Not Applicable.
1. Field of the Invention
In the United States, Residential space heating consumes 82 billion kWh of electricity, 2,870 billion cubic feet of natural gas, 5,251 million gallons of fuel oil, 127 million gallons of kerosene, and 3,521 millions gallons of LPG annually. Commercially, building heating accounts for 1.04 trillion kWh electricity, 615 billion kWh natural gas, and 67 billion kWh of fuel oil. 70% of the energy produced in the US last year was obtained from combustion of fossil fuels (coal, natural gas, and oil) and each kWh used requires 3 kWh in fossil fuel energy at the generator. Any improvement in the efficiency and reliability of installed heating systems, even in small percentages, has a significant impact on energy consumption and emissions of greenhouse gasses.
Heat pumps play an important role in achieving energy savings in heating and cooling. A heat pump is a relatively simple thermodynamic system whose purpose is to transport heat from a colder environment (e.g. from the outdoors) to a warmer environment (the indoor space). When used in reverse, the same system becomes an air conditioner, which transfers of from the cooler indoor space to the warmer outdoor environment. To achieve this transport of heat, the heat pump uses electricity or mechanical work to drive a thermodynamic cycle, comprising a working gas (refrigerant), a compressor 1, a condenser 2, an expansion valve 3 and an evaporator 4 as seen in
2. Description of Related Art
The performance of an air source heat pump degrades when it operates at either very low or very high temperatures. This performance degradation is due to an increase in irreversibilities during the refrigerant compression process, a reduction in the refrigerant mass flow, and a deterioration of the heat transfer capacity in the heat exchangers. If most of the high end, commercially available heat pump systems achieve coefficients of performance (COP) as high as 4-6 (i.e. for each kW of work input, 4-6 kW of heat is transferred to the heated space) when operating at nominal ambient conditions of 45-47° F. or above, their coefficient of performance drops to 1.5-1.8 at 15° F. To supplement the loss of efficiency and of heating capacity at low ambient (cold source) temperatures, most of these systems are equipped with electrical or gas fired heaters/furnaces. Currently there are no heat pumps systems offered commercially that operate efficiently at temperatures lower than 15° F.
Air source heat pumps have the possibility to operate beyond their nominal ranges while preserving cycle efficiency by modifying their system configurations (Kim (2001), Bertsch and Groll (2008), Wang et al. (2009), and Heo et al. (2010a)). The merits of several modified refrigeration cycles are summarized by Heo et al. (2010b).
These cycles improve the efficiency of a regular vapor compression cycle by increasing the amount of heat transfer at constant temperature (in the two phase and liquid state) and reducing the amount of work required to compress the refrigerant vapor between the two isobars of the cycle. The difference between the regular vapor compression cycles (dashed line) and vapor-injected cycles (grey line) corresponding to the systems shown in
The modifications to existing heat pumps suggested by the above-referenced articles suffer from several drawbacks. For example, there is insufficient heat output as the required heat increases whereas the heat pump capacity decreases mainly due to lower refrigerant mass flow rates delivered by the compressor at high pressure ratios. High compressor discharge temperature is caused by low suction pressure and high pressure ratio across the compressor. COP decreases rapidly for the high pressure ratios necessary for heating at low ambient temperature conditions. Heat pumps designed for low ambient temperature conditions usually have capacities that are too large at medium ambient temperatures. This requires cycling of the heat pump on and off at higher ambient temperatures in order to reduce the heating capacity. Transient effects associated with cycling leads to a lower efficiency relative to steady-state operation. The FTVI cycle may experience flooding in the compressor at high speeds due to the difficulty of accurately controlling the amount of vapor injection.
The present invention overcomes the aforementioned limitations of prior art heat pumps by providing a two-stage compression air source heat pump system and a regenerated inter-stage vapor recirculation cycle and a method for operating the heat pump.
Specific embodiments of the invention are described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
This description focuses on embodiments of the present invention applicable to heating and in particular to using a two-stage, extended range, air source heat pump for heating an indoor space at low and very low ambient temperatures. However, it will be appreciated that the invention is not limited to this application but may be used for the transfer of heat for many other purposes including cooling as well as heating applications and that the invention is also applicable to water and ground source heat pumps, for example.
The present invention may be embodied as a device, a system, a method or combinations of these with or without a computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, a software embodiment or an embodiment combining software and hardware aspects all generally referred to herein as a “circuit” or “module.” Furthermore, the present invention may take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium. Any suitable computer readable medium may be utilized including hard disks, CD-ROMs, optical storage devices, a transmission media such as those supporting the Internet or an intranet, or magnetic storage devices.
The presently described Extended Range Heat Pump (XRHP) is a two-stage air source heat pump with intercooling, regeneration, and inter-stage vapor recirculation that provides improved efficiency relative to existing heat pumps when operating at an expanded range of cold source temperatures, while mitigating disadvantages of vapor-injected cycles. Performing the compression process in stages and cooling a working gas in between the lower and higher-pressure stages decreases the work required to compress the gas between two specified pressures. The two-compressor heat pump lends itself directly to improving the energetic efficiency by intercooling with regeneration and inter-stage vapor recirculation, also known as vapor injection for single stage systems. Additional control and performance enhancements may be achieved by employing inverter-driven compressors, electronic expansion valves and or thermal expansion valves. The entire system may be computer controlled and operation of the system may be controlled using software designed to accept input from sensors in the heat pump and send instructions to control modules connected to compressors, valves, and other controllable system components.
When operating at a low temperature, e.g. 245K/−18° F., the refrigerant routing valves 45 direct the refrigerant through the flash-tank circuit, and the high stage compressor 1b and electronic expansion valve 3a are operated so as to maintain a constant condenser pressure of 2.32 MPa and a flash-tank pressure of 0.76 MPa for a constant upper stage compression ratio of 3.05:1. All evaporator coils 43a-c are active to provide the necessary volume for refrigerant expansion to the lower system pressure of 0.24 MPa.
The thermodynamic cycle of the pump on a temperature—entropy diagram is shown in
The COP of the heat pump operating between 2.32 MPa (336.5 psi), 305K (90° F.) hot reservoir/sink and 0.24 MPa (34.8 psi), 245K (−18.4° F.) cold reservoir/source, allowing for condenser and evaporator heat transfer inefficiencies, following a thermodynamic cycle comprising states 1-2′-2-3-4-5′-6 as shown in
COP=Qout/(WC1+WC2)=(h3−h4)/((1−ξ5″)·(h2′−h1)+h3−h2)=3.16
where Qout is heat output, WC1 and WC2 are the work performed by the low pressure stage and high pressure stage compressors, hn is the enthalpy for the nth state, and ξ is the refrigerant quality defined as the ratio of the mass of vapor to the working fluid (refrigerant) to the total mass of the working fluid.
In this configuration, the intercooler regulates cycle operation such that thermodynamic state 2 remains unchanged and the operational point of the high pressure stage compressor 1b is independent from changes in the ambient temperature. The system exhibits no degradation of the installed capacity since states 3 and 4 remain unchanged. The system also gains in efficiency over a simple vapor injection scheme due to a shift in refrigerant quality from 0.265 at state 5′ to 0.343 at state 5″. This shift decreases the mass fraction of refrigerant reaching the evaporator 2, reducing the mechanical work required from the lower stage compressor 1a. Intercooling from state 2′ to 2 further increases the overall cycle efficiency by reducing the amount of work needed to compress the refrigerant in the high pressure stage. In this process, the refrigerant is superheated less, reducing the refrigerant temperature and density gradients over the condenser and improving the overall condenser heat transfer efficiency.
When operating at an intermediate temperature, e.g. 260K, the refrigerant routing valves 45 direct the refrigerant through the flash-tank circuit. The high pressure stage compressor 1b and electronic expansion valve 3a are operated to maintain a constant condenser pressure of 2.32 MPa and a flash-tank pressure of 0.76 MPa for a constant upper stage compression ratio of 3.05:1. Valves V1b and V2b close, taking their evaporator coils out of the circuit and reducing the volume for refrigerant expansion to a low system pressure of 0.448 MPa. The thermodynamic cycle of the pump is shown in
The coefficient of performance for the system at an ambient temperature of 260K is:
COP=Qout/(WC1+WC2)=4.19.
The same type of analysis performed for a temperature of −13° F. shows the first-stage compressor 1a can be operated at slightly lower output, and the thermal expansion valve 3b can be set so as to achieve a compression ratio of 2.81:1 for lower cycle operating pressures of 0.76 MPa (intermediate pressure) and 0.27 MPa (low side pressure—evaporator). With these settings, the temperature difference between the evaporator and cold source remains unchanged and the system achieves an overall coefficient of performance of 3.36. Table 3 summarizes an efficiency analysis for a range of cold source temperatures at constant refrigerant mass flow rate, including the operational parameters of evaporator pressure PEVP, compression ratios for the low and high stage compressors CRC1 and CRC2, work performed by the low and high stage compressors WC1 and WC2, and the and calculated COP.
The efficiency advantages introduced by the regenerated, inter-stage vapor recirculation system include near nominal/optimal operation for the upper stage compressor 1b and enhancement of the overall cycle efficiency by recycling the refrigerant heat post lower stage compression. The off-optimal variability in the cycle compression duty is shifted to the low pressure stage, since the heat produced by the lower stage compressor 1a can be reused via the intercooler. The inverter driven low pressure stage compressor 1a may be required, depending on the outdoor ambient temperature to operate at off-optimal conditions in either stage 1 or stage 2 due to either the reduction in the necessary compression ratio or a reduction in the mass fraction of refrigerant reaching the evaporator coils, as determined by the inter-stage vapor recirculation mechanism. As a result, compressor efficiency may be lower and the temperature of the refrigerant at compressor outlet (state 2′) may higher. The intercooler/regenerator reduces refrigerant temperature at the inlet of compressor 1b by transferring this heat to the refrigerant entering the flash-tank 5. In the process, the quality of the refrigerant is increased (5′→5″) and the total amount of refrigerant continuing to the thermal expansion valve 3b and evaporator 43 is reduced, thus re-adjusting the work input required by compressor 1a. For cold source temperatures below 260K, when the low pressure extender cycle is in use, the intercooler and inter-stage vapor recirculation increase efficiency on average by 12% versus a regular cycle heat pump operating between the same pressures and evaporator exit temperatures.
Reference to particular embodiments of the present invention have been made for the purpose of describing the extended range heat pump and methods for operating and extended range heat pump. It is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the appended claims.
The above references are incorporated herein by reference in their entirety:
This application is a non-provisional of and claims priority under 35 U.S.C. 119(e) to U.S. 61/451,387 filed 10 Mar. 2011, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3719057 | Grant | Mar 1973 | A |
4947655 | Shaw | Aug 1990 | A |
5927088 | Shaw | Jul 1999 | A |
6343486 | Mizukami | Feb 2002 | B1 |
7356998 | Lee et al. | Apr 2008 | B2 |
7849700 | Seefeldt | Dec 2010 | B2 |
20060174639 | Lee et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2 088 388 | Aug 2008 | EP |
Entry |
---|
Bertsch, S.S., Groll, E.A. (2008) Int. J. of Refrigeration 31:1282-1292. |
Heo, J., Jeong, M. W., and Kim, Y. (2010a) Int. J. of Refrigeration 33:848-855. |
Heo, J., Jeong, M. W., Baek, C., and Kim, Y. (2010b) Int. J. of Refrigeration 34(2):444-453. |
Kim, B.H. (2001) Korean Journal of Air-Conditioning and Refrigeration 13:746-756. |
Wang, X., Hwang, Y., and Radermacher, R. (2009) Int. J. of Refrigeration 32:1442-1451. |
Number | Date | Country | |
---|---|---|---|
20120227426 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61451387 | Mar 2011 | US |