a blanketing water column below the deflector 14.
As shown in
As shown more specifically in
As shown in
The inboard tab 64f is truncated at its outer edge 64g, so that the inboard tab 64f only partially fills the first cutout 64, leaving an opening 64h in the deflector 14 in the shape of a section of an annulus. As shown in
The second cutout 66 has the identical structure as the first cutout 64. Thus, the second cutout 66 has an inner, uncut edge 66e (shown in dotted lines), with an inboard tab 66f formed from the body of the deflector 14 between the radial cuts 66a, 66b extending downwardly at the angle α from the inner edge 66e. The inboard tab 66f is truncated at its outer edge 66g, so that the inboard tab 66f only partially fills the second cutout 66h, leaving an opening 66h in the deflector 14 with the same shape as opening 64h.
In the prior art, the only tabs on the deflector were the peripheral tabs defined by the material between the peripheral slots. In contrast, the inboard tabs 64f, 66f are formed inboard of the conventional location and provide water beneath the sprinkler 10 with adequate drop size and momentum to ensure fire control.
For an extended coverage sprinkler system, the maximum spacing between sprinklers is a 20×20 foot spacing. Particularly when the sprinklers in the system are spaced at or near the 20×20 foot allowable spacing, there is minimal overlap from the adjacent sprinklers, and therefore conventional designs have less water directly below each sprinkler. In the present invention, on the other hand, the inboard tabs 64f, 66f allow water to flow through the center of the deflector 14, thus applying water to the floor area directly under the sprinkler 10.
Moreover, the tapered notches 62 working together with the cutouts 64, 66 with tabs 64f, 66f will supply an even water distribution that avoids the breakdown in drop size.
As noted above, a further aspect of the present invention as shown in
It has been found that when the peripheral tabs 70a, 70b are aligned with diameter 68, it is unnecessary to have corresponding peripheral tabs at 90 degrees thereto, due to the presence of the frame arms 32, 34. However, additional peripheral tabs for depressing the spray distribution down from horizontal may be added wherever appropriate.
In a still further development, two radially opposed ones of the tines 56, labeled 56a, 56b, lying along a different diameter 72 are bent at the periphery 52 of the central section 50 by a small angle above the flat plane of the deflector 14, i.e. in the opposite direction to the inboard tabs 64, 66. This angle creates a 0.02 inch offset 74 from the horizontal, which is shown in
The inboard tabs 64f, 66f, the tapered notches 62 and the peripheral tabs 70a, 70b result in a unique deflector design that optimizes the water dispersion area of coverage without compromising the droplet size or impinging on adjacent sprinklers. This results in a more efficient sprinkler design capable of improved protection for ECOH applications, thus reducing the number of sprinklers required to operate and adequately control a fire.
While the above discussion has concentrated on the structure of the deflector 14, the frame 12 is also advantageously structured with regard to its frame shadow. Frame shadow occurs when the frame arms of a sprinkler cause continuous divergence of the water flow column as it passes the frame arm on the way to the deflector. Frame 12 exhibits little or no frame shadow, resulting in a uniform floor wetting and wall wetting distribution pattern, thus improving the potential fire control efficiency of the sprinkler 10 while conserving water flow.
To accomplish this result, for a frame having a height of 1{fraction (13/16)} inches from the top of the boss 36 to the lower surface of the deflector 14, the frame 12 has the following structure:
These geometrical relationships are scalable to larger and smaller sizes.
The combination of these features is key to achieving the desired non-shadow discharge pattern. The elimination of one or more of these features will begin to allow the water column to diverge, thus creating a frame shadow.
While the disclosed apparatus has been particularly shown and described with respect to the preferred embodiments, it is understood by those skilled in the art that various modifications in form and detail may be made therein without departing from the scope and spirit of the invention. Accordingly, modifications such as those suggested above, but not limited thereto are to be considered within the scope of the invention, which is to be determined by reference to the appended claims.
Number | Date | Country | |
---|---|---|---|
Parent | 10136270 | Apr 2002 | US |
Child | 11056510 | Feb 2005 | US |