This invention relates to apparatus and methods for increasing the depth of field and decreasing wavelength sensitivity of incoherent optical systems. In particular, this invention relates to extended depth of focus optics for human vision.
In the human eye, it is well known that the accommodation of the lens decreases with age, and that bifocal or trifocal glasses are eventually needed in many cases. When an eye lens must be replaced, an intraocular implant is usually designed for viewing objects at infinity, and the person then uses reading glasses and other glasses of various strengths for vision at closer distances.
Current techniques that are used experimentally in intraocular implants provide two or more foci, for reading and for distance vision, for example. This is done either with a shorter focal length lens placed in the center of a lens of longer focal length, for example, or by use of diffractive optics that provide two foci. The result is one in-focus image and one out-of-focus image. The human brain disregards the out-of-focus image and concentrates on the in-focus image. The major disadvantage of this technique is that if the two images are not aligned (as occurs when the lens is not centered, a frequent occurrence with contact lenses) the images do not line up and the out-of-focus image is apparent. As such a two-foci contact lens moves, the images move with respect to each other. Another disadvantage is loss of contrast. That is, the image looks washed out. The situation is even worse when the object is located between a reading distance and a very long distance; examples include the distance to a computer screen, a television set, or music on a stand. In these cases, two poorly focused images are superimposed.
Another commonly used approach is called monovision: a person is fitted with a lens on one eye for reading, and another lens on the other eye for distance viewing. The brain then selects the best focused image to concentrate on. Images of objects at an intermediate distance cannot be seen clearly. This approach works for many people, but the inability to fuse images that are not both focused has made this solution unusable for many others because the user sees two misregistered images.
The human brain can adapt to unchanging visual conditions, even when they markedly affect the immediate visual perception. For example, the brain is able to adapt to two images, if one is in focus, by concentrating on the in-focus image and ignoring the other.
As another example, the human brain can accommodate for very large distortions present in varifocal lenses, which gradually move from providing clear vision at a distance, for objects seen through the upper portion of the lens, to providing clear vision of close objects when seen through the lower inside part of the lenses. Objects at an intermediate distance can be seen through the center of the lenses.
An extreme example of how the brain can adapt to unchanging conditions was shown in experiments where mirrors were used to invert the images seen by a person. After a day or so, the brain turned the images upside down, so that the person saw a normal image.
The human brain cannot adjust to conventional out-of-focus images, because the amount of blur changes with misfocus, or with distance from the in-focus plane. In addition, the blur is such that some information about the object being seen is lost.
There is a need to extend the depth of focus and, thus, the depth of field, of the human eye by modifying contact lenses, intraocular implants, and/or the surface of the eye itself (with laser surgery, for example).
An object of the present invention is to provide extended depth of field (EDF) by modifying contact lenses, intraocular implants, and/or natural human eyes. This is accomplished by applying selected phase variations to these optical elements (e.g., by varying surface thickness of the cornea of the eye). These phase variations EDF encode the wavefront and cause the optical transfer function to remain essentially constant within a large range of distances from the in-focus position. The human brain undoes the EDF-coding effects, resulting in an in-focus image over an increased depth of field. While the human brain cannot compensate for general out-of-focus images, where the amount of blur changes with distance from the in-focus plane, it can compensate for the specific EDF-coding misfocus added by the optical mask, because that misfocus does not change with distance, and the phase variations are selected so that little or no information is lost in the process.
For cases where the person still has some refocusing capability, the eye will change focus such that the image of the object being viewed falls into the extended region where the brain can decode the image. In the case of an intraocular implant to replace a damaged lens, the amount of wavefront coding is tailored to give the required amount of invariance in the point spread function. The depth of focus can be increased to be 800% or greater than that of the normal eye.
The selected phase variations to be applied to a particular optical element are typically asymmetric phase distributions that modify the point spread function of the imaging system so that it does not change over a large distance. The optical element may also be circularly symmetric. There are a variety of wavefront coding shapes that can be used, including cubic phase functions.
in order for the image at retina 30 to be in adequate focus. The depth of field of an optical system is the distance that the object 15 can move away from the in-focus distance and still have the image be in focus. For a simple system like
Prior attempts to solve this problem have used contact lenses and optical implants that have multiple (usually two) foci. One focus is correct for objects at infinity, and one is correct for objects at a close distance. This means that two images of an object at one of those locations are formed, one in focus and one out of focus.
A general form of one family of EDF-coding phase variations is:
P(x, y)=ej(αx
Choice of the constants, α, β, γ and δ allow phase functions that are rectangularly separable (with γ=δ=0) to systems whose modulation transfer functions (MTF) are circularly symmetric (α=β=α0, γ=δ=3α0). For simplicity we will use the symmetric rectangularly separable form, which is given by:
P(x, y)=ejα(x
where α is a parameter used to adjust the depth of field increase.
Since this form is rectangularly separable, for most analyses its one-dimensional component can be considered:
P(x, y)=ejαx
As the absolute value of α increases, the depth of field increases. The image contrast before post-processing also decreases as α increases. This is because as α increases, the MTF slumps down.
An expanded view of the ray pattern near the retina 30 is shown in expanded view 70 where the retina is at plane 72. This is unlike the ray pattern for an eye with a normal contact lens and unlike the ray pattern for an eye with two-foci lens of
For large enough α, the MTF of a system using a cubic phase modulation (PM) mask can be approximated by:
|H|(u,Ψ)≈2,u=0, (Eq. 6)
where u is the spatial frequency in the x direction and Ψ is the degree of misfocus. Thus, the cubic-PM mask is an example of a mask which modifies the optical system to have a near-constant MTF over a range of object distances. The particular range for which the MTF does not substantially vary depends on α. This range, and thus the depth of field, increases with α. However, the amount that the depth of field can be increased is practically limited by the fact that contrast decreases as α increases. For the human eye, moderate increases in depth of field are typically needed.
U.S. Pat. No. 5,748,371 (issued May 5, 1998) entitled “Extended Depth of Field Optical Systems” is incorporated herein by reference. This application is a continuation of commonly-owned and U.S. patent application Ser. No. 09/663,883 (filed Sep. 15, 2000) now U.S. Pat. No. 6,536,898, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2959105 | Sayanagi | Nov 1960 | A |
3054898 | Westover et al. | Sep 1962 | A |
3305294 | Alvarez | Feb 1967 | A |
3583790 | Baker | Jun 1971 | A |
3614310 | Korpel | Oct 1971 | A |
3856400 | Hartmann et al. | Dec 1974 | A |
3873958 | Whitehouse | Mar 1975 | A |
4062619 | Hoffman | Dec 1977 | A |
4082431 | Ward, III | Apr 1978 | A |
4174885 | Joseph et al. | Nov 1979 | A |
4178090 | Marks et al. | Dec 1979 | A |
4255014 | Ellis | Mar 1981 | A |
4275454 | Klooster, Jr. | Jun 1981 | A |
4276620 | Kahn et al. | Jun 1981 | A |
4308521 | Casasent et al. | Dec 1981 | A |
4349277 | Mundy et al. | Sep 1982 | A |
4466067 | Fontana | Aug 1984 | A |
4480896 | Kubo et al. | Nov 1984 | A |
4573191 | Kidode et al. | Feb 1986 | A |
4575193 | Greivenkamp, Jr. | Mar 1986 | A |
4580882 | Nuchman et al. | Apr 1986 | A |
4589770 | Jones et al. | May 1986 | A |
4642112 | Freeman | Feb 1987 | A |
4650292 | Baker et al. | Mar 1987 | A |
4655565 | Freeman | Apr 1987 | A |
4725881 | Buchwald | Feb 1988 | A |
4734702 | Kaplan | Mar 1988 | A |
4794550 | Greivenkamp, Jr. | Dec 1988 | A |
4804249 | Reynolds et al. | Feb 1989 | A |
4825263 | Desjardins et al. | Apr 1989 | A |
4827125 | Goldstein | May 1989 | A |
4843631 | Steinpichler et al. | Jun 1989 | A |
4936661 | Betensky et al. | Jun 1990 | A |
4964707 | Hayashi | Oct 1990 | A |
4989959 | Plummer | Feb 1991 | A |
5003166 | Girod | Mar 1991 | A |
5076687 | Adelson | Dec 1991 | A |
5102223 | Uesugi et al. | Apr 1992 | A |
5121980 | Cohen | Jun 1992 | A |
5128874 | Bhanu et al. | Jul 1992 | A |
5142413 | Kelly | Aug 1992 | A |
5165063 | Strater et al. | Nov 1992 | A |
5166818 | Chase et al. | Nov 1992 | A |
5193124 | Subbarao | Mar 1993 | A |
5218471 | Swanson et al. | Jun 1993 | A |
5243351 | Rafanelli et al. | Sep 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5260727 | Oksman et al. | Nov 1993 | A |
5270825 | Takasugi et al. | Dec 1993 | A |
5270861 | Estelle | Dec 1993 | A |
5270867 | Estelle | Dec 1993 | A |
5280388 | Okayama | Jan 1994 | A |
5299275 | Jackson et al. | Mar 1994 | A |
5301241 | Kirk | Apr 1994 | A |
5307175 | Seachman | Apr 1994 | A |
5317394 | Hale et al. | May 1994 | A |
5337181 | Kelly | Aug 1994 | A |
5426521 | Chen et al. | Jun 1995 | A |
5438366 | Jackson et al. | Aug 1995 | A |
5442394 | Lee | Aug 1995 | A |
5444574 | Ono et al. | Aug 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5473473 | Estelle et al. | Dec 1995 | A |
5476515 | Kelman et al. | Dec 1995 | A |
5521695 | Cathey, Jr. et al. | May 1996 | A |
5532742 | Kusaka et al. | Jul 1996 | A |
5555129 | Konno et al. | Sep 1996 | A |
5565668 | Reddersen et al. | Oct 1996 | A |
5568197 | Hamano | Oct 1996 | A |
5572359 | Otaki et al. | Nov 1996 | A |
5610684 | Shiraishi | Mar 1997 | A |
5640206 | Kinoshita et al. | Jun 1997 | A |
5706139 | Kelly | Jan 1998 | A |
5748371 | Cathey et al. | May 1998 | A |
5751475 | Ishiwata et al. | May 1998 | A |
5756981 | Roustaei et al. | May 1998 | A |
5965330 | Evans et al. | Oct 1999 | A |
5969853 | Takaoka | Oct 1999 | A |
5969855 | Ishiwata et al. | Oct 1999 | A |
6021005 | Cathey, Jr. et al. | Feb 2000 | A |
6025873 | Nishioka et al. | Feb 2000 | A |
6034814 | Otaki | Mar 2000 | A |
6037579 | Chan et al. | Mar 2000 | A |
6069738 | Cathey, Jr. et al. | May 2000 | A |
6091548 | Chen | Jul 2000 | A |
6097856 | Hammond, Jr. | Aug 2000 | A |
6121603 | Hang et al. | Sep 2000 | A |
6128127 | Kusaka | Oct 2000 | A |
6144493 | Okuyama et al. | Nov 2000 | A |
6172723 | Inoue et al. | Jan 2001 | B1 |
6172799 | Raj | Jan 2001 | B1 |
6208451 | Itoh | Mar 2001 | B1 |
6218679 | Takahara et al. | Apr 2001 | B1 |
6219113 | Takahara | Apr 2001 | B1 |
6248988 | Krantz | Jun 2001 | B1 |
6285345 | Crossland et al. | Sep 2001 | B1 |
6288382 | Ishihara | Sep 2001 | B1 |
6337472 | Garner et al. | Jan 2002 | B1 |
6536898 | Cathey, Jr. | Mar 2003 | B1 |
6554424 | Miller et al. | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
0531926 | Mar 1993 | EP |
0584769 | Mar 1994 | EP |
0618473 | Oct 1994 | EP |
0742466 | Nov 1996 | EP |
0759573 | Feb 1997 | EP |
0791846 | Aug 1997 | EP |
0981245 | Feb 2000 | EP |
2278750 | Dec 1994 | GB |
2000-98301 | Apr 2000 | JP |
WO 9957599 | Nov 1999 | WO |
WO-0052516 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030225455 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09663883 | Sep 2000 | US |
Child | 10395577 | US |