The disclosure relates generally to apparatus and methods for creating a vibration within a wellbore. The disclosure relates specifically to a vibrating downhole tool configured to vibrate equipment located within a wellbore.
In the drilling of oil and gas wells as well as other downhole activities, it is common to use a downhole system which provides a percussive or hammer effect to the drill string to increase drilling rate. For example, in the process of drilling a wellbore, frictional forces acting against the drill pipe or other component running through the wellbore limit the maximum length or depth to which the wellbore may be drilled. Solutions of this problem include mechanisms for vibrating the drill pipe during drilling in order to convert static frictional forces on the drill pipe to dynamic frictional forces between the drill pipe and the wall of the wellbore.
Various types of vibrator devices have been employed with pipe strings in order to provide vibration. Some such vibrator devices typically employ reciprocating impact elements that move back and forth along the axis of the pipe string to induce vibration in the pipe string. Other such vibrator devices employ the use of eccentrically weighted rotating masses, eccentric shafts or rods, or rotatable impact elements that rotate about the longitudinal axis of the drill or pipe string to strike an impact anvil in order to apply a rotational or torsional vibration to the pipe string.
Still other types of vibrator devices utilize Moineau power sections that are generally used in downhole mud motors or pumps. Moineau power sections typically utilize rubber or rubber-like elastomers as seals which are negatively affected by elevated wellbore temperatures and pressures, certain drilling fluids and or chemicals, and contaminants or debris in the wellbore or drilling fluids.
Apparatus utilizing one or both of these principles is described in U.S. Pat. No. 5,165,438 to David M. Facteau. Two fluidic oscillators are achieved by employing wedge-shaped splitters to route the flow of a fluid down diverging diffuser legs. The oscillators connect to a source of fluid flow, provide a mechanism for oscillating the fluid flow between two different locations within the oscillator, and emit fluid pulses downstream of the source of the fluid flow. In one vibrator, a feedback passageway from each leg is routed back to the flow path upstream of the splitter to create a condition establishing oscillating flow through the legs. In a second vibrator, a passageway between the legs downstream of the upstream end of the splitter creates a condition establishing oscillating flow through the legs. A disadvantage of this kind of oscillator is that the diverging diffuser legs required to establish oscillation are expensive to fabricate and prone to clogging from debris in the fluid because of the relative incline between the leg and the axial of the pipe string.
Consequently, there is a need to provide an even more effective fluid oscillator for down hole tools which is reliable, long-lived and economical.
The present invention is directed to a helix oscillating delivery system that creates an erratic helical pulsating stream within a circular cylindrical structure. The helix oscillating delivery system connects to a source of fluid flow at its upper end and has a plurality of separate flow paths that are constricted and expanded repeatedly. The erratic helical pulsating stream is caused by the flow paths and strengthened by an expansion chamber.
In one embodiment, the helix oscillating delivery system comprises two or more separate flow paths. Each of the flow paths has multiple hollow chambers connected in series. Each of the hollow chambers comprises a first constricted chamber 6 with a fluid entry, a first expansion chamber located adjacent to the lower end of the first constricted chamber, a second constricted chamber with an upper end connected to the lower end of the first expansion chamber; a separate second expansion chamber connected to the lower ends of a plurality of the second constricted chambers; and a single port located adjacent to the lower end of the second expansion chamber.
The cross-section area of the first constricted chamber is smaller than that of the first expansion chamber and the cross-section area of the first expansion chamber is larger than that of the second constricted chamber.
The cross-section area of the second expansion chamber gradually decreases from a top end to a bottom end of the second expansion chamber.
In a preferred embodiment, the shape of the cross-section of the second expansion chamber is circular, and the longitudinal section of the second expansion chamber is a trapezoidal section with a large top base and a small bottom base.
In another aspect, the invention is directed to an extended reach tool. The tool comprises two or more separate flow paths. Each of the flow paths has multiple hollow chambers connected in series. Each of the hollow chambers comprises a first constricted chamber with a fluid entry, a first expansion chamber located adjacent to the lower end of the first constricted chamber, a second constricted chamber with the upper end connected to the lower end of the first expansion chamber; a separate second expansion chamber connected to the lower ends of a plurality of the second constricted chambers; and a single port located adjacent to the lower end of the second expansion chamber.
In one embodiment, the extended reach tool can be attached to a tubing or motor on a top side of the extended reach tool and attached to a bottom hole assembly on a bottom end of the extended reach tool.
In one embodiment, the extended reach tool comprises a thread pin adapted to engage a threaded box of a tubing or motor, and a threaded box end to receive male threaded pin end of a bottom hole assembly.
In another aspect, the invention is direct to a method of delivering an erratic helical pulsating jet stream within an extended reach tool connected to a drill string pipe/coil tubing or a bottom hole assembly. The tool receives fluid from the drill string pipe or coil tubing into a hollow interior of the tool, wherein the fluid is separated into two or more separate flow paths. The fluid is repeatedly compressed and expanded, which will create a pulsating flow with erratic helical flow, and the pulsating flow passes out of the tool through ports in the tool to create pulsing and erratic helical jets of fluid. The erratic, helically pulsating jets of fluid will cause the extended reach tool to vibrate and pulsate a bottom hole assembly and coil tubing/tubing to release friction around them so as to move the bottom hole assembly freely downhole and up hole.
In one embodiment, the fluid is separated into two separate paths.
The foregoing has outlined rather broadly the features of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter, which form the subject of the claims.
In order that the manner in which the above-recited and other enhancements and objects of the disclosure are obtained, a more particular description of the disclosure briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the disclosure and are therefore not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through the use of the accompanying drawings in which:
The particulars shown herein are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present disclosure only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of various embodiments of the disclosure. In this regard, no attempt is made to show structural details of the disclosure in more detail than is necessary for the fundamental understanding of the disclosure, the description taken with the drawings making apparent to those skilled in the art how the several forms of the disclosure may be embodied in practice.
The following definitions and explanations are meant and intended to be controlling in any future construction unless clearly and unambiguously modified in the following examples or when application of the meaning renders any construction meaningless or essentially meaningless. In cases where the construction of the term would render it meaningless or essentially meaningless, the definition should be taken from Webster's Dictionary 3rd Edition.
The present invention pertains to a helix oscillating delivery system that creates a pulsating flow within a circular cylindrical structure. The helix oscillating delivery system connects to a source of fluid flow at its upper end and has a plurality of separate flow paths that are constricted and expanded repeatedly. The flow paths enter into an expanded area and the expanded area connects to a single port on its lower end. Referring to
The cross-section area of the first constricted chamber 6 is smaller than that of the first expansion chamber 7 and the cross-section area of the first expansion chamber 7 is larger than that of the second constricted chamber 8.
In some embodiments, the shape of the cross-section of the expanded chamber 9 can be rectangles, squares, triangles, rhomboid, ellipse. The cross-section area of the expanded chamber 9 gradually decreases from a top end to a bottom end of it. In a preferred embodiment the shape of the cross-section of the expanded chamber 9 is circular, the longitudinal section of the expanded chamber 9 is a trapezoidal section with a large top base and a small bottom base. With this construction, the pulsing flows from a plurality of chambers 8 will expand and generate vortex turbulence which will interfuse with each other, such that the erratic helical flows from a plurality of chambers 8 will interfere with each other to generate stronger erratic helical flow. And at the same time, the fluid will be concentrated because of the gradually decreased cross-section area of the expanded chamber 9. The erratic helical flow further amplifies the pulsation of the pulsing flow in the expanded chamber 9. Then the pulsing flow is deflected and forced into the single port 10. The single port 10 can be a hollow cylinder or a conical structure with an up-narrow and down-wide configuration to form a flow path for the erratic helical pulsating stream.
As a result, a strong pulsating stream with erratic helical flow is developed in the helix oscillating delivery system without any external excitation, and no moving parts or valve arrangements are required to bring about a pulse flow.
The helix oscillating delivery system can be used in a downhole system to provide pulsation. In one embodiment, it can be used as an extended reach tool to prevent stick-slip incidences with coil tubing or lock-up of jointed pipe between cased hole/open hole, and with tubing or coil tubing while milling, drilling or performing service work.
The extended reach tool can be used to vibrate and pulsate coil tubing/tubing and milling, drilling, or service work bottom hole assemblies to eliminate friction of the coil tubing or tubing in cased hole or open hole, so as to allow the bottom hole assembly to reach the depth in the cased hole or open hole well to complete the desired milling, drilling or service job.
Referring back to
Fluid flow 4 enters from the top side 2 into the extended reach tool 10. The entry of the flow into the tool can be through an inclusive box or pin of said tool or a crossover that can be attached to the tool. The tool is provided internally with two or more separate flow paths 5, each of the flow paths 5 has multiple hollow chamber connected in series. A flow path 5 has a first constricted chamber 6 with a fluid entry, a first expansion chamber 7 is located adjacent to a lower end of the first constricted chamber 6. An upper end of the second constricted chamber 8 is connected to a lower end of the first expansion chamber 7. Fluid flow 4 is alternatingly constricted in chamber 6, then expanded in chamber 7 and then constricted in chamber 8 to cause itself to pulsate in a flow pattern with erratic helical flow. The flow paths are all arranged in a case 12. The flow 4 from the chamber 8 enters into the second expansion chamber 9 and is forced into the single port 10 which can be part of the tool or an add on, extending through the extended reach tool 10 on a lower end for delivering erratic helically pulsating jets of fluid out of the tool. The erratic helically pulsating jets of fluid will cause the extended reach tool 10 to vibrate and pulsate the bottom hole assembly and coil tubing/tubing to release friction around them to move the bottom hole assembly freely downhole and up hole.
Yet another aspect of the current invention is a method of delivering an erratic helical pulsating jet stream within an extended reach tool connected to a drill string pipe/coil tubing or a bottom hole assembly, so that the tool receives fluid from the drill string pipe or coil tubing into a hollow interior of the tool, wherein the fluid is separated into two or more separate flow paths, causing the fluid to be repeatedly compressed and expanded which in turn will create a pulsating flow with erratic helical flow, and causing the pulsating flow to pass out of the tool through ports in the tool to create pulsing and erratic helical jets of fluid. The erratic helically pulsating jets of fluid will cause the extended reach tool to vibrate and pulsate a bottom hole assembly and coil tubing/tubing to release friction around them to move the bottom hole assembly freely downhole and up hole.
Referring back to
All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the methods described herein without departing from the concept, spirit and scope of the disclosure. More specifically, it will be apparent that certain agents which are both chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the disclosure as defined by the appended claims.
This application claims priority to U.S. Provisional Patent Application 62/500,870 filed on May 3, 2017; which is specifically incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
137881 | Berryman et al. | Apr 1873 | A |
4012061 | Olson | Mar 1977 | A |
4067596 | Kellner | Jan 1978 | A |
4633958 | Mouton | Jan 1987 | A |
4667750 | Wise | May 1987 | A |
4819745 | Walter | Apr 1989 | A |
4852668 | Dickinson, III | Aug 1989 | A |
4852800 | Murdock | Aug 1989 | A |
5154347 | Vijay | Oct 1992 | A |
5228508 | Facteau | Jul 1993 | A |
5230389 | Besson | Jul 1993 | A |
5495903 | Griffin | Mar 1996 | A |
5732885 | Huffman | Mar 1998 | A |
5897062 | Enomoto et al. | Apr 1999 | A |
6029746 | Dodd | Feb 2000 | A |
6039117 | Mueller | Mar 2000 | A |
6062311 | Johnson et al. | May 2000 | A |
6397864 | Johnson | Jun 2002 | B1 |
6470980 | Dodd | Oct 2002 | B1 |
6976507 | Webb et al. | Dec 2005 | B1 |
7404416 | Schultz et al. | Jul 2008 | B2 |
7650941 | Zachry | Jan 2010 | B2 |
7836934 | Kusko et al. | Nov 2010 | B2 |
7913763 | D'Amico | Mar 2011 | B2 |
8230912 | Connell | Jul 2012 | B1 |
8316944 | Pringle et al. | Nov 2012 | B2 |
8424620 | Perry et al. | Apr 2013 | B2 |
8453945 | Wurz | Jun 2013 | B2 |
8528423 | Schultz et al. | Sep 2013 | B1 |
8549932 | Schultz et al. | Oct 2013 | B1 |
8783338 | Ferguson | Jul 2014 | B1 |
8936094 | Least et al. | Jan 2015 | B2 |
9447663 | Connell et al. | Sep 2016 | B1 |
9932798 | Resendez | Apr 2018 | B1 |
20010054515 | Eddison et al. | Dec 2001 | A1 |
20040013446 | Dodd | Feb 2004 | A1 |
20050051335 | Davis | Mar 2005 | A1 |
20050214147 | Schultz et al. | Sep 2005 | A1 |
20060027372 | Shaposhnikov | Feb 2006 | A1 |
20060086507 | Surjaatmadja | Apr 2006 | A1 |
20100270081 | Perry et al. | Oct 2010 | A1 |
20110315403 | Nard et al. | Dec 2011 | A1 |
20120061073 | Soni et al. | Mar 2012 | A1 |
20120168013 | Schultz et al. | Jul 2012 | A1 |
20120292015 | Schultz et al. | Nov 2012 | A1 |
20130199849 | Li | Aug 2013 | A1 |
20130213716 | Perry et al. | Aug 2013 | A1 |
20140009305 | Schultz et al. | Jan 2014 | A1 |
20140034312 | Schultz et al. | Feb 2014 | A1 |
20140048333 | Fears et al. | Feb 2014 | A1 |
20140196548 | Watson et al. | Jul 2014 | A1 |
20140202699 | Loving | Jul 2014 | A1 |
20150275641 | Watson et al. | Oct 2015 | A1 |
20150337193 | Britton et al. | Nov 2015 | A1 |
20150354303 | Schultz et al. | Dec 2015 | A1 |
20160024875 | Watson et al. | Jan 2016 | A1 |
20160024885 | Schultz et al. | Jan 2016 | A1 |
20160040493 | Schultz et al. | Jan 2016 | A1 |
20160031066 | Watson et al. | Feb 2016 | A1 |
20160069173 | Castro et al. | Mar 2016 | A1 |
20160115767 | Watson | Apr 2016 | A1 |
20160177668 | Watson et al. | Jun 2016 | A1 |
20160230502 | Holmberg et al. | Aug 2016 | A1 |
20160236331 | Watson | Aug 2016 | A1 |
20160319630 | Watson et al. | Nov 2016 | A1 |
20160319631 | Schultz et al. | Nov 2016 | A1 |
20160319632 | Schultz et al. | Nov 2016 | A1 |
20160319647 | Schultz et al. | Nov 2016 | A1 |
20160326832 | Watson et al. | Nov 2016 | A1 |
20160326834 | Manke et al. | Nov 2016 | A1 |
20160340994 | Ferguson et al. | Nov 2016 | A1 |
20126376868 | Manke | Dec 2016 | |
20160348465 | Schultz et al. | Dec 2016 | A1 |
20160348466 | Schultz et al. | Dec 2016 | A1 |
20160348467 | Watson et al. | Dec 2016 | A1 |
20170030169 | Funkhouser et al. | Feb 2017 | A1 |
20180320451 | Kletzel | Nov 2018 | A1 |
20180320468 | Kletzel | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2016202533 | Nov 2016 | AU |
2016202619 | Nov 2016 | AU |
2016202624 | Nov 2016 | AU |
2875509 | Dec 2013 | CA |
2875540 | Dec 2013 | CA |
2922474 | Mar 2015 | CA |
2926646 | Apr 2015 | CA |
2933187 | Jun 2015 | CA |
2945290 | Oct 2015 | CA |
2945815 | Oct 2015 | CA |
2948853 | Nov 2015 | CA |
2951397 | Dec 2015 | CA |
2954884 | Jan 2016 | CA |
103547768 | Jan 2014 | CN |
105917072 | Aug 2016 | CN |
2013013453 | Feb 2014 | MX |
2014007923 | Jul 2014 | MX |
2014009242 | Oct 2014 | MX |
2014012982 | Feb 2015 | MX |
2015001993 | May 2015 | MX |
2015002689 | May 2015 | MX |
2015002253 | Aug 2015 | MX |
2015009948 | Jan 2016 | MX |
2016002960 | Jun 2016 | MX |
2004013446 | Feb 2004 | WO |
20111136830 | Nov 2011 | WO |
2012018700 | Feb 2012 | WO |
2012018700 | Apr 2012 | WO |
2012082514 | Jun 2012 | WO |
2012158575 | Nov 2012 | WO |
2013116094 | Aug 2013 | WO |
2012158575 | Oct 2013 | WO |
2013162956 | Oct 2013 | WO |
2014028254 | Feb 2014 | WO |
2014035901 | Mar 2014 | WO |
2013116094 | Apr 2014 | WO |
2013162956 | Aug 2014 | WO |
2014028254 | Aug 2014 | WO |
2014035901 | Aug 2014 | WO |
2015077716 | May 2015 | WO |
2014160716 | Jun 2015 | WO |
2015120181 | Aug 2015 | WO |
2016025025 | Feb 2016 | WO |
2016068882 | May 2016 | WO |
2016134151 | Aug 2016 | WO |
2016175876 | Nov 2016 | WO |
2016176181 | Nov 2016 | WO |
2017014820 | Jan 2017 | WO |
2017025838 | Feb 2017 | WO |
Entry |
---|
Notice of Allowance dated Dec. 1, 2017, in U.S. Appl. No. 14/967,757. |
Milling and Cleanout Services; Thru Tubing Solutions; Thru Tubing Solutions—Product Categories; http://www. thrutubing.com/ProductCategory.aspx?Category=2&name=Milling%20and%20Cleanout%20Services; Obtained Feb. 23, 2017. |
Wash Nozzle; Thru Tubing Solutions; Thru Tubing Solutions—Product Details; http://www.thrutubing.com/ProductDetails.aspx?ProductId=46; Obtained Feb. 24, 2017. |
International Search Report and Written Opinion dated Aug. 13, 2018, in International Application No. PCT/US18/30891. |
Non-Final Office Action dated Jun. 22, 2018, in U.S. Appl. No. 15/970,644. |
International Search Report and Written Opinion dated Aug. 31, 2018, in International Application No. PCT/US18/30903. |
Number | Date | Country | |
---|---|---|---|
20180320468 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62500870 | May 2017 | US |