This invention relates to extended release dosage forms of propranolol hydrochloride suitable for oral administration for the treatment of cardiovascular diseases, exhibiting in vitro and in vivo release profiles matching that of INDERAL® LA (an extended release propranolol hydrochloride dosage form), and more particularly to extended release propranolol HCl capsules, 60, 80, 120, and 160 mg, comprising immediate release (IR) beads releasing the drug within 60 minutes and sustained release (SR) beads releasing the drug over 24 hours when dissolution tested by the United States Pharmacopoeia dissolution test method for propranolol hydrochloride extended release capsules.
Propranolol hydrochloride-containing non-pareil seeds (sugar spheres) require a coating of water insoluble ethylcellulose of less than 2% by weight to mimic the drug release profile of INDERAL® LA when applied from a 98/02 acetone/purified water solution. Due to extremely low spray time, a significant batch to batch variability in drug release profile can occur. There was thus a desire to minimize batch to batch variability in drug release profile. Batch to batch variability may be improved by incorporating a water soluble film forming agent in the ethylcellulose membrane such that a significantly higher coating level, less susceptible to batch to batch variation, would be desired to provide a drug release profile mimicking that of INDERAL® LA.
U.S. Pat. No. 4,138,475 to McAinsh et al. discloses controlled release oral formulation comprising coated spheroids of propranolol or a pharmaceutically acceptable salt thereof, each spheroid coated with a mixture of 80 to 100% by weight of ethylcellulose, preferably having a viscosity of 50 cps at 20° C., 20 to 0% by weight of hydroxypropyl methylcellulose and optionally up to 20% plasticizer based on the total weight of the membrane. These spheroids prior to membrane coating comprise 40 to 65% by weight propranolol or a pharmaceutically acceptable salt thereof and 35 to 60% by weight of microcrystalline cellulose and are prepared by extrusion and spheronization. The ratio of ethylcellulose to hydroxypropylcellulose and coating thickness depend upon the desired controlled release characteristics.
U.S. Pat. No. 4,587,118 issued to Hsiao discloses a controlled release theophylline oral formulation comprising coated micropellets; each pellet is designed to release theophylline at an approximately constant rate. The pellet comprises a drug containing core, which is then coated with a mixture of about 90-70% by weight of ethylcellulose and about 10-30% by weight of hydroxypropyl cellulose. The ratio of ethylcellulose to hydroxypropylcellulose and coating thickness depend upon the desired control release characteristics.
U.S. Pat. No. 4,752,470 issued to Mehta teaches the art of making a controlled release indomethacin formulation comprising coated pellets of indomethacin; each pellet is designed to release indomethacin in both immediate and sustained release form. The pellet comprises a drug-containing core, which is then coated with a mixture of plasticized ethylcellulose and hydroxypropyl cellulose or hydroxypropyl methylcellulose. The loaded pellets are preferably composed of 5-30% by weight of indomethacin and coated with 0.5-10% by weight of ethylcellulose and hydroxypropylcellulose or hydroxypropyl methylcellulose, the ratio of ethylcellulose to hydroxypropylcellulose/hydroxypropyl methylcellulose depending upon the desired control release characteristics.
U.S. Pat. No. 4,957,745 issued to Jonsson et al. describes the art of making a controlled release formulation of a salt of metoprolol comprising a multitude of metoprolol cores prepared by layering the drug onto inert silicon dioxide beads, wherein the core is coated with a metoprolol permeable membrane of essentially ethylcellulose or a mixture of hydroxypropyl methylcellulose and ethylcellulose, the ratio of ethylcellulose to hydroxypropyl methylcellulose depending upon the desired control release characteristics.
U.S. Pat. No. 5,133,974 issued to Paradissis et al. discloses a controlled release formulation comprising a mixture of approximately 0-50% immediate release particles containing a drug, an inert substrate, a binder coated with talc, and up to 100% of extended release particles comprising the immediate release particles coated with a dissolution modifying system containing plasticizers and a film forming agent. Optionally, a drug is included in the coating. Film forming agents include ethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose and mixtures thereof.
U.S. Pat. No. 5,472,708 issued to Chen discloses the art of making a tablet which rapidly disintegrates in the aqueous environment of use, comprising a plurality of pellets embedded in the tablet comprising drug containing cores and a swelling agent having a dissolution rate controlling polymer membrane of a mixture of water-insoluble ethylcellulose and a water soluble film forming polymer, and a permeability reducing agent. The water-soluble polymer is selected from a group containing cellulose acetate phthalate, hydroxypropyl methylcellulose, and polyvinylpyrrolidone, the polymer exhibiting greater solubility at alkaline pH's being preferred. The swelling agent has the property of increasing in volume on exposure to the aqueous environment of use, thus causing rapid release of the drug following bursting of the bead.
Propranolol [1-(isopropyl amino)-3-(1-naphthyloxy)-2-propanoyl] is a beta-adrenergic blocking agent and as such is a competitive inhibitor of the effects of catecholamines at beta-adrenergic receptor sites. The principal effect of propranolol is to reduce cardiac activity by diminishing or preventing beta-adrenergic stimulation. By reducing the rate and force of contraction of the heart, and decreasing the rate of conduction of impulses through the conducting system, the response of the heart to stress and exercise is reduced. These properties are used in the treatment of angina in an effort to reduce the oxygen consumption and increase the exercise tolerance of the heart. Propranolol is also used in the treatment of cardiac arrhythmias to block adrenergic stimulation of cardiac pacemaker potentials. Propranolol is also beneficial in the long-term treatment of hypertension. Other uses of propranolol are in the treatment of migraine and anxiety.
Propranolol is normally administered as propranolol hydrochloride tablets or as long acting INDERAL® LA.
The present invention provides a sustained release multi-particulate dosage form comprising a two-bead population of propranolol hydrochloride—one IR (immediate release) bead and the other SR (sustained release) bead. Alternatively, the dosage form may comprise only SR beads. The IR bead population, comprising in one embodiment an inert core coated with one or more layers of propranolol HCl and a binder, rapidly releases the active upon oral administration while the SR bead population comprises an IR bead population having a sustained release coating of a water insoluble polymer (e.g., ethylcellulose) or a combination of a water insoluble polymer and a water soluble polymer, such as hydroxypropylcellulose (e.g., HPC, Klucel LF) or hydroxypropyl methylcellulose (e.g., HPMC, Methocel E5). The weight ratio of water insoluble polymer to water soluble polymer may vary from 100:0 to 65:35. The weight of the SR coating may vary from approximately 1 to 10%, preferably from about 1.5 to 4.0% based on the total weight of the coated beads, and most preferably the SR coating level is approximately 1.8 to 4.4 weight % based on the weight of the SR beads.
In accordance with one embodiment of the present invention unit dosage forms of extended release propranolol hydrochloride are provided that will release the drug into an aqueous environment in a fashion mimicking that of INDERAL® LA when tested under in vitro or in vivo conditions. It is an embodiment of the present invention to provide unit dosage forms such as hard gelatin capsules comprising two types of beads—one bead population (IR beads) comprising sugar spheres drug layered from an aqueous solution of propranolol hydrochloride with polyvinylpyrrolidone as the binder and a second bead population (SR beads) comprising an immediate release bead population having a sustained release membrane of approximately 1.5 to 6%, more particularly 1.8 to 4.4% by weight of a water insoluble polymer alone or in combination with a water soluble film forming polymer, wherein the ratio of IR beads to SR beads as well as the ratio of water insoluble polymer to water soluble polymer is optimized to obtain release profiles similar to that of INDERAL® LA, when both reference product and the long acting capsules of the present invention are tested by the United States Pharmacopoeia method for Propranolol Hydrochloride Extended Release Capsules. It is another embodiment of the present invention to provide unit dosage forms to be bioequivalent to INDERAL® LA when compared on an mg-by-mg basis. It is yet another embodiment of the present invention to provide physically and chemically stable dosage forms (i.e., exhibiting drug release profiles and degradation profiles statistically similar to that at the initial time point) when subjected to stability studies per ICH Guidelines. These and other embodiments, advantages and features of the present invention become clear when detailed description and examples are provided in subsequent sections.
All documents cited are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
As used herein, the term “propranolol” includes the base, pharmaceutically acceptable salts thereof, stereoisomers thereof and mixtures thereof.
The active core of the dosage form of the present invention may be comprised of an inert particle or an acidic or alkaline buffer crystal, which is coated with a drug-containing film-forming formulation and preferably a water-soluble film forming composition to form a water-soluble/dispersible particle. The amount of drug in the core will depend on the drug, the dose, and the capsule size. Those skilled in the art will be able to select an appropriate amount of drug for coating onto the core to achieve the desired dosage. In one embodiment, the inert core may be a sugar sphere, cellulose sphere, silicon dioxide or a buffer crystal or an encapsulated buffer crystal such as calcium carbonate, sodium bicarbonate, fumaric acid, tartaric acid, etc. which alters the microenvironment of the drug to facilitate its release.
The drug-containing particle may be coated with a water insoluble polymer or a combination of a water insoluble polymer and a water soluble polymer to provide SR beads. The water insoluble polymer and said water soluble polymer may be present at a weight ratio of from about 100/0 to 60/40 more particularly at a weight ratio of from about 95/5 to 65/35, preferably at a weight ratio of from 85/15 to 75/25. The membrane coating typically comprises from approximately 1% to 10%, preferably approximately 1.5 to 6%, most preferably approximately 1.8 to 4.4% by weight of the coated beads.
The unit dosage form according to one aspect of the present invention comprises two bead populations, one bead population, which provides an immediate release component of the active to act as a bolus dose and the other, a sustained release bead population, which releases propranolol over a period of 24 hours. In accordance with another embodiment, the dosage form comprises only SR beads.
The invention also provides a method of making a sustained release dosage form which comprises a mixture of two or more bead populations. In accordance with one aspect of the present invention, the method includes the steps of:
In accordance with certain embodiments of the present invention, the extended release capsule exhibits an in vitro dissolution profile substantially corresponding to the following pattern when tested according to United States Pharmacopoeia dissolution test method for Propranolol Hydrochloride Extended Release Capsules (USP Apparatus 1, Baskets @ 100 rpm, Drug Release Test 1 using 900 mL of pH 1.2 buffer for 1.5 hours followed by testing in 900 mL of pH 6.8 at 4, 8, 14, and 24 hours):
An aqueous or a pharmaceutically acceptable solvent medium may be used for preparing drug containing core particles. The type of film forming binder that is used to bind the water-soluble drug to the inert sugar sphere is not critical but usually water-soluble, alcohol-soluble or acetone/water soluble binders are used. Binders such as polyvinylpyrrolidone (PVP), polyethylene oxide, hydroxypropyl methylcellulose (HPMC), hydroxypropylcellulose (HPC), and polysaccharides, such as dextran and cornstarch, typically are used at concentrations of 0.5 to 10 weight % based on the coating formulation. The drug substance may be present in this coating formulation in the solution form or may be suspended at a solid content up to 35 weight % or lower, depending on the viscosity of the coating formulation.
The active containing cores (beads, pellets or granular particles) thus obtained may be coated with one or more layers of polymers to obtain desired release profiles. The membrane coating, which largely controls the rate of drug release by diffusion following imbibition of water or body fluids into the core, comprises a water insoluble polymer or a water insoluble polymer in combination with a water-soluble polymer. The water insoluble polymer is selected from the group which includes ethylcellulose, cellulose acetate, and ammonio methacrylic acid copolymers sold under the trademarks EUDRAGIT RL and EUDRAGIT RS. The water-soluble polymer is selected from the group consisting of low viscosity (approximately 200 cps or less when tested as a 2% solution) HPMC, HPC, methylcellulose, polyethylene glycol (PEG of molecular weight>3000), and polyvinylpyrrolidone. The water insoluble polymer to water-soluble polymer ratio may typically vary 100/0 to 60/40, more particularly from 95/5 to 65/35, preferably from 85/15 to 75/25, at a thickness of from about 1% to 10%, preferably of approximately 1.5 to 6%, most preferably of approximately 1.8 to 4.4%, by weight of coated beads and depending on whether a polymer solution in an organic solvent or an aqueous polymer dispersion is used for membrane coating.
The membranes described herein may also include one or more plasticizers. Representative examples of plasticizers that may be used to plasticize the membranes include triacetin, tributyl citrate, triethyl citrate, acetyl tri-n-butyl citrate, diethyl phthalate, castor oil, dibutyl sebacate, acetylated monoglycerides and the like or mixtures thereof. The plasticizer may comprise about 3 to 30 wt. % and more typically about 10 to 25 wt. % based on the polymer.
In general, it is desirable to prime the surface of the active containing particle before applying the sustained release membrane coating by applying a thin hydroxypropyl methylcellulose (HPMC) film. A particularly useful plasticized HPMC seal coat is OPADRY® Clear available from Colorcon. While HPMC is typically used, other primer or seal coats such as hydroxypropyl cellulose (HPC) can also be used.
The present invention relates to multi-dose forms, i.e., drug products in the form of multi-particulate dosage forms (pellets, beads, granules or mini-tablets) or in other forms suitable for oral administration.
The following non-limiting examples illustrate the capsule dosage forms manufactured in accordance with the invention, which exhibit in vitro drug release profiles, similar to that predicted by performing modeling exercises, and in vitro and plasma concentrations following circadian rhythm pharmacodynamic profile of angina attacks.
Propranolol HCl (168 kg) was slowly added to an aqueous solution of polyvinylpyrrolidone (8.8 kg Povidone K-30) and mixed well. 25-30 mesh sugar spheres (117.2 kg) were coated with the drug solution in a Glatt fluid bed granulator. The drug containing pellets were dried, and a seal coat of Opadry Clear (6.0 kg) was first applied. Duplicate batches of sustained release beads with a membrane coating with ethylcellulose having a viscosity of 10 cps at 25° C. at a thickness of 1.8%, 1.9% and 2.0% w/w (batch size: 275 kg) were manufactured. The SR coating was followed by the application of an Opadry Clear seal coating at 2% w/w. The SR beads prepared in accordance with Example 1 were filled into hard gelatin capsules and were characterized by the following properties:
Drug loading: 56% w/w based on core composition (corresponds to approximately 54% drug based on coated bead weight for bead batches having an SR coating of 1.8, 1.9, and 2.0%).
Drug Release Testing: The drug release profiles were generated by dissolution testing per US Pharmacopoeia method for Propranolol Hydrochloride Extended Release Capsules (USP Apparatus 1, Baskets @ 100 rpm, Drug Release Test 1 using 900 mL of pH 1.2 buffer for 1.5 hours followed by testing in 900 mL of pH 6.8 at 4, 8, 14, and 24 hours). The profiles obtained are shown in
Propranolol HCl (168 kg) was slowly added to an aqueous solution of polyvinylpyrrolidone (8.8 kg Povidone K-30) and mixed well. 25-30 mesh sugar spheres (117.2 kg) were coated with the drug solution in a Glatt fluid bed granulator. The drug containing pellets were dried, and a seal coat of Opadry Clear (6.0 kg) was first applied at a weight gain of 2% to form IR beads. Duplicate batches of sustained release beads were prepared by membrane coating IR beads (3750 g) with a sustained release coating comprising ethylcellulose (148 g) having a viscosity of 10 cps at 25° C. and hydroxypropylcellulose (Klucel LF; 47.3 g) having a viscosity of 75-150 cps when tested on a 5% aqueous solution at 25° C. (ratio of ethylcellulose to Klucel: 75/25) for a weight gain of approximately 5% w/w (batch size: 3947 g). The coated beads were cured at 60° C. for 4 hours. Propranolol Hydrochloride Extended Release Capsules, 160 mg, were produced by filling IR and SR Beads at a ratio of 20/80. The drug release from these capsules is presented in
Propranolol HCl (168 kg) was slowly added to an aqueous solution of polyvinylpyrrolidone (8.8 kg Povidone K-30) and mixed well. 25-30 mesh sugar spheres (117.2 kg) were coated with the drug solution in a Glatt fluid bed granulator. The drug containing pellets were dried, and a seal coat of Opadry Clear (6.0 kg) was first applied to form IR beads. Duplicate batches of sustained release beads were prepared by membrane coating IR beads (3750 g) with ethylcellulose (152.5 g) having a viscosity of 10 cps at 25° C. and hydroxypropyl methylcellulose (Methocel E5 from Dow Chemicals; 26.9 g) having a viscosity of 5 cps when tested on a 2% aqueous solution at 25° C. (ratio of ethylcellulose to Methocel E5: 85/15) for a weight gain of approximately 5% w/w (batch size: 3947 g). The coated beads were cured at 60° C. for 4 hours. Propranolol Hydrochloride Extended Release Capsules, 160 mg, were produced by filling IR and SR Beads at a ratio of 20/80. The drug release from these capsules is presented in
Ethylcellulose-Klucel based extended release capsules of Example 2 were packaged in induction sealed HDPE bottles and placed on accelerated stability (i.e., at 40° C./75% RH). The drug release profiles at 1, 2, 3, and 6-month stability time points are shown in
Ethylcellulose-HPMC based extended release capsules of Example 3 were packaged in induction sealed HDPE bottles and placed on accelerated stability (i.e., at 40° C./75% RH). The drug release profiles at 1, 2, 3, and 6-month stability time points are shown in
Propranolol HCl (168 kg) was slowly added to an aqueous solution of polyvinylpyrrolidone (8.8 kg Povidone K-30) and mixed well. 25-30 mesh sugar spheres (117.2 kg) were coated with the drug solution in a Glatt fluid bed granulator. The drug containing pellets were dried, and a seal coat of OPADRY Clear (6.0 kg) was first applied to provide IR beads. IR beads (255.8 kg) were membrane coated with a sustained release coating comprising ethylcellulose (14.4 g) and hydroxypropyl methylcellulose (4.8 g) at a ratio of 75/25 for a weight gain of approximately 5% w/w (batch size: 275 kg). The coated beads were cured at 60° C. for 4 hours. Propranolol Hydrochloride Extended Release Capsules, 60, 80, 120, and 160 mg were produced by filling IR and SR Beads at a ratio of 20/80. The drug release from these capsules mimics that of INDERAL® LA.
Number | Name | Date | Kind |
---|---|---|---|
3184386 | Stephenson | May 1965 | A |
3558768 | Klippel | Jan 1971 | A |
3885026 | Heinemann et al. | May 1975 | A |
4078051 | Pomot et al. | Mar 1978 | A |
4138475 | McAinsh et al. | Feb 1979 | A |
4248857 | DeNeale et al. | Feb 1981 | A |
4292017 | Doepel | Sep 1981 | A |
4305502 | Gregory et al. | Dec 1981 | A |
4369172 | Schor et al. | Jan 1983 | A |
4371516 | Gregory et al. | Feb 1983 | A |
4389330 | Tice et al. | Jun 1983 | A |
4389393 | Schor et al. | Jun 1983 | A |
4542042 | Samejima et al. | Sep 1985 | A |
4556678 | Hsiao | Dec 1985 | A |
4587118 | Hsiao | May 1986 | A |
4628098 | Nohara et al. | Dec 1986 | A |
4661647 | Serpelloni et al. | Apr 1987 | A |
4670459 | Sjoerdsma | Jun 1987 | A |
4689333 | Nohara et al. | Aug 1987 | A |
4698101 | Koivurinta | Oct 1987 | A |
4708867 | Hsiao | Nov 1987 | A |
4713248 | Kjornaes et al. | Dec 1987 | A |
4716041 | Kjornaes et al. | Dec 1987 | A |
4728512 | Mehta et al. | Mar 1988 | A |
4743248 | Bartoo et al. | May 1988 | A |
4752470 | Mehta | Jun 1988 | A |
4757090 | Salpekar et al. | Jul 1988 | A |
4760093 | Blank et al. | Jul 1988 | A |
4780318 | Appelgren et al. | Oct 1988 | A |
4786508 | Ghebre-Sellassie et al. | Nov 1988 | A |
4800087 | Mehta | Jan 1989 | A |
4803213 | Iida et al. | Feb 1989 | A |
4824675 | Wong et al. | Apr 1989 | A |
4832880 | Staniforth | May 1989 | A |
4840799 | Appelgren et al. | Jun 1989 | A |
4851226 | Julian et al. | Jul 1989 | A |
4851229 | Magruder et al. | Jul 1989 | A |
4863742 | Panoz et al. | Sep 1989 | A |
4871549 | Ueda et al. | Oct 1989 | A |
4874613 | Hsiao | Oct 1989 | A |
4886669 | Ventouras | Dec 1989 | A |
4892741 | Ohm et al. | Jan 1990 | A |
4894240 | Geoghegan et al. | Jan 1990 | A |
4898737 | Panoz et al. | Feb 1990 | A |
4915949 | Wong et al. | Apr 1990 | A |
4938968 | Mehta | Jul 1990 | A |
4946684 | Blank et al. | Aug 1990 | A |
4957745 | Jonsson et al. | Sep 1990 | A |
4968508 | Oren et al. | Nov 1990 | A |
4971805 | Kitanishi et al. | Nov 1990 | A |
4983401 | Eichel et al. | Jan 1991 | A |
5006345 | Lang | Apr 1991 | A |
5011692 | Fujioka et al. | Apr 1991 | A |
5013557 | Tai | May 1991 | A |
5013743 | Iwahi et al. | May 1991 | A |
5017122 | Staniforth | May 1991 | A |
5017381 | Maruyama et al. | May 1991 | A |
5026559 | Eichel et al. | Jun 1991 | A |
5026560 | Makino et al. | Jun 1991 | A |
5039540 | Ecanow | Aug 1991 | A |
5045321 | Makino et al. | Sep 1991 | A |
5073374 | McCarty | Dec 1991 | A |
5075114 | Roche | Dec 1991 | A |
5079018 | Ecanow | Jan 1992 | A |
5082669 | Shirai et al. | Jan 1992 | A |
5084278 | Mehta | Jan 1992 | A |
5093132 | Makino et al. | Mar 1992 | A |
5104648 | Denton et al. | Apr 1992 | A |
5112616 | McCarty | May 1992 | A |
5133974 | Paradissis et al. | Jul 1992 | A |
5137733 | Noda et al. | Aug 1992 | A |
5149542 | Valducci | Sep 1992 | A |
5160680 | Serpelloni et al. | Nov 1992 | A |
5169640 | France et al. | Dec 1992 | A |
5178878 | Wehling et al. | Jan 1993 | A |
5204121 | Bucheler et al. | Apr 1993 | A |
5211957 | Hagemann et al. | May 1993 | A |
5213808 | Bar-Shalom et al. | May 1993 | A |
5229131 | Amidon et al. | Jul 1993 | A |
5229135 | Philippon et al. | Jul 1993 | A |
5238686 | Eichel et al. | Aug 1993 | A |
5252337 | Powell | Oct 1993 | A |
5256699 | Murphy et al. | Oct 1993 | A |
5260068 | Chen | Nov 1993 | A |
5260069 | Chen | Nov 1993 | A |
5275827 | Spinelli et al. | Jan 1994 | A |
5376384 | Eichel et al. | Dec 1994 | A |
5409711 | Mapelli et al. | Apr 1995 | A |
5433959 | Makino et al. | Jul 1995 | A |
5439689 | Hendrickson et al. | Aug 1995 | A |
5445829 | Paradissis et al. | Aug 1995 | A |
5464632 | Cousin et al. | Nov 1995 | A |
5466464 | Masaki et al. | Nov 1995 | A |
5470584 | Hendrickson et al. | Nov 1995 | A |
5472708 | Chen | Dec 1995 | A |
5478573 | Eichel et al. | Dec 1995 | A |
5489436 | Hoy et al. | Feb 1996 | A |
5501861 | Makino et al. | Mar 1996 | A |
5506345 | Riley et al. | Apr 1996 | A |
5508040 | Chen | Apr 1996 | A |
5529790 | Eichel et al. | Jun 1996 | A |
5536507 | Abramowitz et al. | Jul 1996 | A |
5567441 | Chen | Oct 1996 | A |
5576014 | Mizumoto et al. | Nov 1996 | A |
5609883 | Valentine et al. | Mar 1997 | A |
5612059 | Cardinal et al. | Mar 1997 | A |
5616345 | Geoghegan et al. | Apr 1997 | A |
5629017 | Pozzi et al. | May 1997 | A |
5639475 | Bettman et al. | Jun 1997 | A |
5643630 | Hinzpeter et al. | Jul 1997 | A |
5700492 | Morimoto et al. | Dec 1997 | A |
5720974 | Makino et al. | Feb 1998 | A |
5738875 | Yarwood et al. | Apr 1998 | A |
5747068 | Mendizabal | May 1998 | A |
5762961 | Roser et al. | Jun 1998 | A |
5788987 | Busetti et al. | Aug 1998 | A |
5807577 | Ouali | Sep 1998 | A |
5837284 | Mehta et al. | Nov 1998 | A |
5837285 | Nakamichi et al. | Nov 1998 | A |
5837379 | Chen et al. | Nov 1998 | A |
5840329 | Bai | Nov 1998 | A |
5876759 | Gowan, Jr. | Mar 1999 | A |
5891474 | Busetti et al. | Apr 1999 | A |
5900252 | Calanchi et al. | May 1999 | A |
5908638 | Huber et al. | Jun 1999 | A |
5968554 | Beiman et al. | Oct 1999 | A |
6024981 | Khankari et al. | Feb 2000 | A |
6024982 | Oshlack et al. | Feb 2000 | A |
6033687 | Heinicke et al. | Mar 2000 | A |
6039979 | Gendrot et al. | Mar 2000 | A |
6096340 | Chen et al. | Aug 2000 | A |
6099859 | Cheng et al. | Aug 2000 | A |
6099863 | Gilis et al. | Aug 2000 | A |
6099865 | Augello et al. | Aug 2000 | A |
6103263 | Lee et al. | Aug 2000 | A |
6106861 | Chaveau et al. | Aug 2000 | A |
6106862 | Chen et al. | Aug 2000 | A |
6123962 | Makino et al. | Sep 2000 | A |
6129933 | Oshlack et al. | Oct 2000 | A |
6136345 | Grimmett et al. | Oct 2000 | A |
6139865 | Friend et al. | Oct 2000 | A |
6139877 | Debregeas et al. | Oct 2000 | A |
6153220 | Cumming et al. | Nov 2000 | A |
6162463 | Lippa | Dec 2000 | A |
6169105 | Wong et al. | Jan 2001 | B1 |
6183776 | Depui et al. | Feb 2001 | B1 |
6190692 | Busetti et al. | Feb 2001 | B1 |
6221392 | Khankari et al. | Apr 2001 | B1 |
6221402 | Itoh et al. | Apr 2001 | B1 |
6228398 | Devane et al. | May 2001 | B1 |
6269615 | Amborn et al. | Aug 2001 | B1 |
6287599 | Burnside et al. | Sep 2001 | B1 |
6316029 | Jain et al. | Nov 2001 | B1 |
6328994 | Shimizu et al. | Dec 2001 | B1 |
6344215 | Bettman et al. | Feb 2002 | B1 |
6350470 | Pather et al. | Feb 2002 | B1 |
6350471 | Seth | Feb 2002 | B1 |
6365182 | Khankari et al. | Apr 2002 | B1 |
6368625 | Siebert et al. | Apr 2002 | B1 |
6368628 | Seth | Apr 2002 | B1 |
6372253 | Daggy et al. | Apr 2002 | B1 |
6391335 | Pather et al. | May 2002 | B1 |
6413549 | Green et al. | Jul 2002 | B2 |
6420473 | Chittamuru et al. | Jul 2002 | B1 |
6432534 | Hayakawa et al. | Aug 2002 | B1 |
6465009 | Liu et al. | Oct 2002 | B1 |
6465010 | Lagoviyer et al. | Oct 2002 | B1 |
6495160 | Esposito et al. | Dec 2002 | B2 |
6500454 | Percel et al. | Dec 2002 | B1 |
6509036 | Pather et al. | Jan 2003 | B2 |
6531152 | Lerner et al. | Mar 2003 | B1 |
6551617 | Corbo et al. | Apr 2003 | B1 |
6579535 | Valentine et al. | Jun 2003 | B2 |
6596311 | Dobetti | Jul 2003 | B1 |
6602521 | Ting et al. | Aug 2003 | B1 |
6627223 | Percel et al. | Sep 2003 | B2 |
6641838 | Pather et al. | Nov 2003 | B2 |
6660382 | Nouri et al. | Dec 2003 | B2 |
6663888 | Percel et al. | Dec 2003 | B2 |
6663893 | Corbo et al. | Dec 2003 | B2 |
6740341 | Holt et al. | May 2004 | B1 |
6897205 | Beckert et al. | May 2005 | B2 |
7048945 | Percel et al. | May 2006 | B2 |
20010007680 | Kolter et al. | Jul 2001 | A1 |
20010014340 | Ohta et al. | Aug 2001 | A1 |
20010046964 | Percel et al. | Nov 2001 | A1 |
20020054907 | Devane et al. | May 2002 | A1 |
20020077348 | Dean et al. | Jun 2002 | A1 |
20020142034 | Shimizu et al. | Oct 2002 | A1 |
20020187190 | Cade et al. | Dec 2002 | A1 |
20030064108 | Lukas et al. | Apr 2003 | A1 |
20030096791 | Gupte et al. | May 2003 | A1 |
20030113374 | Percel et al. | Jun 2003 | A1 |
20030134884 | Hazama et al. | Jul 2003 | A1 |
20030157173 | Percel et al. | Aug 2003 | A1 |
20030161888 | Fernandez et al. | Aug 2003 | A1 |
20030215500 | Ohta et al. | Nov 2003 | A1 |
20040047906 | Percel et al. | Mar 2004 | A1 |
20040121010 | Hirsh et al. | Jun 2004 | A1 |
20040122106 | Ohta et al. | Jun 2004 | A1 |
20040131682 | Percel et al. | Jul 2004 | A1 |
20040137156 | Lee et al. | Jul 2004 | A1 |
20040242536 | Khoo et al. | Dec 2004 | A1 |
20050025824 | Percel et al. | Feb 2005 | A1 |
20050118268 | Percel et al. | Jun 2005 | A1 |
20050152974 | Boehm et al. | Jul 2005 | A1 |
20050232988 | Venkatesh et al. | Oct 2005 | A1 |
20050269722 | De Luigi Bruschi et al. | Dec 2005 | A1 |
20060057199 | Venkatesh et al. | Mar 2006 | A1 |
20060078614 | Venkatesh et al. | Apr 2006 | A1 |
20060105038 | Lai et al. | May 2006 | A1 |
20060105039 | Lai et al. | May 2006 | A1 |
20060246134 | Venkatesh | Nov 2006 | A1 |
20060269607 | Percel et al. | Nov 2006 | A1 |
20090263480 | Lai et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
0052492 | Feb 1984 | EP |
0166440 | Jan 1986 | EP |
0239361 | Sep 1987 | EP |
0349103 | Jan 1990 | EP |
0357369 | Mar 1990 | EP |
0391518 | Oct 1990 | EP |
0431877 | Jun 1991 | EP |
0516345 | Dec 1992 | EP |
0538034 | Apr 1993 | EP |
0553777 | Aug 1993 | EP |
0650826 | May 1995 | EP |
0721777 | Jul 1996 | EP |
0815931 | Jan 1998 | EP |
0294493 | Dec 1998 | EP |
0914818 | May 1999 | EP |
0914823 | May 1999 | EP |
1010423 | Jun 2000 | EP |
0582396 BI | Jan 2001 | EP |
1070497 | Jan 2001 | EP |
1072257 | Jan 2001 | EP |
1157690 | Nov 2001 | EP |
1156686 | Mar 2003 | EP |
1366759 | Dec 2003 | EP |
0914823 | Dec 2004 | EP |
2319498 | May 2011 | EP |
2679451 | Jan 1993 | FR |
2766089 | Jan 1999 | FR |
2778848 | Nov 1999 | FR |
2053787 | Feb 1981 | GB |
8824392.8 | Sep 1989 | GB |
2224207 | May 1990 | GB |
41-11273 | Jun 1966 | JP |
49-69819 | Jul 1974 | JP |
55-129224 | Oct 1980 | JP |
56-014098 | Oct 1981 | JP |
61-143316 | Jul 1986 | JP |
62-50445 | Oct 1987 | JP |
62-242616 | Oct 1987 | JP |
62-246513 | Oct 1987 | JP |
62-252723 | Nov 1987 | JP |
63-162619 | Jul 1988 | JP |
63-270624 | Nov 1988 | JP |
1-503385 | Nov 1989 | JP |
1-313420 | Dec 1989 | JP |
2-500747 | Mar 1990 | JP |
2-164824 | Jun 1990 | JP |
2-172918 | Jul 1990 | JP |
2-289512 | Nov 1990 | JP |
3-240724 | Oct 1991 | JP |
5-271054 | Oct 1993 | JP |
5-310558 | Nov 1993 | JP |
6-53658 | Jul 1994 | JP |
6-321790 | Nov 1994 | JP |
7-69889 | Mar 1995 | JP |
7-124231 | May 1995 | JP |
8-503482 | Apr 1996 | JP |
8-175978 | Jul 1996 | JP |
550608 | Nov 2005 | NZ |
554346 | May 2006 | NZ |
WO 8808703 | Nov 1988 | WO |
WO 8808704 | Nov 1988 | WO |
WO 9210173 | Jun 1992 | WO |
WO 9300097 | Jan 1993 | WO |
WO 9312769 | Jul 1993 | WO |
WO 9313758 | Jul 1993 | WO |
WO 9315724 | Aug 1993 | WO |
WO 9408576 | Apr 1994 | WO |
WO 9412180 | Jun 1994 | WO |
WO 9741878 | Nov 1997 | WO |
WO 9747287 | Dec 1997 | WO |
WO 9904763 | Feb 1999 | WO |
WO 0025752 | May 2000 | WO |
WO 0033821 | Jun 2000 | WO |
WO 0042998 | Jul 2000 | WO |
WO 0051568 | Sep 2000 | WO |
WO 0059486 | Oct 2000 | WO |
WO 0113898 | Mar 2001 | WO |
WO 0172285 | Oct 2001 | WO |
WO 0180829 | Nov 2001 | WO |
WO 0213794 | Feb 2002 | WO |
WO 0243704 | Jun 2002 | WO |
WO 02057475 | Jul 2002 | WO |
WO 02085336 | Oct 2002 | WO |
WO 03013492 | Feb 2003 | WO |
WO 03039520 | Mar 2003 | WO |
WO 03026613 | Apr 2003 | WO |
WO 03041683 | May 2003 | WO |
WO 03047552 | Jun 2003 | WO |
WO 2004009058 | Jan 2004 | WO |
WO 2004022037 | Mar 2004 | WO |
WO 2004087111 | Oct 2004 | WO |
WO 2005097064 | Oct 2005 | WO |
WO 2005105049 | Nov 2005 | WO |
Entry |
---|
Yamahara et al, Effect of release rate on bioavailability of control-release multiple unit dosage forms, 1995, Yakuzaigaku, vol. 55 No. 2, 99-107. |
Ishino, R et al., “Design and Preparation of Pulsatile Release Tablet as a New Oral Drug Delivery System,” Chem. Pharm. Bull., vol. 40, No. 11, pp. 3036-3041 (Nov. 1992). |
Anwar, Y. et al., “Chronotherapeutics for Cardiovascular Disease,” Drugs, May 1998. |
“Low Substituted Hydroxypropylcellulose,” Official Monographs for Part II, 2001, NRF, JP XIV, pp. 942-943. |
Albrecht, “International Search Report,” 6 pages, from International Patent Appl. No. PCT/US02/31535, European Patent Office (Feb. 3, 2003). |
Bauer et al., Pharmarzeutische Technologie, 5th Edition, 1997, Govi Verlag Frankfurt, pp. 164-166. |
Berigan, “Atomoxetine Used Adjunctively With Selective Serotonin Reuptake Inhibitors to Treat Depression,” Prim. Care. Companion J. Clin. Psychiatry 6(2):93-94 (2004). |
Bodmeier et al., “Theophylline Tablets Coated with Aqueous Latexes Containing Dispersed Pore Formers,” J. Pharm. Sci. 79(10):925-928 (1990). |
Database WPI, Section Ch, Week 198748, Derwent Publications, Ltd., London, GB; Class A96; AN 1987-338131, XP002156870. |
Fell, Letter to the Editor, J. Pharm. Pharmacol. 1968, vol. 20, pp. 657-658. |
FMC Corporation Product Specification for Avicel PH, 2005. |
Foreign non-patent publication from Japanese textbook, 1989, Hirokawa Publishing Co. |
Foreign non-patent publication Sysmex No. FP30SCJ001. |
Fubara, “International Preliminary Examination Report,” 3 pages, from International Patent Appl. No. PCT/US02/31535, European Patent Office (Jun. 19, 2003). |
Gordon et al., “Effect of the Mode of Super Disintegrant Incoproration on Dissolution in Wet Granulated Tables,” J. Pharm. Sci. 82:220-226 (1993). |
Gorman et al., An Evaluation of Croscarmellose as a Tablet Disintegrant in Direct Compression Systems, Drug. Dev. Ind. Pharm. 1982; vol. 8, pp. 397-410. |
Handbook (Binran) of Granule, vol. 1, Ohmsha Ltd., p. 434 & 438 (May 3, 1975). |
Kaneto et al., 2000, Latest Pharmacy, Hirokawa Publishing Co., 1 Edition. |
Kawashima, “Low-Substituted Hydroxypropylcellulose as a Sustained-Drug Release Matrix Base or Disintegrant Depending on Its Particle Size and Loading in Formulation,” Pharm. Res. 1993, vol. 10(3), pp. 351-355. |
Kornblum, “A New Tablet Disintegrating Agent,” J. Pharm. Sci., Jan. 1973, vol. 62(1), pp. 43-49. |
Kratochvil et al., “Atomoxetine: a selective noradrenaline reuptake inhibitor for the treatment of attention-deficit/hyperactivity disorder,” Exp. Opin. Pharmacother. 4(7):1165-1174 (2003). |
McKenna et al., “Effect of particle size on the compaction mechanism and tensile strength of tablets,” J. Pharm. Pharmacol. Jun. 1982, vol. 34(6), pp. 347-351. |
McKetta et al., “Table of Contents,” Encyclopedia of Chemical Processing and Design (1989). |
McKetta et al., Encyclopedia of Chemical Processing and Design, “Organic Phase Separation Conservation,” p. 167 (1989). |
Mitsuo et al., Pharmaceutics Manual, 1989, Pharmaceutics Manual, Nanzando Co. Ltd. |
Nwokole et al., “Tolerance during 29 days of conventional dosing with cimetidine, mizatidine, famotidine or ranitidine,” Aliment. Pharmacol. Ther. 4(Suppl. I):29-45 (1990) Abstract only. |
Oh, “International Preliminary Report on Patentability,” 5 pages, from International Appl. No. PCT/US2005/037084, United States Patent and Trademark Office, Alexandria, Virginia, USA (mailed Aug. 24, 2007). |
Ohira et al., “Effects of Various Histamine H2-Receptor Antagonists on Gastrointestinal Motility and Gastric Emptying,” J. Smooth Muscle Res. 29:131-142 (1993). |
Pharmaceutical Excipients. London: Pharmaceutical Press. Electronic Version, 2006, Mannitol. |
Pharmaceutical Excipients. London: Pharmaceutical Press. Electronic Version, 2006, Lactose Monohydrate. |
Pharmaceutical Excipients. London: Pharmaceutical Press. Electronic Version, 2006, Croscarmellose sodium. |
Rankin, “International Search Report,” 6 pages, PCT International Application No. PCT/US02/39238, European Patent Office (May 8, 2003). |
Rudnic et al., “Some Effects of Relatively Low Levels of Eight Tablet Disintegrants on a Direct Compression System,” Drug. Dev. Ind. Pharm. 1981, vol. 7(3), pp. 347-358. |
Rudnic et al., “Studies of the Utility of Cross Linked Polyvinlpolypyrrolidine as a Tablet Disintegrant,” Drug Development and Industrial Pharmacy, 1980, vol. 6, No. 3, pp. 291-309. |
Sato et al., “Anticonvulsant effects of tigabine, a new antiepileptic drug: the profile of action in the rat kindling model of epilepsy,” Epilepsia 37(Supp. 3):110-111 (1996). |
Schifferer, “International Search Report,” 4 pages, from International Appl. No. PCT/US2005/037084, European Patent Office, Rijswijk, The Netherlands (mailed Jun. 1, 2006). |
Schifferer, “Written Opinion of the International Search Authority,” 6 pages, from International Appl. No. PCT/US2005/037084, European Patent Office, Munich, Germany (mailed Jun. 1, 2006). |
Shangraw et al., “A new era of tablet disintegrants,” Pharm. Technol. 1980, vol. 4(10), pp. 49-57. |
Tirkkonen and Paronen, “Enhancement of drug release from ethylcellulose microcapsules using solid sodium chloride in the wall,” Int. J. Pharmaceutics 88;39-51 (1992). |
Trottier and Wood, 2005, “Particle Size Measurement,” Kirk-Othmer Encyclopedia of Chemical Technology (Extract of 1. Introduction; 2. Data Representation; 4. Measurement Methods; 8. Selection of Equipment). |
Ueki et al., “Nizatidine Comparably Enhances Postprandial Gastric Motility to Existing Gastroprokinetics in Dogs,” Jpn. Pharmacol. Ther. 28(11):925-930 (2000). |
Uhl, “International Search Report,” 5 pages, International Patent Appl. No. PCT/US2006/016538, European Patent Office (Feb. 27, 2007). |
Uhl, “Written Opinion of the International Searching Authority,” 6 pages, International Patent Appl. No. PCT/US2006/016538, European Patent Office (Feb. 27, 2007). |
van Kamp et al., “Improvement by super disintegrants of the properties of tablets containing lactose, prepared by wet granulation,” Pharmaceutisch Weekblad Scientific Edition; 1983, vol. 5, pp. 165-171. |
Villa, “International Search Report,” 4 pages, from International Appl. No. PCT/US2005/038328, European Patent Office, Rijswijk, The Netherlands (mailed Sep. 15, 2006). |
Villa, “Written Opinion of the International Search Authority,” 5 pages, from International Appl. No. PCT/US2005/038328, European Patent Office, Munich, Germany (mailed Sep. 15, 2006). |
Vromans et al., “Studies on tableting properties of lactose,” Pharmaceutisch Weekblad Scientific Edition; 1985, vol. 7, pp. 186-193. |
Yamamoto et al., “The Effects of Nizatidine on the Function of Esophageal Motility in Patients with Gastroesophageal Reflux Disease (GERD),” Jpn. Pharmacol. Ther. 28(5):419-424 (2000). |
Young, “International Preliminary Examination Report” 6 pages, PCT International Application No. PCT/US02/39238, United States Patent and Trademark Office (Apr. 27, 2005). |
Young, “Written Opinion,” 5 pages, PCT International Application No. PCT/US02/39238, United States Patent and Trademark Office (Jan. 13, 2005). |
Zheng et al., “Influence of Eudragit® NE 30 D Blended with Eudragit® L 30 D-55 on the Release of Phenylpropanolamine Hydrochloride from Coated Pellets,” Drug Development and Industrial Pharmacy 29(3):357-366 (2003). |
Zimmer, “European Search Report,” 3 pages, European patent appl. No. 01103129.1, European Patent Office (Jun. 9, 2001). |
Zimmer, “International Search Report,” 4 pages, PCT International Application No. PCT/US01/04012, European Patent Office (Jun. 19, 2001). |
Number | Date | Country | |
---|---|---|---|
20040126427 A1 | Jul 2004 | US |