This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an example described below, more particularly provides for extending lines through, and preventing extrusion of, packer seal elements.
An annulus differential pressure rating of a packer assembly can be limited by extrusion of the packer assembly's seal element. It is beneficial to be able to extend lines longitudinally through the seal element.
Therefore, it will be appreciated that improvements are needed in the art of constructing packer assemblies.
In the disclosure below, a packer assembly and associated methods are provided which brings improvements to the art. One example is described below in which lines are extended longitudinally through a seal element and an end ring. Another example is described below in which extrusion of the seal element is prevented by use of radially extendable leaves on the end ring.
In one aspect, this disclosure provides to the art a packer assembly for use in a subterranean well. The packer assembly can include an annular seal element and at least one end ring. The end ring includes leaves formed on a body of the end ring, whereby the leaves are biased radially outward when the seal element extends radially outward.
In another aspect, a method of sealing an annulus in a subterranean well is provided by this disclosure. The method can include positioning a circumferential series of leaves radially outwardly overlying an annular seal element of a packer assembly, and the leaves pivoting radially outward in response to swelling of the seal element.
In yet another aspect, a disclosed packer assembly for use in a subterranean well can include an annular seal element which swells in response to contact with a selected fluid in the well, and at least one end ring including an end ring body with a removable portion. The removable portion is engaged with the body of the end ring via interlocking profiles.
These and other features, advantages and benefits will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative examples below and the accompanying drawings, in which similar elements are indicated in the various figures using the same reference numbers.
Representatively illustrated in
The packer assembly 12 is representatively of the type known to those skilled in the art as a swellable packer, but other types of packers can incorporate the principles of this disclosure. In the
The term “swell” and similar terms (such as “swellable”) are used herein to indicate an increase in volume of a swellable material. Typically, this increase in volume is due to incorporation of molecular components of an activating agent into the swellable material itself, but other swelling mechanisms or techniques may be used, if desired. Note that swelling is not the same as expanding, although a seal material may expand as a result of swelling.
For example, in some conventional packers, a seal element may be expanded radially outward by longitudinally compressing the seal element, or by inflating the seal element. In each of these cases, the seal element is expanded without any increase in volume of the seal material of which the seal element is made. Thus, in these conventional packers, the seal element expands, but does not swell.
The activating agent which causes swelling of the swellable material is in this example preferably a hydrocarbon fluid (such as oil or gas). In the well system 10, the swellable material swells when the fluid comprises the activating agent (e.g., when the fluid enters the wellbore 18 from a formation surrounding the wellbore, when the fluid is circulated to the packer assembly 12, when the fluid is released from a chamber carried with the packer assembly, etc.). In response, the seal element 24 seals off the annulus 14 and can apply a gripping force to the wellbore 18.
The activating agent which causes swelling of the swellable material could be comprised in any type of fluid. The activating agent could be naturally present in the well, or it could be conveyed with the packer assembly 12, conveyed separately or flowed into contact with the swellable material in the well when desired. Any manner of contacting the activating agent with the swellable material may be used in keeping with the principles of this disclosure.
Various swellable materials are known to those skilled in the art, which materials swell when contacted with water and/or hydrocarbon fluid, so a comprehensive list of these materials will not be presented here. Partial lists of swellable materials may be found in U.S. Pat. Nos. 3,385,367 and 7,059,415, and in U.S. Published Application No. 2004-0020662, the entire disclosures of which are incorporated herein by this reference.
As another alternative, the swellable material may have a substantial portion of cavities therein which are compressed or collapsed at surface conditions. Then, after being placed in the well at a higher pressure, the material swells by the cavities filling with fluid.
This type of apparatus and method might be used where it is desired to expand the swellable material in the presence of gas rather than oil or water. A suitable swellable material is described in U.S. Published Application No. 2007-0257405, the entire disclosure of which is incorporated herein by this reference.
Preferably, the swellable material used in the well tool 12 swells by diffusion of hydrocarbons into the swellable material, or in the case of a water swellable material, by the water being absorbed by a super-absorbent material (such as cellulose, clay, etc.) and/or through osmotic activity with a salt-like material. Hydrocarbon-, water- and gas-swellable materials may be combined, if desired.
It should, thus, be clearly understood that any swellable material which swells when contacted by a predetermined activating agent may be used in keeping with the principles of this disclosure. The swellable material could also swell in response to contact with any of multiple activating agents. For example, the swellable material could swell when contacted by hydrocarbon fluid and/or when contacted by water.
In the
The lines 26 may be electrical, hydraulic, optical, and/or any other type of lines. The lines 26 may be in the form of conduits, wires, cables, optic fibers (or other types of optical waveguides), flat packs, and/or in any other form. The lines 26 may be used for control signals, data transmission, communication, telemetry, and/or any other purpose.
Referring additionally now to
A cross-sectional view of the packer assembly 12 is illustrated in
Generally, these components are aligned along a longitudinal axis 32 of the packer assembly 12. A flow passage 34 extends longitudinally through the base pipe 30, so that flow can be permitted through the passage, even when the seal element 24 seals off the annulus 14 surrounding the packer assembly 12.
In the example of
Four sets of channels 36 and slits 38 are provided in the example of
Each of the end rings 28 includes a body 40 which encircles and is secured to the base pipe 30. The body 40 could be secured to the base pipe 30 by means of fasteners (such as set screws 42 depicted in
Each end ring 28 also includes one or more removable portions 44 which allow the lines 26 to be installed through the end ring from a side thereof (without having to feed the lines through openings 46 in the end ring from an end). The openings 46 are aligned with the channels 36 in the seal element 24, thereby enabling the lines 26 to be conveniently installed in the channels and openings from the side thereof as the tubular string 16 and packer assembly 12 are being run into the wellbore 18.
After inserting the lines 26 into the channels 36 and openings 46, the removable portions 44 are attached to the end ring bodies 40, thereby securing the lines to the packer assembly 12. The packer assembly 12 is then positioned in the well, and the seal element 24 is swelled to seal off the annulus 14. This swelling of the seal element 24 also causes the seal element to seal about the lines 26 in the channels 36, thereby preventing leakage about the lines.
In one feature of the end rings 28, the removable portions 44 are engaged with the end ring bodies 40 via longitudinally extending interlocking profiles 48. The interlocking profiles are preferably created by wire-cutting (e.g., using electrical discharge machining) the removable portions 44 from the end ring bodies 40, but other methods of forming the interlocking profiles may be used as desired. The interlocking profiles 48 are depicted in the drawings as having a J-shape, but other shapes may be used as desired.
Referring additionally now to
Note that one of the channels 36 has a rectangular shape, and the remaining channels have a circular shape. The rectangular channel 36 may be used for installation of a flat pack therein, and the other channels may be used for installation of cylindrical cables therein, but it should be understood that any combination of shapes may be used for the channels in keeping with the principles of this disclosure.
Referring additionally now to
A sleeve-shaped insert 54 is installed in the end ring body 40, radially inward from the leaves 50. The insert 54 also has longitudinally extending leaves 56 formed thereon.
The leaves 50, 52, 56 radially outwardly overlie the ends of the seal element 24 (see, for example,
Preferably, the insert leaves 56 are circumferentially offset relative to the leaves 50, 52 on the body 40 and removable portions 44, so that there are no circumferential gaps exposed between the leaves. In this manner, the leaves 50, 52, 56 form an unbroken wall to prevent extrusion of the seal element 24, even after the leaves have been pivoted radially outward by the swelling of the seal element.
The insert 54 can be secured in the end ring 28 by adhesive bonding or other attachment means. The insert 54 could be a continuous cylindrical sleeve as depicted in
Referring additionally now to
In
This eccentric positioning of the seal element 24 outer diameter produces a thickened side 60 of the seal element. The lines 26 are installed in channels 36 in this thickened side 60. The lines 26 are not shown in
In
In
The insert 54 is illustrated in
Another example is representatively illustrated in
In
Although the end ring 28 examples are described above as including multiple unique features (e.g., the removable portions 44 and the leaves 50, 52, etc.), it should be clearly understood that any one or combination of these features could be included in an end ring within the scope of this disclosure, and it is not necessary for all of the unique features described above to be included in the end ring.
It may now be fully appreciated that the above disclosure provides several advancements to the art of constructing packer assemblies for use in wells. The examples of the packer assembly 12 described above have an end ring 28 which accommodates various types, numbers and spacings of lines 26, and which secures the lines using one or more removable portions 44. Extrusion of the seal element 24 in the annulus 14 is prevented by leaves 50, 52, 56 which pivot radially outward when the seal element 24 extends radially outward.
The above disclosure provides to the art a packer assembly 12 for use in a subterranean well. The packer assembly 12 can include an annular seal element and at least one end ring 28 including leaves 50 formed on a body 40 of the end ring 28. The leaves 50 are biased radially outward when the seal element 24 extends radially outward.
The seal element 24 may swell in response to contact with a selected fluid in the well.
A removable portion 44 of the end ring 28 may be engaged with the end ring body 40 via interlocking profiles 48.
The leaves 50 may overlie the seal element 24.
The end ring 28 may also include an insert 54 with leaves 56 formed thereon. The insert leaves 56 can be circumferentially offset relative to the end ring body leaves 50.
At least one line 26 can extend through the seal element 24 and the end ring 28. The line 26 may be positioned in an opening 46 bounded by the end ring body 40 and a removable portion 44 of the end ring 28.
Also provided by the above disclosure is a method of sealing an annulus 14 in a subterranean well. The method can include positioning a circumferential series of leaves 50, 52 radially outwardly overlying an annular seal element 24 of a packer assembly 12, and the leaves 50, 52 pivoting radially outward in response to swelling of the seal element 24.
The method can also include installing in the end ring body 40 an insert 54 with leaves 56 formed thereon, so that the insert leaves 56 are circumferentially offset relative to the end ring body leaves 50.
The above disclosure also describes a packer assembly 12 for use in a subterranean well, with the packer assembly 12 comprising an annular seal element 24 which swells in response to contact with a selected fluid in the well. At least one end ring 28 includes a removable portion 44 thereof engaged with a body 40 of the end ring 28 via interlocking profiles 48.
It is to be understood that the various examples described above may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present disclosure. The embodiments illustrated in the drawings are depicted and described merely as examples of useful applications of the principles of the disclosure, which are not limited to any specific details of these embodiments.
In the above description of the representative examples of the disclosure, directional terms, such as “above,” “below,” “upper,” “lower,” etc., are used for convenience in referring to the accompanying drawings. In general, “above,” “upper,” “upward” and similar terms refer to a direction toward the earth's surface along a wellbore, and “below,” “lower,” “downward” and similar terms refer to a direction away from the earth's surface along the wellbore.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to these specific embodiments, and such changes are within the scope of the principles of the present disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2253092 | Prancer | Aug 1941 | A |
2546377 | Turechek | Mar 1951 | A |
6325144 | Turley et al. | Dec 2001 | B1 |
6343791 | Anyan et al. | Feb 2002 | B1 |
6439313 | Thomeer et al. | Aug 2002 | B1 |
6695057 | Ingram et al. | Feb 2004 | B2 |
7114558 | Hoffman et al. | Oct 2006 | B2 |
7222676 | Patel et al. | May 2007 | B2 |
7730940 | Knippa et al. | Jun 2010 | B2 |
7762322 | Andersen et al. | Jul 2010 | B2 |
20060121340 | Kawai et al. | Jun 2006 | A1 |
20070012436 | Freyer | Jan 2007 | A1 |
20080110626 | Allison et al. | May 2008 | A1 |
20090159265 | Freyer | Jun 2009 | A1 |
20090277648 | Nutley et al. | Nov 2009 | A1 |
20090283254 | Andersen et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
2151525 | Dec 1996 | CA |
201241659 | May 2009 | CN |
2201495 | Mar 2003 | RU |
82748 | May 2009 | RU |
Entry |
---|
Search Report issued Jul. 10, 2012 for International Application PCT/US11/63077, 6 pages. |
Written Opinion issued Jul. 10, 2012 for International Application PCT/US11/63077, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20120145412 A1 | Jun 2012 | US |