1. Field of the Invention
The present invention relates to air moving devices and, in particular, to centrifugal blowers which include impellers or fan wheels having forward curved blades that are used, for example, in modern gas furnace draft inducer applications.
2. Description of the Related Art
In high efficiency furnaces, standard chimney air-draw effects are not sufficient to assure the required air flow through the furnace heat exchangers, and therefore, modern high efficiency furnaces utilize draft inducer blowers to provide sufficient air flow through the heat exchangers of the furnace. These types of draft inducer blowers typically include impellers or fan wheels having forward curved blades. The impeller is rotated in a scroll shaped blower housing to draw an air flow through the housing. This, in turn, draws an air flow through the heat exchanger. Similarly, in other applications where air flow is produced by a centrifugal blower having forward curved blades, the ability of the blower to efficiently generate sufficient air flow and pressure are important. Also, in many applications in which centrifugal blowers are used, such as furnace draft inducers, for example, space is at a premium so minimization of the size of the blower is desired.
Centrifugal blowers convert static air pressure into velocity air pressure in the blower housing. Pressure conversion is accomplished in the blower housing as the cross section available for passage of the air flow expands around the periphery of the impeller from the cutoff to the outlet.
The effect of expansion angle on blower performance is shown in the pressure-flow curves in
Expansion angle also effects performance of the blower in a particular system. As shown in
Although greater expansion angles improve blower performance, the relative amount of improvement gradually diminishes, and the size of the blower housing with respect to the diameter of the impeller becomes too large for space constraints in applications in which the blower is used. This is mostly due to the volume between the impeller periphery and the blower housing side wall becoming too great to allow the high velocity stream coming off of the impeller to impact the air volume in the scroll. For example, if either of the overall width dimensions W1-W1 or W2-W2 of the blower housing is too large for the space available for the blower housing, a blower housing having a smaller expansion angle may be selected. Then, if the resulting reduction in air flow rate is not acceptable, a compromise must be made in either blower size or air performance.
One known blower assembly 10 is shown in
As shown in
In this manner, the side wall 16 of blower housing 12 is shaped to provide the blower housing 12 with a constantly expanding internal area between the impeller 22 and the side wall 16 around impeller 22 from the cutoff 32 toward the outlet opening 30 in order to allow constant expansion of the air flow area from impeller 22 toward outlet 30. However, in view of the considerations discussed above, the expansion angle of the blower housing 12 is typically only about 6° or less in order to minimize the overall width dimensions W1-W1 and W2-W2 of the blower housing.
What is needed is a blower housing which is an improvement over the foregoing.
The present invention provides a blower assembly including a blower housing having a side wall with a first portion extending from the initial cutoff through an angle of at least 45° or more, the first portion having a radius which is substantially constant or which increases at a substantially lesser rate than that employed in prior art blower housings. The side wall additionally includes a second portion, extending from the end of the first portion to the outlet, which has an increasing radius or a radius which increases at a relatively greater rate than that employed in prior art blower housings. In other words the expansion angle is increasing during the second portion, vs. the expansion angle being constant as in the prior art. The shape of the side wall allows a reduction in the overall size of the blower housing for a given sized impeller.
In one form thereof, the present invention provides a blower assembly, including a motor having a rotatable output shaft; an impeller mounted to the output shaft for rotation therewith, the impeller having a plurality of forward curved blades; and a blower housing having an inlet and an outlet, including a top wall, the motor mounted to the top wall with the output shaft extending through an opening in the top wall; and a curved side wall extending from the top wall and defining an interior space in which the impeller is disposed, the side wall defining a cutoff adjacent the outlet and a point angularly spaced from the cutoff by at least 45°, the side wall further having a radius from a center of the impeller that increases at a first rate from the cutoff to the point, and increases at a increasing expansion angle from the point to the outlet, the first rate giving the side wall a 3° expansion angle or less between the cutoff and the point on the side wall.
In another form thereof, the present invention provides a blower assembly, including a motor having a rotatable output shaft; an impeller mounted to the output shaft for rotation therewith, the impeller having a plurality of forward curved blades; and a blower housing having an inlet and an outlet, including a top wall, the motor mounted to the top wall with the output shaft extending through an opening in the top wall; and a curved side wall extending from the top wall and defining an interior space in which the impeller is disposed, the side wall shaped to define a first expansion angle that is substantially constant from the cutoff through an angle, and a second expansion angle that increases from the angle to the outlet.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of the embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The examples set out herein illustrate preferred embodiments of the invention, and such examples are not to be construed as limiting the scope of the invention in any manner.
Referring to
A motor 50 is supported on the end wall 44 of blower housing 42 via suitable fasteners (not shown) or some other equivalent connection. An impeller or fan wheel 52 is attached to output shaft 54 of motor 50 and is positioned within the interior of blower housing 42. Similar to blower housing 12 described above, impeller 52 is a “squirrel cage” or “sirocco” type impeller, including a plurality of forward-curved blades 56 with respect to the rotation direction of the impeller and of air flow, indicated by arrow 58. The impeller or fan wheel 52 has an outer diameter dimension D2. The output shaft 45 and impeller 52 rotate in the rotation direction 58 around a rotation axis 59. The rotation axis 59 defines mutually perpendicular axial and radial directions relative to the blower assembly 40.
Side wall 46 of blower housing 42 is generally curved or scrolled as described below and, together with the end wall 44 and optionally the cover member, defines a rectangular air outlet opening 60 to which a typical discharge structure (not shown) may be attached for connection to a circular discharge pipe via suitable clamps and/or fasteners. A cutoff 62 is defined by a first end of the scroll shaped length of the side wall 46 adjacent outlet 60.
Blower assembly 40 may include one or more additional features such as those of the blower assemblies disclosed in U.S. Pat. Nos. 6,908,281, 7,182574, and 7,210,903, and U.S. Patent Application Publication No. 2006/0051205, assigned to the assignee of the present invention, the disclosures of which are expressly incorporated herein by reference.
As shown in
This differs from the known blower housing 12 in that the air flow expansion area does not begin immediately at cutoff 62 and that once the expansion does begin aggressively, the expansion does not increase at a constant expansion angle, but rather at an increasing expansion angle.
In other words, referring to the schematic representation of the blower housing side wall 46 and to the chart shown in
As discussed above, increasing the expansion angle of a blower housing increases the performance and efficiency of blowers having forward curved impellers. Furthermore, having the expansion angle to increase as it proceeds toward the outlet further increases power and performance. However, because expansion angles of greater than about 7° result in excessively large blower housings, engineers have been willing to accept lower efficiency and performance to keep prior art blower housing sizes to a manageable size. The present inventor has found that the blower housing disclosed herein, having a side wall with a first portion extending from the initial cutoff through an angle of at least 45° or more, the first portion having a radius which is substantially constant or which increases at a relatively lesser rate, and then after this portion the housing having an increasing expansion angle that increases in a greater than linear fashion outperforms known blower housings of similar size having an expansion angle beginning immediately after the cutoff.
Further, the foregoing shape of side wall 46 of blower housing 42 allows the overall size or profile of blower housing 42 to be reduced, thereby reducing the materials and cost of manufacturing of the blower housing 42 as compared to the prior art blower housing 12 of
In a still further embodiment, side wall 46 of blower housing 42 may include a first portion of the scroll shaped length, beginning at cutoff 62, having a radius that initially decreases slightly through an initial arc or subtended angle of about 45°, for example, and is then substantially constant through the remainder of the first portion of the side wall length. In this manner, side wall 46 of blower housing 42 would have an initially decreasing radius portion immediately from cutoff 62, followed by a substantially constant radius portion and thereafter, may have an increasing expansion angle radius portion toward outlet 60 of blower housing 42 to provide an air flow expansion area. Similar to the embodiment shown in
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This patent application claims the benefit of provisional patent application No. 60/943,955, which was filed on Jun. 14, 2007.
Number | Date | Country | |
---|---|---|---|
60943955 | Jun 2007 | US |