Extended subspace method for cross-talk mitigation in multi-parameter inversion

Information

  • Patent Grant
  • 10459117
  • Patent Number
    10,459,117
  • Date Filed
    Thursday, May 8, 2014
    11 years ago
  • Date Issued
    Tuesday, October 29, 2019
    6 years ago
Abstract
An extended subspace method for inverting geophysical data to infer models for two or more subsurface physical properties, using gradients of an objective function as basis vectors for forming model updates. The extended set of basis vectors provides explicit mixing between gradient components corresponding to different medium parameters, for example P-wave velocity and an anisotropy parameter. In a preferred embodiment, off-diagonal elements of the mixing matrix may be scaled to adjust the degree of mixing between gradient components. Coefficients of the basis vector expansion are determined in a way that explicitly accounts for leakage or crosstalk between different physical parameters. The same extended subspace approach may be used to make further improvement to the model updates by incorporating well constraints, where well log data are available.
Description
FIELD OF THE INVENTION

This invention relates to the field of geophysical prospecting and, more particularly, to processing geophysical data. Specifically, the invention is a method for inferring properties of the subsurface based on information contained in geophysical data acquired in field experiments.


BACKGROUND OF THE INVENTION

During seismic, electromagnetic, or a similar survey of a subterranean region, geophysical data are acquired typically by positioning a source at a chosen shot location, and measuring seismic, electromagnetic, or another type of back-scattered energy generated by the source using receivers placed at selected locations. The measured reflections are referred to as a single “shot record”. Many shot records are measured during a survey by moving the source and receivers to different locations and repeating the aforementioned process. The survey can then be used to perform inversion, e.g., Full Waveform/Wavefield Inversion in the case of seismic data, which uses information contained in the shot records to determine physical properties of the subterranean region (e.g., speed of sound in the medium, density distribution, resistivity, etc.). Inversion is an iterative process, each iteration comprising the steps of forward modeling to create simulated (model) data and objective function computation to measure the similarity between simulated and field data. Physical properties of the subsurface are adjusted at each iteration to ensure progressively better agreement between simulated and field data. The invention will be described primarily in the context of Full Waveform Inversion of seismic data, but can be applied to inversion of other types of geophysical data.


Multi-parameter inversion involves simultaneous updating of at least two medium properties. A typical strategy is to formulate an objective (cost) function E(m) measuring the misfit between modeled and field data, where m is a vector of medium properties whose components can be compressional and shear-wave velocities, Vp and Vs, density ρ, Thompsen anisotropy parameters ϵ and δ (Tsvankin, 2001, p. 18), etc. The gradient of the objective function with respect to individual components of m is indicative of the direction in which medium parameters can be updated so that the objective function is minimized and progressively better fit of modeled and field data is obtained. The basis of this approach is the well-known Taylor series:








E


(

m
+

Δ





m


)


=


E


(
m
)


+


(



m


E

)


Δ





m

+


1
2


Δ







m
T



(



mm


E

)



Δ





m

+







,




where Δm is the desired update; ∇mE and ∇mmE are the gradient and the Hessian of the objective function respectively. The gradient ∇mE is a vector containing first-order derivatives of the objective function E with respect to each individual component mi of the model vector m:









m


E

=


[



E




m
i



]

.






The Hessian ∇mmE is a matrix containing second-order derivatives of the objective function E with respect to individual components mi, mj:









mm


E

=


[



E





m
i






m
j




]

.






Clearly, if we neglect quadratic terms (the ones with the Hessian) of this expansion and set Δm=−α∇mE, with α>0, then the objective function will decrease:

E(m+Δm)=E(m)+(∇mEm=E(m)−α(∇mE)2<E(m).

Optimal α can be determined with the help of line search, which typically involves evaluating the objective (cost) function for strategically chosen values of α so as to find the best one.


The drawback of this approach is that the gradient does not usually provide the best possible descent direction. Different components of the gradient could be of vastly different magnitudes (especially, when they correspond to different types of medium properties, e.g., Vp and ϵ) and may exhibit leakage from one component to another due to interdependence of different medium parameters on one another.


A better descent direction can be obtained if the quadratic terms are taken into account. Various approaches of this type are called Newton's method, Newton-CG, and Gauss-Newton and are based on inverting the Hessian:

Δm=−(∇mmE)−1mE.

Due to its size (typically 109×109 in 3D), the Hessian has to be inverted iteratively, each iteration involving application of the Hessian to a vector. Depending on the problem, the Hessian-vector products (an equivalent term for application of the Hessian to a vector), can be computed analytically, numerically using finite differences, or using the adjoint state method (Heinkenschloss, 2008). Since only a few (usually 10-20) iterations of this iterative process can be afforded in practice, the resulting approximations to the inverse Hessian are usually not very accurate and may not be able to eliminate the leakage (cross-talk) between various medium parameters or provide the correct scaling between different components of the gradient. Moreover, the inversion algorithm may lead to accumulation of artifacts Δm, resulting in a suboptimal solution.


A cheaper way to ensure proper relative scaling of the gradient components is to apply the subspace method (Kennett et al., 1988.) The key idea behind this method is to represent the model perturbation as a sum of basis vectors:

Δm=αs1+βs2+ . . .

For example, for two different types of medium parameters (e.g., Vp and ϵ) a customary choice (Sambridge et al., 1991) is:







Δ






m
~


=


α


[




Δ






m
1






0



]


+

β




[



0





Δ






m
2





]







where one typically sets Δm1˜(−∇m1E), Δm2˜(−∇m2E). Δ{tilde over (m)} denotes the updated (improved) model perturbation, as opposed to the original model perturbation







E


(

m
+

Δ






m
~



)





E


(
m
)


+


α


(




m
1



E

)



Δ






m
1


+


β


(




m
2



E

)



Δ






m
2


+




1
2



[




αΔ






m
1





βΔ






m
2





]




[








m
1



m
1




E








m
1



m
2




E










m
2



m
1




E








m
2



m
2




E




]




[




αΔ






m
1







βΔ






m
2





]








Thus, each component of the gradient can be scaled independently so that the resulting search direction is improved. The scaling factors α and β are chosen so that the quadratic approximation to the objective function is minimized:







Δ





m

=


[




Δ






m
1







Δ






m
2





]

.






It is easy to show that the minimum of the objective function will be obtained if we set







[



α




β



]

=

-




[




Δ







m
1
T



(





m
1



m
1




E

)



Δ






m
1





Δ







m
1
T



(





m
1



m
2




E

)



Δ






m
2







Δ







m
2
T



(





m
2



m
1




E

)



Δ






m
1





Δ







m
2
T



(





m
2



m
2




E

)



Δ






m
2





]


-
1




[





(




m
1



E

)


Δ






m
1








(




m
2



E

)


Δ






m
2





]


.






The cost of determining the values of α and β (which provide the desired scaling of the gradient components) is equal to two applications of the Hessian to a vector (Δm1 and Δm2), making this method far cheaper than Newton/Newton-CG/Gauss-Newton.


However, the limitation is that the leakage (cross-talk) cannot be handled effectively, since all the subspace method does is scale each component of the gradient up or down (by α and β).


SUMMARY OF THE INVENTION

In one embodiment, the invention is, referring to the reference numbers in the FIG. 10 flow chart, a computer-implemented method for iteratively inverting measured geophysical data to infer 3D subsurface models of N≥2 physical properties, comprising: (a) providing an initial model (101) for each physical property, wherein a subsurface region is subdivided into discrete cells, each cell having a value of the physical property; (b) for each physical property and for each of a plurality of the cells, representing a search direction (102), indicating whether the initial model needs to be updated positively or negatively, as a linear combination of M>N basis vectors, wherein (bi) each basis vector has its own coefficient in the linear combination, said coefficient to be determined; (bii) each basis vector has a component that is, or is proportional to, a gradient, with respect to model parameters of one of the N physical properties, of an objective function measuring misfit between model-simulated geophysical data and the measured geophysical data; and (biii) the coefficients are simultaneously optimized (103), using a computer, to minimize or maximize the objective function; and (c) using the optimized coefficients to generate search directions (105), and using the search directions to generate an updated model (106) for each physical property.


In a preferred variation of the foregoing embodiment, the degree of mixing between gradient (search direction) components may be adjusted by scaling the off-diagonal components of the mixing matrix, i.e., a matrix whose elements are the coefficients of the basis vector expansion of the search direction.


The dimensionality of the extended subspace of the present invention, i.e., the number of basis vectors M, can in principle be any number greater than N, the number of unknown parameters that are being inverted for. Selecting M=N2 allows for leakage between each parameter and all of the others during the inversion process. However, it may be that not all parameters leak into all other parameters. It may be possible to decide based on empirical or theoretical evidence which parameters may potentially have cross-talk among them, and then choose M accordingly. For example, if one is inverting for compressional velocity Vp, shear wave velocity Vs, and anisotropy parameter ε, one might reasonably expect leakage/cross-talk between Vp and Vs, Vp and ε, but not between Vs and ε. So one could have 3 basis vectors for the Vp search direction (gradients w.r.t. Vp, Vs, ε), but only two basis vectors for the Vs and ε search directions, for a total of 7 basis vectors (instead of 9). As an alternative example, one might follow Kennett's approach described above, in which case there would be N(N+1) basis vectors, i.e. 12 for the case of N=3.


In another embodiment of the invention, referring to the flow chart of FIG. 12, the invention is a computer-implemented method for iteratively inverting measured geophysical data to infer 3D subsurface models of N≥2 physical properties, comprising: (a) providing an initial model (121) for each physical property, wherein a subsurface region is subdivided into discrete cells, each cell having a value of the physical property; (b) for each physical property and for each of a plurality of the cells, representing a search direction (122), indicating whether the initial model needs to be updated positively or negatively, as a linear combination of a plurality of basis vectors; (c) determining coefficients (123) of each linear combination by minimizing, using a computer, a difference between one or more true parameters computed from well data or other known subsurface information and corresponding parameters predicted by the updated search direction; and (d) using the determined coefficients to generate search directions (124), and using the search directions to generate an updated model (125) for each physical property.





BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the present invention are better understood by referring to the following detailed description and the attached drawings, in which:



FIG. 1 shows the true model for the two parameters, Vp (left) and ϵ (right), used for the test example;



FIG. 2 shows a perfect update Δm (also the “true” search direction) for a given, slightly perturbed (from the true FIG. 1) model;



FIG. 3 simulates a search direction as it might be in actual practice, contaminated with cross-talk between the two parameters;



FIG. 4 shows the same gradient calculations, i.e. search directions, as in FIG. 3, but improved to reduce cross-talk by application of the method of FIG. 10;



FIG. 5 shows initial models to be used in a 2-parameter inversion of synthetic data generated using the true model of FIG. 1;



FIG. 6 shows preconditioned gradients (search directions) of an objective function computing the misfit between the true modeled synthetic data and data simulated using the initial model of FIG. 5;



FIG. 7 shows search directions comparable to those of FIG. 6, but with the gradient computed using the extended subspace method of FIG. 10;



FIG. 8 shows the inverted property models corresponding to FIG. 6;



FIG. 9 shows the inverted property models corresponding to FIG. 7;



FIG. 10 is a flow chart showing basic steps in the present inventive method for using an extended set of basis vectors, with explicit mixing of coefficients, to compute gradient updates to physical property models during iterative inversion of geophysical data;



FIG. 11 is a flow chart showing basic steps for combining the method of FIG. 10 with well (or other known) constraints; and



FIG. 12 is a flow chart showing basic steps for the inversion method of FIG. 11, using well constraints alone, without also using the extended subspace technique of FIG. 10.





The invention will be described in connection with example embodiments.


However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.


DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Extended Subspace Method


The present invention extends the traditional subspace method in a way that explicitly accounts for possible leakage between gradient components. This can be achieved by picking additional basis vectors. Once again, the concept may be illustrated for the case of two different parameters:












Δ






m
~


=



α
1



[




Δ






m
1






0



]


+


α
2



[




Δ






m
2






0



]


+


β
1



[



0





Δ






m
1





]


+


β
2



[



0





Δ






m
2





]











E


(

m
+

Δ






m
~



)


=


E


(
m
)


+


(




m
1



E

)



(



α
1


Δ






m
1


+


α
2


Δ






m
2



)


+


(




m
2



E

)



(



β
1


Δ






m
1


+


β
2


Δ






m
2



)


+




1
2



[






α
1


Δ






m
1


+


α
2


Δ






m
2








β
1


Δ






m
1


+


β
2


Δ






m
2






]




[








m
1



m
1




E








m
1



m
2




E










m
2



m
1




E








m
2



m
2




E




]






[






α
1


Δ






m
1


+


α
2


Δ






m
2










β
1


Δ






m
1


+


β
2


Δ






m
2






]









Similarly to the original subspace method, one can get optimal scaling coefficients from:










[




α
1






α
2






β
1






β
2




]

=


-


[







Δ







m
1
T



(





m
1



m
1




E

)



Δ






m
1





Δ







m
1
T



(





m
1



m
1




E

)



Δ






m
2





Δ







m
1
T



(





m
1



m
2




E

)



Δ






m
1





Δ







m
1
T



(





m
1



m
2




E

)



Δ






m
2













Δ







m
2
T



(





m
1



m
1




E

)



Δ






m
1





Δ







m
2
T



(





m
1



m
1




E

)



Δ






m
2





Δ







m
2
T



(





m
1



m
2




E

)



Δ






m
1





Δ







m
2
T



(





m
1



m
2




E

)



Δ






m
2













Δ







m
1
T



(





m
1



m
2




E

)



Δ






m
1





Δ







m
1
T



(





m
1



m
2




E

)



Δ






m
2





Δ







m
1
T



(





m
2



m
2




E

)



Δ






m
1





Δ







m
1
T



(





m
2



m
2




E

)



Δ






m
2













Δ







m
2
T



(





m
2



m
1




E

)



Δ






m
1





Δ







m
2
T



(





m
1



m
2




E

)



Δ






m
2





Δ







m
2
T



(





m
2



m
2




E

)



Δ






m
1





Δ







m
2
T



(





m
2



m
2




E

)



Δ






m
2








]


-
1







[








m
1



E






Δ






m
1











m
1



E






Δ






m
2











m
2



E






Δ






m
1











m
2



E






Δ






m
2





]







(
1
)








where the superscript T denotes matrix transpose.


The key novelty is that explicit mixing is performed between gradient components corresponding to different medium parameters, e.g., Vp and ϵ or Vp and ρ. The scaling/mixing coefficients αi and βi are determined automatically from Equation 1 at the cost (measured in the number of Hessian applications to a vector) that is equal to the square of the cost of the traditional subspace method. The coefficients α1 and β2 are the ones that would have been computed in the traditional subspace method, while α2 and β1 correspond to the extended set of basis vectors being introduced in this invention. An important limitation of the method is that curvature information obtained from the Hessian may not be accurate far away from the global minimum, yielding scaling coefficients that would not lead to an improved search direction Δm. Thus, the method as presented so far would be unlikely to work consistently in practice.


Kennett et al. (1988) proposed an alternative approach to selecting an extended set of basis vectors in the subspace method:










Δ






m
~


=



α
1



[




Δ






m
1






0



]


+


α
2



[





(





m
1



m
1




E

)


Δ






m
1






0



]


+


α
3



[





(





m
1



m
2




E

)


Δ






m
2






0



]


+


β
1



[



0





Δ






m
2





]


+


β
2



[



0






(





m
2



m
1




E

)


Δ






m
1





]


+


β
3



[



0






(





m
2



m
2




E

)


Δ






m
2





]







(
2
)








However, the cost of this method is much higher (grows as the third power of the cost of the conventional subspace method) due to the need to compute four additional Hessian-vector products. In this case, the matrix in Eqn. (1) would look different, because of the choice of the extended subspace basis vectors. Instead of elements that look like ΔmiT(∇mimjE)Δmj, Eqn. (1) would have ΔmiT(∇mimkE)(∇mkmjE)Δmj. Therefore not only additional Hessian-vector products would need to be computed, but the matrix of Eqn. (1) would become bigger because there will more basis vectors. In contrast, the present invention's extension of the subspace method utilizes gradients (or vectors obtained from gradients through application of simple processing steps, such as muting, scaling, etc.) with respect to inversion parameters as basis vectors, thus avoiding the need to perform additional Hessian-vector products.


Practical Issues and Further Extensions


The theory underlying the subspace method assumes that the Hessian correctly captures the behavior of the objective function. As mentioned above, when we are dealing with models that are far from the “true” ones, the objective function may not be locally quadratic. In this case Equation (1) may produce inaccurate estimates of αi and βi. Moreover, it is customary to replace the Hessian with its “reduced” version—so-called Gauss-Newton Hessian—which itself becomes inaccurate away from the global minimum. Thus, to make the method work in practice, several modifications are helpful.


The first modification is an application of the well-known “trust region” concept. If the values of αi and βi turn out to be too large (e.g., requiring a more than 10% update of medium parameters at any given iteration), they need to be scaled down (clipped.) Rewriting the vector of αi and βi as a mixing matrix,







[




α
1




α
2






β
1




β
2




]

,





we can conveniently scale down either row of the matrix, depending on which parameter update exceeds a predefined threshold.


The second modification represents a second key novel step and has to do with adjusting the degree of mixing between gradient (search direction) components. The mixing can be adjusted by scaling the off-diagonal components of the mixing matrix by (γαβ):







[




α
1





γ
α



α
2








γ
β



β
1





β
2




]

.





Then a line search is performed, i.e., evaluate a series of objective functions







E


(

m
+

Δ






m
~



)


=

E


(

m
+


[




α
1





γ
α



α
2








γ
β



β
1





β
2




]



[




Δ






m
1







Δ






m
2





]



)







and select the values of (γαβ) corresponding to the best (i.e. minimum or maximum, depending upon how the objective function is formulated) objective function. (Note that the γi are introduced for convenience; we could just as well have found optimal values of the off-diagonal elements of the mixing matrix). There are many known ways to perform the line search, but for purposes of the present invention, in order to minimize the computation cost, it is preferable to fit a quadratic form in (γαβ) to the objective function above and then find optimal values of (γαβ):

E(m+Δ{tilde over (m)};γαγβ)=α01γα2γβ3γα24γβ25γαγβ.


The objective function is evaluated at six different points (γαβ), e.g., (1,1), (0.75,1), (1,0.75), (0.5,1), (1,0.5), (0.5,0.5) and the resulting system of linear equations solved for αi. When the quadratic form is not positive definite, and end point (either 0 or 1) can be chosen for each γ. Note that this line search is different from the traditional one and serves a different purpose. Conventionally, the line search is performed to determine the best possible step size (scaling of the model update), while it is used here to determine the best possible set of mixing coefficients that minimize leakage/cross-talk between different inversion parameters. Once the mixing coefficients are determined and updated search directions are obtained, a conventional line search can be applied to further scale the updated search directions.


The third key novel step addresses the situation in which the level of cross-talk is spatially varying, so that scaling factors (γαβ) need to be spatially varying as well. The line search can be performed separately for each shot, producing a spatially varying set of scaling factors. Note that the cost of performing the line search for each shot individually is the same as the cost of traditional spatially invariant line search. The only difference is that instead of summing all individual objective functions computed for each shot record and then selecting the values of (γαβ) that correspond to the best cumulative objective function, the selection is performed shot-by-shot, skipping the summation. Each shot is assigned a spatial location and the selected optimal value of (γαβ) is also assumed to occur at that location. Finally, interpolation may be performed to obtain a spatially varying distribution of optimal scaling factors (γαβ), followed by optional smoothing to avoid introducing artifacts into the inversion. FIG. 10 is a self-explanatory flowchart showing basic steps in this embodiment of the present inventive method.


Incorporating Well Constraints


The idea of using gradients as basis vectors for forming an improved update (search direction) in inversion can be extended to the case in which well logs or other reliable information regarding the subsurface is available, representing another key novel step. Similarly to the methodology described in the previous sections, an improved update (search direction) can be obtained by setting

Δ{tilde over (m)}i=w1iΔm1+w2iΔm2+w3ie  (3),

where i=1,2; e is a vector with all components set to “1”. The unknown coefficients w1i, w2i, w3i can be determined by requiring that the improved model update fit the “true” well-log-based update

Δmitrue=miwell log−micurrent
in some norm:
∥Δmitrue−ΔmiLn→min.

In general, optimal coefficients w1i, w2i, w3i can be found numerically. If n=2, i.e., the L2 norm is used, the solution to this minimization problem is given by










[




w
1
i






w
2
i






w
3
i




]

=



[




Δ






m
1
T


Δ






m
1





Δ






m
1
T


Δ






m
2





Δ






m
1
T


e






Δ






m
2
T


Δ






m
1





Δ






m
2
T


Δ






m
2





Δ






m
2
T


e







e
T


Δ






m
1






e
T


Δ






m
2






e
T


e




]


-
1




[




Δ






m
1
T


Δ






m
i
true







Δ






m
1
T


Δ






m
i

true













e
T


Δ






m
i
true





]






(
4
)







The Δmi can be set proportional (or equal) to the gradients of E, their preconditioned/modified versions, or the improved search directions coming from the extended subspace method described in the previous sections.


There are two key differences with the extended subspace method described previously. First, there is effectively no additional computational cost to be incurred in computing an improved search direction based on the well log information because Hessian-vector products need not be computed and just a small 3×3 matrix has to be inverted. Secondly, the set of basis vectors was extended even further by including vector e. This vector allows us to determine the background (“DC”) component of the update. It is well known that FWI cannot correctly compute the background update when seismic data are missing low frequencies, as is the case for most datasets acquired to date. For some parameters, such as Thompsen's anisotropy parameter δ, this is impossible under any circumstances based on surface seismic data alone. Thus, the vector e was not included previously because it would have been difficult to obtain it reliably. (The availability of a direct measurement of subsurface medium parameters at well locations changes the situation.) Of course, e can be more general than a vector consisting of “1”. For example, it could be a depth-varying function.


If more than one well is available, optimal coefficients w1i, w2i, w3i should preferably be found at each well location and spatially interpolated between wells and extrapolated away from the wells.


In a typical application the extended subspace method based on the surface seismic data might be used first to produce an improved model update, i.e. search direction, followed by a further modification based on the well log information. Basic steps in this embodiment of the invention are shown in the self-explanatory FIG. 11. Note that not all parameters may be constrained by either well logs or surface seismic data, so the two steps (extended subspace and well constraints) need not apply to the same set of parameters. For example, one could compute improved search directions for Vp and ϵ based on the Hessian of the objective functions and then compute improved search directions for Vp (again) and δ based on the well log information.


Additionally, application of the extended subspace method could be skipped and well log information used directly to obtain an improved search direction. Basic steps in this embodiment of the invention are shown in the self-explanatory FIG. 12. The advantage of this approach is that the significant computation cost associated with the evaluation of the Hessian-vector products required by Equation 1 is avoided. Furthermore, since well information represents a measurement of the actual subsurface properties, the updated search directions can be considered to be optimal and the traditional line search performed to determine optimal scaling of model updates can be skipped as well. The implication of this choice is that the model update no longer relies directly on the assumption that the objective (cost) function value should improve at each iteration. It is entirely possible that the fit between simulated and field data may temporarily become worse, although model fit (i.e., how closely the model approximates subsurface properties) gets better. This situation is known as “local minimum”, reflecting the fact that the objective function may go through peaks and troughs as we progress from the initial model to the true one, and reaches its overall optimal value (“global minimum”) only at the end of the process. Conventional derivative-based methods are not able to overcome the “local minimum” problem, so incorporating well log information and skipping traditional line search may allow the inversion to converge to a significantly better model.


EXAMPLES

The present inventive method was tested using synthetic data generated by assuming the “true” models for the parameters Vp and ϵ shown in FIG. 1, based on the SEAM model. (See “SEAM update: Completion of Phase I Acoustic Simulations,” The Leading Edge, June, 2010.) First, a model was chosen (not shown) with a very small perturbation in both for Vp and ϵ to ensure that the Gauss-Newton Hessian is a good measure of the curvature of the objective function. The slightly perturbed model represents a typical current model in the course of iterative inversion. The “true” search directions were then constructed, which were the difference between the true and the perturbed models (FIG. 2). As an illustration of the cross-talk that could be contaminating search directions in a realistic inversion, a linear combination of the “true” search directions was computed, thereby introducing low-frequency overprint into the search direction for Vp and high-frequency reflectivity overprint into the search direction for ϵ (FIG. 3). “De-mixing” (solving for the coefficients α1, α2, β1, and β2) was then performed using the extended subspace method of the present invention (Equation 1), which was able to remove the low-frequency overprint from the Vp search direction and almost remove the high-frequency overprint from the ϵ search direction (FIG. 4).


Next, a two-parameter inversion was performed for Vp and ϵ using the initial model shown in FIG. 5. Comparing the true and initial models (FIGS. 1 and 5), it can be seen that the update for Vp should be dominated by reflectivity, while the update for ϵ should be smooth. Due to the cross-talk between Vp and ϵ, the gradient for Vp contains an undesirable low-frequency component (FIG. 6, oval at left), which may prevent inversion from converging to the correct solution. Computing the de-mixing coefficients using Eqn. 1 and using them to compute new search directions for Vp and ϵ, shown in FIG. 7, we are able to reduce the undesirable low frequency content in the Vp search direction, while enhancing the corresponding component of the ϵ search direction (see ovals). As mentioned above, this transformation is performed at each iteration of the inversion. (The gradient shown in FIGS. 6 and 7 were preconditioned, which means that the raw gradients were gained in depth to compensate for the decay of wavefields as they propagate down.) Finally, FIGS. 8 and 9 illustrate that the application of the extended subspace method leads to a better inversion result. The oval in the FIG. 8 ϵ model indicates regions, where ϵ has not been recovered correctly, leading to mispositioning of the reflectors (indicated by the arrow) in the Vp model. The oval in the FIG. 9 ϵ model indicates regions, where E has been recovered better than before, leading to correct positioning of the reflectors (indicated by the arrow) in the Vp model. FIG. 8 was generated using the Kennett subspace method. The inversion results of both figures are after several iteration cycles.


The foregoing description is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined by the appended claims.


REFERENCES



  • 1. Heinkenschloss, M., “Numerical Solution of Implicitly Constrained Optimization Problems,” CAAM Technical Report TR08-05 (2008). http://www.caam.rice.edu/˜heinken/papers/MHeinkenschloss_2008a.pdf

  • 2. Kennett, B. L. N., Sambridge, M. S., Williamson, P. R., “Subspace methods for large scale inverse problems involving multiple parameter classes,” Geophysical Journal International 94, 237-247 (1988).

  • 3. Sambridge, M. S., Tarantola, A., Kennett, B. L. N., “An alternative strategy for non-linear inversion of seismic waveforms,” Geophysical Prospecting 39, 723-736 (1991).

  • 4. Tsvankin, I., Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, Pergamon Press, page 18 (2001).


Claims
  • 1. A computer-implemented method for iteratively inverting measured geophysical data to infer 3D subsurface models of N physical properties with N≥2 and prospecting for hydrocarbons, comprising: providing an initial model for each physical property, wherein a subsurface region is subdivided into discrete cells, each cell having a value of the physical property;for each physical property and for each of a plurality of the cells, representing a search direction, indicating whether the initial model needs to be updated positively or negatively, as a linear combination of M basis vectors with M>N, wherein: each basis vector has its own coefficient in the linear combination, said coefficient to be determined;the basis vectors are chosen such that their coefficients account for cross-talk between the N physical properties during inversion, wherein a mixing matrix is formed from the coefficients of the basis vectors, and degree of mixing between the model updates for the N physical properties is adjusted by scaling off-diagonal elements of the mixing matrix with scaling factors that are optimized in the inversion; andoptimal values of the coefficients are simultaneously solved for, using a computer, to minimize or maximize an objective function measuring misfit between model-simulated geophysical data and the measured geophysical data, wherein solving for the coefficients is performed at least by numerical computation constrained by the geophysical data;generating search directions with the optimal values of the coefficients, and generating an updated model for each physical property by making changes, respectively, to the initial model for each physical property in the search directions; andproducing an image of the subsurface from the updated model, which includes subsurface reflectors, positioned with the optimal coefficients, that returned seismic energy to receivers that recorded the measured geophysical data, and prospecting for hydrocarbons according to structural features of the subsurface region.
  • 2. The method of claim 1, wherein each basis vector has a component that is, or is proportional to, a gradient, with respect to model parameters of one of the N physical properties, of the objective function.
  • 3. The method of claim 1, wherein the optimizing of the scaling factors is based on a line search.
  • 4. The method of claim 3, wherein the line search is performed by steps comprising fitting a polynomial function of the scaling factors to the objective function and then finding values of the scaling factors that optimize the objective function.
  • 5. The method of claim 3, further comprising performing a conventional line search to determine an optimal step size for the model update.
  • 6. The method of claim 1, wherein the scaling factors are spatially dependent.
  • 7. The method of claim 6, wherein the optimization comprises performing line searches, and a separate line search is performed for each source shot in a geophysical survey that generated the measured geophysical data, thereby providing the spatial dependence.
  • 8. The method of claim 1, wherein the optimization of the coefficients and the scaling factors is based on one or more Hessians of the objective function.
  • 9. The method of claim 1, wherein optimal values of the scaling factors are determined by a line search comprising evaluating the objective function E for an updated model m+Δm for a plurality of different values of the scaling factors, and selecting a combination of scaling factors giving a least value of E.
  • 10. The method of claim 1, further comprising adjusting the search directions before the generating an updated model for each physical property, wherein each adjusted search direction is represented by a linear combination of a plurality of basis vectors, and coefficients of the linear combination are determined by minimizing a difference between one or more true parameters computed from well data or other known subsurface information and corresponding parameters predicted by the updated search direction.
  • 11. The method of claim 10, wherein the plurality of basis vectors is N+1 in number, comprising a gradient of the objective function with respect to model parameters of each of the N physical properties, plus an additional basis vector whose coefficient allows matching to the well data or other known subsurface information.
  • 12. The method of claim 11, wherein every component of the additional basis vector is unity.
  • 13. The method of claim 1, wherein the geophysical data are seismic data, and the N physical properties are selected from the group consisting of compressional and shear-wave velocities, Vp and Vs, density ρ, and Thompsen anisotropy parameters ϵ and δ.
  • 14. The method of claim 1, wherein the optimization is based on one or more Hessians of the objective function.
  • 15. The method of claim 1, wherein rock-physics-based or empirical relationships between physical property parameters, or well data constraints, or both, are used to reduce number of search direction coefficients to be solved for by the iterative numerical computation constrained by the geophysical data.
  • 16. A computer-implemented method for iteratively inverting measured geophysical data to infer 3D subsurface models of N physical properties with N>2 and prospecting for hydrocarbons, comprising: providing an initial model for each physical property, wherein a subsurface region is subdivided into discrete cells, each cell having a value of the physical property;for each physical property and for each of a plurality of the cells, representing a search direction, indicating whether the initial model needs to be updated positively or negatively, as a linear combination of a plurality of basis vectors;each basis vector has its own coefficient in the linear combination,wherein: the basis vectors are chosen such that their coefficients account for cross-talk between the N physical properties during inversion, wherein a mixing matrix is formed from the coefficients of the basis vectors, and degree of mixing between the model updates for the N physical properties is adjusted by scaling off-diagonal elements of the mixing matrix with scaling factors that are optimized in the inversion;determining coefficients of each linear combination by minimizing or maximizing, using a computer, a difference between one or more true parameters computed from well data or other known subsurface information and corresponding parameters predicted by the updated search direction;generating search directions with the determined coefficients, and generating an updated model for each physical property by making changes, respectively, to the initial model for each physical property in the search directions; andproducing an image of the subsurface from the updated model, which includes subsurface reflectors, positioned with the optimal coefficients, that returned seismic energy to receivers that recorded the measured geophysical data, and prospecting for hydrocarbons according to structural features of the subsurface region.
  • 17. The method of claim 16, wherein the plurality of basis vectors is N+1 in number, comprising a gradient of the objective function with respect to model parameters of each of the N physical properties, plus an additional basis vector whose coefficient allows matching to the well data or other known subsurface information.
  • 18. The method of claim 17, wherein every component of the additional basis vector is unity.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 61/830,537, filed Jun. 3, 2013, entitled “Extended Subspace Method for Cross-Talk Mitigation in Multi-Parameter Inversion,” the entirety of which is incorporated by reference herein.

US Referenced Citations (210)
Number Name Date Kind
3812457 Weller May 1974 A
3864667 Bahjat Feb 1975 A
4159463 Silverman Jun 1979 A
4168485 Payton et al. Sep 1979 A
4545039 Savit Oct 1985 A
4562650 Nagasawa et al. Jan 1986 A
4575830 Ingram et al. Mar 1986 A
4594662 Devaney Jun 1986 A
4636957 Vannier et al. Jan 1987 A
4675851 Savit et al. Jun 1987 A
4686654 Savit Aug 1987 A
4707812 Martinez Nov 1987 A
4715020 Landrum, Jr. Dec 1987 A
4766574 Whitmore et al. Aug 1988 A
4780856 Becquey Oct 1988 A
4823326 Ward Apr 1989 A
4924390 Parsons et al. May 1990 A
4953657 Edington Sep 1990 A
4969129 Currie Nov 1990 A
4982374 Edington et al. Jan 1991 A
5260911 Mason et al. Nov 1993 A
5469062 Meyer, Jr. Nov 1995 A
5583825 Carrazzone et al. Dec 1996 A
5677893 de Hoop et al. Oct 1997 A
5715213 Allen Feb 1998 A
5717655 Beasley Feb 1998 A
5719821 Sallas et al. Feb 1998 A
5721710 Sallas et al. Feb 1998 A
5790473 Allen Aug 1998 A
5798982 He et al. Aug 1998 A
5822269 Allen Oct 1998 A
5838634 Jones et al. Nov 1998 A
5852588 de Hoop et al. Dec 1998 A
5878372 Tabarovsky et al. Mar 1999 A
5920838 Norris et al. Jul 1999 A
5924049 Beasley et al. Jul 1999 A
5999488 Smith Dec 1999 A
5999489 Lazaratos Dec 1999 A
6014342 Lazaratos Jan 2000 A
6021094 Ober et al. Feb 2000 A
6028818 Jeffryes Feb 2000 A
6058073 VerWest May 2000 A
6125330 Robertson et al. Sep 2000 A
6219621 Hornbostel Apr 2001 B1
6225803 Chen May 2001 B1
6311133 Lailly et al. Oct 2001 B1
6317695 Zhou et al. Nov 2001 B1
6327537 Ikelle Dec 2001 B1
6374201 Grizon et al. Apr 2002 B1
6381543 Guerillot et al. Apr 2002 B1
6388947 Washbourne et al. May 2002 B1
6480790 Calvert et al. Nov 2002 B1
6522973 Tonellot et al. Feb 2003 B1
6545944 de Kok Apr 2003 B2
6549854 Malinverno et al. Apr 2003 B1
6574564 Lailly et al. Jun 2003 B2
6593746 Stolarczyk Jul 2003 B2
6662147 Fournier et al. Dec 2003 B1
6665615 Van Riel et al. Dec 2003 B2
6687619 Moerig et al. Feb 2004 B2
6687659 Shen Feb 2004 B1
6704245 Becquey Mar 2004 B2
6714867 Meunier Mar 2004 B2
6735527 Levin May 2004 B1
6754590 Moldoveanu Jun 2004 B1
6766256 Jeffryes Jul 2004 B2
6826486 Malinverno Nov 2004 B1
6836448 Robertsson et al. Dec 2004 B2
6842701 Moerig et al. Jan 2005 B2
6859734 Bednar Feb 2005 B2
6865487 Charron Mar 2005 B2
6865488 Moerig et al. Mar 2005 B2
6876928 Van Riel et al. Apr 2005 B2
6882938 Vaage et al. Apr 2005 B2
6882958 Schmidt et al. Apr 2005 B2
6901333 Van Riel et al. May 2005 B2
6903999 Curtis et al. Jun 2005 B2
6905916 Bartsch et al. Jun 2005 B2
6906981 Vauge Jun 2005 B2
6927698 Stolarczyk Aug 2005 B2
6944546 Xiao et al. Sep 2005 B2
6947843 Fisher et al. Sep 2005 B2
6970397 Castagna et al. Nov 2005 B2
6977866 Huffman et al. Dec 2005 B2
6999880 Lee Feb 2006 B2
7046581 Calvert May 2006 B2
7050356 Jeffryes May 2006 B2
7069149 Goff et al. Jun 2006 B2
7027927 Routh et al. Jul 2006 B2
7072767 Routh et al. Jul 2006 B2
7092823 Lailly et al. Aug 2006 B2
7110900 Adler et al. Sep 2006 B2
7184367 Yin Feb 2007 B2
7230879 Herkenoff et al. Jun 2007 B2
7271747 Baraniuk et al. Sep 2007 B2
7330799 Lefebvre et al. Feb 2008 B2
7337069 Masson et al. Feb 2008 B2
7373251 Hamman et al. May 2008 B2
7373252 Sherrill et al. May 2008 B2
7376046 Jeffryes May 2008 B2
7376539 Lecomte May 2008 B2
7400978 Langlais et al. Jul 2008 B2
7436734 Krohn Oct 2008 B2
7480206 Hill Jan 2009 B2
7584056 Koren Sep 2009 B2
7599798 Beasley et al. Oct 2009 B2
7602670 Jeffryes Oct 2009 B2
7616523 Tabti et al. Nov 2009 B1
7620534 Pita et al. Nov 2009 B2
7620536 Chow Nov 2009 B2
7646924 Donoho Jan 2010 B2
7672194 Jeffryes Mar 2010 B2
7672824 Dutta et al. Mar 2010 B2
7675815 Saenger et al. Mar 2010 B2
7679990 Herkenhoff et al. Mar 2010 B2
7684281 Vaage et al. Mar 2010 B2
7710821 Robertsson et al. May 2010 B2
7715985 Van Manen et al. May 2010 B2
7715986 Nemeth et al. May 2010 B2
7725266 Sirgue et al. May 2010 B2
7791980 Robertsson et al. Sep 2010 B2
7835072 Izumi Nov 2010 B2
7840625 Candes et al. Nov 2010 B2
7940601 Ghosh May 2011 B2
8121823 Krebs et al. Feb 2012 B2
8248886 Neelamani et al. Aug 2012 B2
8428925 Krebs et al. Apr 2013 B2
8437998 Routh et al. May 2013 B2
8688381 Routh et al. Apr 2014 B2
20020099504 Cross et al. Jul 2002 A1
20020120429 Ortoleva Aug 2002 A1
20020183980 Guillaume Dec 2002 A1
20040196929 Wendt Oct 2004 A1
20040199330 Routh et al. Oct 2004 A1
20040225438 Okoniewski et al. Nov 2004 A1
20060235666 Assa et al. Oct 2006 A1
20070036030 Baumel et al. Feb 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070274155 Ikelle Nov 2007 A1
20070282535 Sirgue Dec 2007 A1
20070296493 Wang Dec 2007 A1
20080175101 Saenger et al. Jul 2008 A1
20080306692 Singer et al. Dec 2008 A1
20090067041 Krauklis et al. Mar 2009 A1
20090070042 Birchwood et al. Mar 2009 A1
20090083006 Mackie Mar 2009 A1
20090164186 Haase et al. Jun 2009 A1
20090164756 Dokken et al. Jun 2009 A1
20090187391 Wendt et al. Jul 2009 A1
20090248308 Luling Oct 2009 A1
20090254320 Lovatini et al. Oct 2009 A1
20090259406 Khadhraoui et al. Oct 2009 A1
20100008184 Hegna et al. Jan 2010 A1
20100018718 Krebs et al. Jan 2010 A1
20100039894 Abma et al. Feb 2010 A1
20100054082 McGarry et al. Mar 2010 A1
20100088035 Etgen et al. Apr 2010 A1
20100103772 Eick et al. Apr 2010 A1
20100118651 Liu et al. May 2010 A1
20100142316 Keers et al. Jun 2010 A1
20100161233 Saenger et al. Jun 2010 A1
20100161234 Saenger et al. Jun 2010 A1
20100185422 Hoversten Jul 2010 A1
20100208554 Chiu et al. Aug 2010 A1
20100212902 Baumstein et al. Aug 2010 A1
20100265797 Robertsson et al. Oct 2010 A1
20100270026 Lazaratos et al. Oct 2010 A1
20100286919 Lee et al. Nov 2010 A1
20100299070 Abma Nov 2010 A1
20110000678 Krebs et al. Jan 2011 A1
20110040926 Donderici et al. Feb 2011 A1
20110051553 Scott et al. Mar 2011 A1
20110090760 Rickett et al. Apr 2011 A1
20110131020 Meng Jun 2011 A1
20110134722 Virgilio et al. Jun 2011 A1
20110182141 Zhamikov et al. Jul 2011 A1
20110182144 Gray Jul 2011 A1
20110191032 Moore Aug 2011 A1
20110194379 Lee et al. Aug 2011 A1
20110222370 Downton et al. Sep 2011 A1
20110227577 Zhang et al. Sep 2011 A1
20110235464 Brittan et al. Sep 2011 A1
20110238390 Krebs et al. Sep 2011 A1
20110246140 Abubakar et al. Oct 2011 A1
20110267921 Mortel et al. Nov 2011 A1
20110267923 Shin Nov 2011 A1
20110276320 Krebs et al. Nov 2011 A1
20110288831 Tan et al. Nov 2011 A1
20110299361 Shin Dec 2011 A1
20110320180 Al-Saleh Dec 2011 A1
20120010862 Costen Jan 2012 A1
20120014215 Saenger et al. Jan 2012 A1
20120014216 Saenger et al. Jan 2012 A1
20120051176 Liu Mar 2012 A1
20120073824 Routh Mar 2012 A1
20120073825 Routh Mar 2012 A1
20120082344 Donoho Apr 2012 A1
20120143506 Routh et al. Jun 2012 A1
20120215506 Rickett et al. Aug 2012 A1
20120275264 Kostov et al. Nov 2012 A1
20120275267 Neelamani et al. Nov 2012 A1
20120290214 Huo et al. Nov 2012 A1
20120314538 Washbourne et al. Dec 2012 A1
20120316790 Washbourne et al. Dec 2012 A1
20120316844 Shah et al. Dec 2012 A1
20130081752 Kurimura et al. Apr 2013 A1
20130238246 Krebs et al. Sep 2013 A1
20130311149 Tang et al. Nov 2013 A1
20130311151 Plessix Nov 2013 A1
20140005815 Kakkirala Jan 2014 A1
Foreign Referenced Citations (20)
Number Date Country
2 796 631 Nov 2011 CA
1 094 338 Apr 2001 EP
1 746 443 Jan 2007 EP
2 390 712 Jan 2004 GB
2 391 665 Feb 2004 GB
WO 2006037815 Apr 2006 WO
WO 2007046711 Apr 2007 WO
WO 2008042081 Apr 2008 WO
WO 2008123920 Oct 2008 WO
WO 2009067041 May 2009 WO
WO 2009117174 Sep 2009 WO
WO 2011040926 Apr 2011 WO
WO 2011091216 Jul 2011 WO
WO 2011093945 Aug 2011 WO
WO 2012024025 Feb 2012 WO
WO 2012041834 Apr 2012 WO
WO 2012083234 Jun 2012 WO
WO 2012134621 Oct 2012 WO
WO 2012170201 Dec 2012 WO
WO 2013081752 Jun 2013 WO
Non-Patent Literature Citations (166)
Entry
Nemeth et al., An operator decomposition approach for the separationn of signal and coherent noise in seismic wavefields, 2001, Institute of Physics Publishing, pp. 533-551 (Year: 2001).
Krebs et al., Fast Full Wave Seismic Inversion using Source Encoding, 2009, OnePetro, pp. 2273-2277 (Year: 2009).
Popovivi et al., Mixed Data Layout Kernels for Vectorized Complex Arithmetic, 2017, pp. 1-7 Carnegie Mellon University (Year: 2017).
Oxford Dictionaries, Definition of off-diagonal, 2018, Oxford Dictionaries, pp. 1 (Year: 2018).
Gao, H. et al. (2008), “Implementation of perfectly matched layers in an arbitrary geometrical boundary for leastic wave modeling,” Geophysics J. Int. 174, pp. 1029-1036.
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397.
Godfrey, R. J. et al. (1998), “Imaging the Foiaven Ghost,” SEG Expanded Abstracts, 4 pgs.
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54.
Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 49 pgs.
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45.
Griewank, A. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167.
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf.
Hampson, D.P. et al. (2005), “Simultaneous inversion of pre-stack seismic data,” SEG 75th Annual Int'l. Meeting, Expanded Abstracts, pp. 1633-1637.
Heinkenschloss, M. (2008), :“Numerical Solution of Implicity Constrained Optimization Problems,” CAAM Technical Report TR08-05, 25 pgs.
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194.
Herrmann, F.J. (2010), “Randomized dimensionality reduction for full-waveform inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs.
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478.
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321.
Huang, Y. et al. (2012), “Multisource least-squares migration of marine streamer and land data with frequency-division encoding,” Geophysical Prospecting 60, pp. 663-680.
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J. Int. 124, pp. 363-371.
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70.
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181.
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789.
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163.
Kennett, B.L.N. et al. (1988), “Subspace methods for large inverse problems with multiple parameter classes,” Geophysical J. 94, pp. 237-247.
Krebs, J.R. (2008), “Fast Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188.
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731.
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs.
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270.
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575.
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,”2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387.
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1459.
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432.
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663.
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069.
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18.
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059.
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174.
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39.
Maharramov, M. et al. (2007) , “Localized image-difference wave-equation tomography,” SEG Annual Meeting, Expanded Abstracts, pp. 3009-3013.
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16.
Marcinkovich, C. et al. (2003), “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” J. of Geophysical Research 108(B5), 2276.
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166.
Meier, M.A. et al. (2009), “Converted wave resolution,” Geophysics, 74(2):doi:10.1190/1.3074303, pp. Q1-Q16.
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982.
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228.
Rawlinson, N. et al. (2003), “Seismic Traveltime Tomography of the Crust and Lithosphere,” Advances in Geophysics 46, pp. 81-197.
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903.
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399.
Tarantola, A. (2005), “Inverse Problem Theory and Methods for Model Parameter Estimation,” SIAM, pp. 79.
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266.
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894.
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8.
Valenciano, A.A. (2008), “Imaging by Wave-Equation Inversion,” A Dissertation, Stanford University, 138 pgs.
Van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28.
Van Manen, D.J. (2005), “Making wave by time reversal,” SEG International Exposition and 75th Annual Meeting, Expanded Abstracts, pp. 1763-1766.
Verschuur, D.J. (2009), Target-oriented, least-squares imaging of blended data, 79th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2889-2893.
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177.
Verschuur, D.J. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132.
Versteeg, R. (1994), “The Marmousi experience: Velocity model determination on a synthetic complex data set,” The Leading Edge, pp. 927-936.
Vigh, D. et al. (2008), “3D prestack plane-wave, full-waveform inversion,” Geophysics 73(5), pp. VE135-VE144.
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39.
Wang, K. et al. (2009), “Simultaneous full-waveform inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541.
Weglein, A.B. (2003), “Inverse scattering series and seismic exploration,” Inverse Problems 19, pp. R27-R83.
Wong, M. et al. (2010), “Joint least-squares inversion of up-and down-going signal for ocean bottom data sets,” SEG Expanded Abstracts 29, pp. 2752-2756.
Wu R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159.
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759.
Xie, X. et al. (2002), “Extracting angle domain information from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363.
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177.
Yang, K. et al. (2000), “Quasi-Orthogonal Sequences for Code-Division Multiple-Access Systems,” IEEE Transactions on Information Theory 46(3), pp. 982-993.
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060.
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs.
Zhang, Y. (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28.
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201.
U.S. Appl. No. 14/272,020, filed May 7, 2014, Wang et al.
U.S. Appl. No. 14/286,107, filed May 23, 2014, Hu et al.
U.S. Appl. No. 14/311,945, filed Jun. 20, 2014, Bansal et al.
U.S. Appl. No. 14/329,431, filed Jul. 11, 2014, Krohn et al.
U.S. Appl. No. 14/330,767, filed Jul. 14, 2014, Tang et al.
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25.
Mora, P. (1989), “Inversion = migration + tomography,” Geophysics 64, pp. 888-901.
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45.
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l. Conf. and Exh., EAGE, 5 pgs.
Neelamani, R. (2009), “Efficient seismic forward modeling using simultaneous sources and sparsity,” SEG Expanded Abstracts, pp. 2107-2111.
Nocedal, J. et al. (2006), “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176.
Nocedal, J. et al. (2000), “Numerical Optimization-Calculating Derivatives,” Chapter 8, Springer Verlag, pp. 194-199.
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs.
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808.
Park, C.B. et al. (2007), “Multichannel analysis of surface waves (MASW)—active and passive methods,” The Leading Edge, pp. 60-64.
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083.
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration,” Geophys. J. Int. 157, pp. 975-987.
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” In E. Wolf, editor, Progress in Optics XXVII, Elsevier, pp. 317-397.
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362.
Pratt, R.G. (1999), “Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model,” Geophysics 64, pp. 888-901.
Rawlinson, N. et al. (2008), “A dynamic objective function technique for generating multiple solution models in seismic tomography,” Geophys. J. Int. 178, pp. 295-308.
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384.
Romero, L.A. et al. (2000), Phase encoding of shot records in prestack migration, Geophysics 65, pp. 426-436.
Ronen S. et al. (2005), “Imaging Downgoing waves from Ocean Bottom Stations,” SEG Expanded Abstracts, pp. 963-967.
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438.
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58.
Sambridge, M.S. et al. (1991), “An Alternative Strategy for Non-Linear Inversion of Seismic Waveforms,” Geophysical Prospecting 39, pp. 723-736.
Schoenberg, M. et al. (1989), “A calculus for finely layered anisotropic media,” Geophysics 54, pp. 581-589.
Schuster, G.T. et al. (2010), “Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics,” SEG Denver 2010 Ann. Meeting, pp. 3110-3114.
Sears, T.J. et al. (2008), “Elastic full waveform inversion of multi-component OBC seismic data,” Geophysical Prospecting 56, pp. 843-862.
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384.
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs.
Sheng, J. et al. (2006), “Early arrival waveform tomography on near-surface refraction data,” Geophysics 71, pp. U47-U57.
Sheriff, R.E.et al. (1982), “Exploration Seismology”, pp. 134-135.
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158.
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefield,” Geophysics 49, pp. 592-606.
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385.
Sirgue, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248.
Soubaras, R. et al. (2007), “Velocity model building by semblance maximization of modulated-shot gathers,” Geophysics 72(5), pp. U67-U73.
Spitz, S. (2008), “Simultaneous source separation: a prediction-subtraction approach,” 78th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2811-2815.
Stefani, J. (2007), “Acquisition using simultaneous sources,” 69th Annual Conf. and Exh., EAGE Extended Abstracts, 5 pgs.
Symes, W.W. (2007), “Reverse time migration with optimal checkpointing,” Geophysics 72(5), pp. P.SM213-SM221.
Symes, W.W. (2009), “Interface error analysis for numerical wave propagation,” Compu. Geosci. 13, pp. 363-371.
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-2205.
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107.
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037.
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J. Geophys. Res., 24 pgs.
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th SEG Annual International Meeting, Expanded Abstracts, pp. 2801-2805.
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318.
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I,” W.H. Freeman and Co., p. 173.
Aki et al. (1980), “Quantitative Seismology, Theory and Methods,” Chapter 5.20, W.H. Freeman & Co., pp. 133-155.
Amundsen, L. (2001), “Elimination of free-surface related multiples without need of the source wavelet,” Geophysics 60(1), pp. 327-341.
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs.
Barr, F.J. et al. (1989), “Attenuation of Water-Column Reverberations Using Pressure and Velocity Detectors in a Water-Bottom Cable,” 59th Annual SEG meeting, Expanded Abstracts, pp. 653-656.
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 224-2247.
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917.
Beasley, C. (2012), “A 3D simultaneous source field test processed using alternating projections: a new active separation method,” Geophsyical Prospecting 60, pp. 591-601.
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh wave dispersion studies,” Geophysics 68(3), pp. 782-790.
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631.
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs.
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded Abstracts, pp. 2288-2292.
Ben-Hadj-Ali, H. et al. (2011), “An efficient frequency-domain full waveform inversion method using simultaneous encoded sources,” Geophysics 76(4), pp. R109-R124.
Benitez, D. et al. (2001), “The use of the Hilbert transform in ECG signal analysis,” Computers in Biology and Medicine 31, pp. 399-406.
Berenger, J-P. (1994), “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. of Computational Physics 114, pp. 185-200.
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142.
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264.
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938.
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108.
Biondi, B. (1992), “Velocity estimation by beam stack,” Geophysics 57(8), pp. 1034-1047.
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514.
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 1044-1049.
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473.
Burstedde, G. et al. (2009), “Algorithmic strategies for full waveform inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46.
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515.
Choi, Y. et al. (2011), “Application of encoded multisource waveform inversion to marine-streamer acquisition based on the global correlation,” 73rd EAGE Conference, Abstract, pp. F026.
Choi, Y et al. (2012), “Application of multi-source waveform inversion to marine stream data using the global correlation norm,” Geophysical Prospecting 60, pp. 748-758.
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813.
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14.
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113.
Donerici, B. et al. (1005), “Improved FDTD Subgridding Algorithms Via Digital Filtering and Domain Overriding,” IEEE Transactions on Antennas and Propagation 53(9), pp. 2938-2951.
Downey, N. et al. (2011), “Random-Beam Full-Wavefield Inversion,” 2011 San Antonio Annual Meeting, pp. 2423-2427.
Dunkin, J.W. et al. (1973), “Effect of Normal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642.
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356.
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116.
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248.
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50.
Etgen, J.T. et al. (2007), “Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial,” Geophysics 72(5), pp. SM223-SM230.
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230.
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104.
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734.
Related Publications (1)
Number Date Country
20140358504 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61830537 Jun 2013 US