The IP Multimedia Subsystem (IMS) is an architectural framework for delivering Internet Protocol (IP) multimedia to mobile users over various types of wireless and fixed networks. Through advancements in wireless access technologies, IP-based communications for multimedia application services became available for various types of mobile devices. Subscribers of second and third generation mobile communication networks are offered application services which require access to special network subsystems such as the IMS. Examples of such application services include white board discussions, video conferencing, Push to talk over Cellular (PoC), Voice over IP (VoIP), real-time content sharing including video/audio files, instant messaging, interactive gaming, and the like.
An important component of IMS based service delivery is the availability of clients on end-user devices. These IMS clients are often tailored to suit the specific needs of service providers and require custom development to make them interoperate with the IMS core network. This means expending time and effort to build custom clients, often at the expense of time to market of these services. As such, there are a number of challenges and inefficiencies found in traditional IMS based service delivery.
Embodiments of the present invention will be described and explained through the use of the accompanying drawings in which:
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
As noted above an important component of IMS based service delivery is the availability of clients on end-user devices. These IMS clients are often tailored to suit the specific needs of service providers and require custom development to make them interoperate with the IMS core network. Since the IMS domain relies on a trusted relationship between the network and the end-user, the IMS services are marketed and offered to the operator's own subscribers (i.e., trusted and known) thereby limiting the number of users that can potentially utilize and be eligible for these services.
In contrast, various embodiments of the present invention extend the trust relationship from the closed group of customers of the service providers to a potential limitless base (e.g., users of other ecosystems such as GMAIL, FACEBOOK, or YAHOO!) for these IMS services. A generic client (e.g., Web real time communications (RTC) client) may be used to expose an operator's IMS service offerings to users or IP endpoints associated with these third-party ecosystems. In some embodiments, for example, the generic client receives the third-party domain credentials from the user. These credentials are passed to a gateway as part of a request to establish the service. When the gateway receives the request, the third-party domain credentials are extracted and authenticated with secure communications with the third-party domain. The authentication from the third-party domain is used to establish an IMS session without the need for further validation of the end-user's credentials based on a trust relationship between the gateway and the IMS network. As a result, the mobile network operators stand to benefit by monetizing these services to a larger customer base.
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. It will be apparent, however, to one skilled in the art that embodiments of the present invention may be practiced without some of these specific details. Moreover, the techniques introduced here can be embodied as special-purpose hardware (e.g., circuitry), as programmable circuitry appropriately programmed with software and/or firmware, or as a combination of special-purpose and programmable circuitry. Hence, embodiments may include a machine-readable medium having stored thereon instructions that may be used to program a computer (or other electronic devices) to perform a process. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, compact disc read-only memories (CD-ROMs), magneto-optical disks, ROMs, random access memories (RAMs), erasable programmable read-only memories (EPROMs), electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, flash memory, or other type of media/machine-readable medium suitable for storing electronic instructions.
The phrases “in some embodiments,” “according to some embodiments,” “in the embodiments shown,” “in other embodiments,” and the like generally mean the particular feature, structure, or characteristic following the phrase is included in at least one implementation of the present invention, and may be included in more than one implementation. In addition, such phrases do not necessarily refer to the same embodiments or different embodiments.
To ease the integration of IMS network 130 with Internet resources, various specifications (e.g., 3GPP specifications) use Internet Engineering Task Force protocols within IMS network 130. An example of one such protocol is session initiation protocol (SIP). SIP is a signaling protocol used for creating, modifying and terminating two-party or multiparty sessions consisting of one or several media streams. Endpoints must register with IMS network 130 in order to use IMS services. Traditionally, a mobile device, or other endpoint, registers its IP address with a SIP registrar server within IMS network 130 by generating and sending a SIP request message with a “REGISTER” method token. The IMS network 130 handles the authentication. Once registered, the mobile device may subsequently establish multimedia sessions via IMS network 130. In contrast, the embodiments illustrated in
As illustrated in the embodiments shown in
Gateway 115 (e.g., WebRTC Inter Working Function (IWF)) can terminate secure HTTPs sessions from Internet facing devices and communicate to the IMS network using a Session Initiation Protocol (SIP). A trust relationship exists between gateway 115 and IMS network 130. This trust relationship allows SIP REGISTER messages to be processed at a proxy control session control function (P-CSCF) 135. Gateway 115 may also interface with authentication server 120 to delegate the responsibility of authentication of credentials supplied by the device/user for the case when the supplied username does not belong to the IMS domain operator. In some embodiments, authentication server 120 interfaces with the third-party domain 125A-125N that owns the identity supplied by the user (username). Authentication server 120 may use proprietary or existing identity management protocols (e.g., OAuth). The authentication status is relayed back to gateway 115.
Gateway 115 can receive the authentication status and initiate communication with IMS network 130 if and only if the user has been successfully authenticated by authentication server 120. P-CSCF 135 may be a SIP proxy which resides with IMS network 130. Once the user credentials have been successfully authenticated, the gateway 115 originates a SIP REGISTER message on behalf of the user. P-CSCF 135 has a trust relationship with gateway 115 and asserts that the registration request originates from the trusted source. In some embodiments, the assertion that the registration request originates from the trusted source may be embedded within the SIP REGISTER request by P-CSCF 135. This may include inserting private headers (P-headers) into the SIP REGISTER message before forwarding the request onto the serving control session control function (S-CSCF) 140.
S-CSCF 140 can then inspect the SIP REGISTER message. When S-CSCF 140 determines the register message contains the P-CSCF assertion that the message originated from a trusted source, S-CSCF 140 may suspend the challenge of the register message and implicitly register the user whose identity is contained in the register message. S-CSCF 140 may then contact the subscriber repository 145 and download a generic Initial Filter Criteria (iFC). In accordance with various embodiments, the iFC tells S-CSCF 140 which and in what order the application servers 150A-150C need to be contacted for service delivery. If the provided user identity is wireless/network operator controlled, subscriber repository 145 proceeds in the normal way and provides the actual filter criteria (and not the generic filter criteria) to S-CSCF 140.
Subscriber repository 145, coupled to S-CSCF 140, may be a master user database containing the subscription-related information (subscriber profiles) that supports IMS network 130. Subscriber repository 145 may also perform authentication and authorization of the user, and can provide information about the subscriber's location and IP information. The subscriber repository 145 may be a home subscriber server that can create a temporary binding between the provided user identity and the registration state.
If determination operation 206 determines that the user is not already authenticated, then determination operation 206 branches to request operation 218, where the user credentials are requested and received over a secure connection (e.g., HTTPS). Passing operation 220 then passes the user credentials to an authentication server where authentication activation operation 222 activates the authentication function subroutine (see
When a response is receive from the authentication server regarding the verification of the user credentials, credential verification determination operation 224 determines whether the user credentials were verified. If credential verification determination operation 224 determines the user credentials were not verified, then credential verification determination operation 224 branches to response operation 226 where a response is sent back to the client indicating the user credentials were not verified before ending the gateway subroutine during stopping operation 228. If credential verification determination operation 224 determines the user credentials were verified, then credential verification determination operation 224 branches to construction operation 230 where an appropriate SIP REGISTER message, e.g. as described herein, is constructed.
Sending operation 232 sends the SIP REGISTER message to the IMS network where IMS network subroutine (see
The S-CSCF subroutine (see
If determination operation 515 determines that the SIP message is a SIP REGISTER message, then determination operation 515 branches to contact operation 535 where the HSS is contacted and an HSS subroutine, to determine the appropriate filter criteria (see
If determination operation 620 determines that the user identity is not owned by the operator of the IMS network, then determination operation 620 branches to marking operation 640 where the user is marked as registered and binding operation 645 creates a temporary binding between the user identity and the registration state. Sending operation 650 then sends a set of generic filter criteria to the S-CSCF. After the message is sent, the HSS subroutine is terminated during stopping operation 635.
Embodiments of the present invention include various steps and operations, which have been described above. A variety of these steps and operations may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware, software, and/or firmware. As such,
Processor(s) 720 can be any known processor, such as, but not limited to, ARM or x86-type processors, such as an INTEL® ITANIUM® or ITANIUM 2® processor(s); AMD® OPERTON® or ATHLON MP® processor(s); or MOTOROLA® lines of processors. Communication port(s) 730 can be any of an RS-232 port for use with a modem-based dialup connection, a 10/100 Ethernet port, or a Gigabit port using copper or fiber. Communication port(s) 730 may be chosen depending on a network such as a Local Area Network (LAN), Wide Area Network (WAN), or any network to which the computer system 700 connects. The communication port 730 may also encompass wireless communications components, such as an IEEE 802.11, 3G/4G or other wireless transceiver.
Main memory 740 can be Random Access Memory (RAM) or any other dynamic storage device(s) commonly known in the art. Read only memory 760 can be any static storage device(s) such as Programmable Read Only Memory (PROM) chips for storing static information such as instructions for processor 720.
Mass storage 770 can be used to store information and instructions. For example, hard disks such as the ADAPTEC® family of SCSI drives, an optical disc, an array of disks such as RAID, such as the Adaptec family of RAID drives, or any other mass storage devices may be used.
Bus 710 communicatively couples processor(s) 720 with the other memory, storage and communication blocks. Bus 710 can be a PCI/PCI-X or SCSI based system bus depending on the storage devices used.
Removable storage media 750 can be any kind of external hard-drives, floppy drives, IOMEGA® ZIP Drives, Compact Disc—Read Only Memory (CD-ROM), Compact Disc—Re-Writable (CD-RW), and/or Digital Video Disk—Read Only Memory (DVD-ROM).
The components described above are meant to exemplify some types of possibilities. In no way should the aforementioned examples limit the scope of the invention, as they are only exemplary embodiments.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements; the coupling or connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above Detailed Description of examples of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific examples for the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative implementations may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed or implemented in parallel, or may be performed at different times. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.
The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various examples described above can be combined to provide further implementations of the invention. Some alternative implementations of the invention may include not only additional elements to those implementations noted above, but also may include fewer elements.
These and other changes can be made to the invention in light of the above Detailed Description. While the above description describes certain examples of the invention, and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in its specific implementation, while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific examples disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed examples, but also all equivalent ways of practicing or implementing the invention under the claims.
To reduce the number of claims, certain aspects of the invention are presented below in certain claim forms, but the applicant contemplates the various aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as a computer-readable medium claim, other aspects may likewise be embodied as a computer-readable medium claim, or in other forms, such as being embodied in a means-plus-function claim. (Any claims intended to be treated under 35 U.S.C. § 112, ¶6 will begin with the words “means for”, but use of the term “for” in any other context is not intended to invoke treatment under 35 U.S.C. § 112, ¶6.) Accordingly, the applicant reserves the right to pursue additional claims after filing this application to pursue such additional claim forms, in either this application or in a continuing application.
This application is a continuation of U.S. patent application Ser. No. 15/623,334, filed on Jun. 14, 2017, and entitled “EXTENDING AND RE-USING AN IP MULTIMEDIA SUBSYSTEM (IMS);” which is a continuation of U.S. patent application Ser. No. 13/789,559, filed on Mar. 7, 2013, now U.S. Pat. No. 9,686,284, and entitled “EXTENDING AND RE-USING AN IP MULTIMEDIA SUBSYSTEM (IMS),” the disclosure of which are hereby incorporated herein in their entireties by reference.
Number | Name | Date | Kind |
---|---|---|---|
8045540 | Bajko | Oct 2011 | B2 |
8285983 | Hallenstal | Oct 2012 | B2 |
8503462 | Damola | Aug 2013 | B2 |
8503657 | Tyagi et al. | Aug 2013 | B2 |
8520664 | Betti | Aug 2013 | B2 |
8549615 | Barriga | Oct 2013 | B2 |
8812685 | Fuller | Aug 2014 | B2 |
8844011 | Przybysz et al. | Sep 2014 | B2 |
9143482 | Breau et al. | Sep 2015 | B1 |
9324141 | Begin | Apr 2016 | B2 |
9686284 | Shah et al. | Jun 2017 | B2 |
9749309 | Horn | Aug 2017 | B2 |
9900347 | Lindholm | Feb 2018 | B2 |
9992183 | Engelhart | Jun 2018 | B2 |
10148655 | Shah et al. | Dec 2018 | B2 |
10715996 | Singh et al. | Jul 2020 | B1 |
10742631 | Engelhart | Aug 2020 | B2 |
20030005280 | Bobde et al. | Jan 2003 | A1 |
20040128542 | Blakley, III et al. | Jul 2004 | A1 |
20040153667 | Kastelewicz et al. | Aug 2004 | A1 |
20040225878 | Costa-Requena et al. | Nov 2004 | A1 |
20050090256 | Dutta | Apr 2005 | A1 |
20050132060 | Mo et al. | Jun 2005 | A1 |
20060021019 | Hinton et al. | Jan 2006 | A1 |
20080086771 | Li et al. | Apr 2008 | A1 |
20080148351 | Bhatia et al. | Jun 2008 | A1 |
20080155659 | Gazier et al. | Jun 2008 | A1 |
20090061820 | Patel et al. | Mar 2009 | A1 |
20090064284 | Poston et al. | Mar 2009 | A1 |
20090064303 | Dickinson et al. | Mar 2009 | A1 |
20090113523 | Vedula et al. | Apr 2009 | A1 |
20090119182 | Krstulich et al. | May 2009 | A1 |
20090172397 | Kim | Jul 2009 | A1 |
20090210536 | Allen et al. | Aug 2009 | A1 |
20100048195 | Zhu | Feb 2010 | A1 |
20100138905 | Kass et al. | Jun 2010 | A1 |
20100199341 | Foti et al. | Aug 2010 | A1 |
20100263032 | Bhuyan et al. | Oct 2010 | A1 |
20100287606 | Machani | Nov 2010 | A1 |
20110096746 | Belling | Apr 2011 | A1 |
20110179273 | Hjelm et al. | Jul 2011 | A1 |
20110256849 | Dutta | Oct 2011 | A1 |
20110299462 | Imbimbo et al. | Dec 2011 | A1 |
20120023490 | Goebl et al. | Jan 2012 | A1 |
20120023556 | Schultz | Jan 2012 | A1 |
20120042371 | Gur et al. | Feb 2012 | A1 |
20120191976 | Blot-Lefevre et al. | Jul 2012 | A1 |
20120265990 | Liu et al. | Oct 2012 | A1 |
20130024688 | Wen et al. | Jan 2013 | A1 |
20130081123 | Przybysz et al. | Mar 2013 | A1 |
20130139241 | Leeder | May 2013 | A1 |
20130159520 | Engelhart | Jun 2013 | A1 |
20130227663 | Cadenas | Aug 2013 | A1 |
20140126714 | Sayko | May 2014 | A1 |
20140223452 | Santhanam et al. | Aug 2014 | A1 |
20140297879 | Gao et al. | Oct 2014 | A1 |
20140337227 | Dua | Nov 2014 | A1 |
20150142879 | Rameil-Green | May 2015 | A1 |
20150365403 | Counterman | Dec 2015 | A1 |
20180278599 | Engelhart | Sep 2018 | A1 |
20190075099 | Brouchier et al. | Mar 2019 | A1 |
Entry |
---|
International Bureau, International Search Report and Written Opinion, PCT Patent Application PCT/US2020/036185, dated Sep. 11, 2020, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20190068597 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15623334 | Jun 2017 | US |
Child | 16172654 | US | |
Parent | 13789559 | Mar 2013 | US |
Child | 15623334 | US |