Curable (i.e., crosslinkable) ink and coating compositions or systems have been in widespread use for many years. Since curable compositions or systems are typically 100 wt % solids, curable systems are considered to be more environmentally acceptable than solvent-base systems, which release solvents into the atmosphere. Further, curable systems allow for more process flexibility, since the coating or printing machine can be stopped without concern about a solvent (water or organic) evaporating prematurely.
During the curing process, curable ink and coating systems form crosslinked materials (e.g., polymers or resins) known as thermosets. The cured inks and coatings are resistant to abrasion, chemicals, and heat, but typically have limited flexibility and extensibility. Accordingly, these generally non-extensible, cured inks and coatings have not found use in printing applications that may require substantial flexibility and/or extensibility, such as heat transfer labels. When heat transfer labels are applied to a container having a contoured shape, the heat transfer label must be able to conform to the shape of the container. If the heat transfer label lacks sufficient flexibility and extensibility, it may crack or break when it is joined to the shaped container.
Accordingly, there is a need for curable inks and/or coating compositions for use in forming flexible and extensible cured inks and coatings. There is also a need for a sufficiently flexible and extensible heat transfer label formed from one or more curable compositions.
In one aspect, this disclosure is directed generally to at least partially curable inks and/or coating compositions that form flexible, extensible inks and/or coatings, and the inks and/or coatings formed therefrom. The ink and/or coating compositions may generally include at least one thermosetting (i.e., curable) material and, optionally, a viscosity modifier. In some examples, the viscosity modifier may comprise a monomer, a thermoplastic resin, or any combination thereof. The ink and/or coating compositions may be cured in any suitable manner, for example, using ultraviolet (UV) light or electron beam radiation (EB).
In another aspect, this disclosure is directed generally to a flexible and extensible heat transfer label. At least a portion of the heat transfer label may generally be capable of being stretched or elongated at least about 5% in at least one direction (so that its dimension increases in at least the one direction) without creating substantial defects in the label (e.g., without substantially cracking, speckling, or distorting) when the label is applied to a container. In some examples, at least a portion the heat transfer label may stretch from about 6% to about 20%, for example, from about 8% to about 15%, for example, about 10% in at least one direction without forming substantial defects in the label. The heat transfer label may be formed from one or more curable ink and/or coating compositions, for example, energy curable ink and/or coating compositions.
In still another aspect, this disclosure is directed generally to a heat transfer label assembly including a flexible and extensible heat transfer label or label portion. The heat transfer label assembly may include a carrier on which the heat transfer label is supported. Additionally, the heat transfer label assembly may include a release layer that facilitates separation of the heat transfer label from the carrier when the heat transfer label is applied to a container. The heat transfer label may include one or more components that comprise a thermoset formed from a curable composition, for example, an energy curable composition.
In yet another aspect, this disclosure is directed generally to a method of decorating a container with a flexible and extensible heat transfer label and a container decorated with a flexible and extensible heat transfer label.
Other features, aspects, and embodiments will be apparent from the following description and accompanying figures.
The description refers to the accompanying drawings in which like reference characters refer to like parts throughout the several views, and in which:
In the exemplary embodiments shown in
The heat transfer label 102 generally includes a protective coating or layer 106, one or more ink layers 108 (shown as a single ink layer or ink coating 108) configured to define one or more graphics and/or text (collectively “decoration”), and an adhesive coating or layer 110. The releasable support portion 104 generally includes a carrier or substrate 112 and a release layer 114.
The carrier 112 generally comprises a base material on which the remaining layers of the heat transfer label assembly 100 are supported. However, although some layers or components of the heat transfer label assembly are described as “overlying” or being “on” other layers or components, it will be appreciated that the heat transfer label assembly 100 may be inverted, such that different layers or components may be said to “overlie” or be “on” others. Accordingly, such terminology is provided merely for convenience of explanation and not limitation in any manner.
When the label 102 is joined to a container 116 (
A plurality of labels 102 are typically indexed along the length of the carrier 112 so that a multitude of containers 116 can be decorated using an automated process. It will be noted that the
To use the heat transfer label assembly 100 according to one exemplary method, the assembly 100 may be brought into contact with the surface 118 of the container 116 with the adhesive 110 facing the container 116. Heat and pressure may be applied to the assembly 100 using, for example, a heated platen. The release layer 114 softens and allows the protective coating 106, ink 108, and adhesive 110 to separate from the carrier 112, while the application of pressure transfers the protective coating 106, ink 108, and adhesive 110 to the container 116. Additionally, at least some of the release layer 114 may transfer to the container 116. Thus, the outermost layer of the transferred label 102 may comprise the protective coating 106 and/or some of the release layer 114. The substrate or carrier 112 may be discarded if desired. Alternatively, it is contemplated that the substrate or carrier 112 may be recycled or reused. In some cases, the decorated container may then be subjected to a flaming process to improve the clarity of the heat transfer label.
When the heat transfer label 102 is applied to the container 116, the heat transfer label may be stretched to improve contact, and therefore, adhesion, between the heat transfer label and the container. In some cases, the heat transfer label 102 may be stretched only slightly, for example, from about 1 to about 4%. In other cases, for example, where the container is tapered or contoured (e.g., where the container has compound curves), at least a portion of the heat transfer label 102 may need to be stretched (i.e., extended or elongated) at least about 5%, for example, from about 6% to about 20%, for example, from about 8% to about 15%, for example, about 10% (where the percent stretch or extensibility or elongation is measured at typical decorating temperatures, for example, from about 225° F. to about 410° F.). Accordingly, the heat transfer label 102 ideally should be able to stretch or extend the desired amount in at least one direction so that the heat transfer label can be applied to the container without substantially cracking, speckling, distorting, or creating any other substantial defect in the decoration on the decorated container (e.g., as viewed by a naked eye) that would generally render the decorated container unacceptable.
The protective coating 106 and/or ink 108 may comprise any suitable material that is capable of achieving the desired degree of flexibility and extensibility for a particular decorating (i.e., labeling) application. More particularly, at least a portion of the protective coating 106 and/or ink 108 ideally stretches (i.e., extends or elongates) at least about 5%, for example, from about 6% to about 20%, for example, from about 8% to about 15%, for example, about 10%, in at least one direction without substantially cracking, speckling, distorting, or forming any other substantial defect in the label 102 when the label is applied to the container.
If desired, the protective coating 106 and/or ink 108 may be formed from a curable composition or system 206, 210 (
The compositions used to form the protective coating 106 and/or ink 108 (e.g., compositions 206, 210 of
Suitable oligomers used to form the protective coating 106 and/or ink 108 may include acrylate oligomers (e.g., urethane acrylate, polyester acrylate, and epoxy acrylate oligomers), epoxide oligomers, or any combination thereof. Acrylate oligomers typically form thermosets comprising acrylic resins or polymers, while epoxide oligomers typically form thermosets comprising epoxy resins. Some examples of oligomers that may be suitable for use in compositions for form the protective coating 106 and/or ink 108 are presented in Table 1, where HDODA is 1,6-hexanediol diacrylate, TRPGDA is tri(propylene glycol) diacrylate, IBOA is isobornyl acrylate, PEGDA is polyethylene glycol diacrylate, EOEOEA is 2-(2-ethoxyethoxy)ethyl acrylate, and TMPEOTA is trimethylolpropane ethoxylated triacrylate, and where the percent elongation and viscosity are measured at ambient temperature (data provided by supplier). However, countless other possible oligomers and/or other reactive materials may be used.
If desired, the compositions used to form the protective coating 106 and/or ink 108 (e.g., compositions 206, 210 of
The viscosity modifier may comprise any suitable material, and in one example, the viscosity modifier may comprise a monomer, for example, an energy curable monomer. Suitable energy curable monomers may include, for example, acrylate monomers, diacrylate monomers, triacrylate monomers, or any combination thereof. Some examples of such monomers are presented in Table 2, where β-CEA is β-carboxyethyl acrylate, DPGDA is dipropylene glycol diacrylate, HDODA is 1,6-hexanediol diacrylate, IBOA is isobornyl acrylate, NPG(PO)2DA is neopentyl glycol diacrylate, ODA is octyl/decyl acrylate, PETIA is pentaerythritol tri/tetra acrylate, TMPEOTA is trimethylolpropane ethoxylated triacrylate, TRPGDA is tripropylene glycol diacrylate, and where the percent elongation and viscosity are measured at ambient temperature (data provided by supplier). However, countless other possible monomers (and combinations thereof) and/or other viscosity modifiers may be used.
In another example, the viscosity modifier may comprise a thermoplastic resin, for example, a non-curable thermoplastic resin. While not wishing to be bound by theory, it is believed that the thermoplastic resin lowers the crosslink density of the thermoset (e.g., by hindering some of the crosslinking of the oligomer or other reactive material, for example, by consuming reaction sites) and/or acts as a plasticizer to make the cured protective coating 106 and/or ink 108 more flexible. Examples of thermoplastic resins that may be suitable for use as a viscosity modifier in a composition used to form the protective coating 106 and/or ink 108 include, but are not limited to, hydroxy terminated epoxidized 1,3 polybutadiene (e.g., Cytec BD605E), liquid polybutadiene polymer (e.g., Cytec Ricon 153), epoxidized soybean and linseed fatty acid esters (e.g., Arkema Vikoflex 7010, 7040, 7080, 9010, 9040, 9080), epoxy plasticizers (e.g., Chemtura Drapex), or any combination thereof. However, other possibilities are contemplated.
It is also contemplated that in some embodiments, a combination of one or more monomers and/or one or more thermoplastic resins may be used in the compositions used to form the protective coating 106 and/or ink 108.
The relative amounts of the oligomer and viscosity modifier (e.g., monomer and/or thermoplastic resin) in the compositions used to form the protective coating 106 and/or ink 108 may vary, for example, depending on the properties of the various components used in a particular composition and the type of process used to apply the composition. For example, compositions used with lithographic (e.g., offset) printing typically need to have a viscosity of at least about 5,000 cP, and in some examples, may have a viscosity of at least about 8000 cP, at least about 10,000 cP, or at least about 12,000 cP. In sharp contrast, compositions used with flexographic printing typically need to have a viscosity of at less than about 2,000 cP, and in some examples, may have a viscosity of less than about 1,000 cP or less than about 500 cP. Thus, for a given mixture of oligomer and other components (e.g., pigment, ink, photoinitiator, etc., discussed below), a greater amount of viscosity modifier may be needed for flexographic printing (to reduce the viscosity), while less viscosity modifier may be needed for lithographic (e.g., offset) printing.
By way of example, and not limitation, some compositions used to form the protective coating 106 and/or ink 108 may include from about 15 to about 65 wt % oligomer and from about 20 to about 50 wt % viscosity modifier (e.g., monomer and/or thermoplastic resin), for example, from about 18 to about 55 wt % oligomer and from about 25 to about 45 wt % viscosity modifier, or from about 20 to about 50 wt % oligomer and from about 28 to about 39 wt % viscosity modifier.
The ratio of oligomer to viscosity modifier (e.g., monomer and/or thermoplastic resin) may be from about 0.25 to about 2, for example, from about 0.4 to about 1.75, for example, from about 0.6 to about 1.5, for example, from about 0.7 to about 1.25, for example, or from about 0.73 to about 1.23. In some specific examples, the ratio of oligomer to viscosity modifier may be about 0.7, about 0.8, about 0.9, about 1.0, or about 1.2. However, countless other compositions may be used to achieve the desired properties of the composition(s) and resulting protective coating 106 and/or ink 108.
The compositions used to form the protective coating 106 and/or ink 108 may each independently include one or more of various additional components, for example, colorants (e.g., pigments or inks), photoinitiators, inhibitors, dispersants, lubricants (e.g., wax), anti-misting agents (e.g., silica and microtalc), flow agents, wetting agents, or any combination thereof. While such additional components are typically non-reactive, some photoinitiators may be reactive. Thus, the total amount of reactive and non-reactive components in each composition may vary. By way of example, and not limitation, some compositions may include from about 50 to about 95 wt % reactive components, from about 55 to about 90 wt % reactive components, from about 60 to about 85 wt % reactive components, or from about 65 to about 75 wt % reactive components. However, countless other amounts and ranges are contemplated. Thus, the resulting protective coating 106 and/or ink 108 may include the thermoset, viscosity modifier (e.g., thermoplastic material, where used), and any of a variety of other components.
As stated above, the resulting protective coating 106 and/or ink 108 can stretch (i.e., extend or elongate) at least about 5%, for example, from about 6% to about 20%, for example, from about 8% to about 15%, for example, about 10% in at least one direction without substantially cracking, speckling, distorting, or forming any other substantial defect. Thus, the heat transfer label can be applied to a highly contoured container without substantial defects. In sharp contrast, presently commercially available UV curable coatings and inks typically stretch only about 1-3%, which generally limit their use in heat transfer labels to straight-walled containers.
It will be appreciated that while such coating and ink compositions and resulting films are described herein for use in heat transfer labels, such coating and ink compositions may find use in other applications.
Various materials may be used to form the remaining layers of the heat transfer label assembly 100, and each layer may have various basis weights or coat weights, depending on the particular application.
The substrate or carrier 112 may generally comprise a flexible material, for example, paper. The paper may include a clay coating on one or both sides. The paper may have a basis weight of from about 5 to about 75 lb/ream (i.e., lb/3000 sq. ft.), for example, about 10 to about 50 lb/ream, for example, from about 20 to about 30 lb/ream. Other ranges and basis weights are contemplated. Alternatively, the carrier 112 may comprise a polymer film, for example, a polyolefin film or polyethylene terephthalate film having a thickness of from about 1 to about 3 mil, for example, 2 mil. One example of a polyethylene terephthalate film that may be suitable is Polyester HS, 142 gauge S1S PET, commercially available from Griffin Paper and Films (Holliston, Mass.). However, other suitable carriers may be used.
The release layer 114 may generally comprise any suitable material that facilitates the release of the heat transfer label from the carrier 112. In one example, the release layer 114 may comprise a wax, for example, up to 100% wax, which may be typically applied in an amount of about 6 lb/ream. In another example, the release layer 114 may comprise a polymer (or polymeric material) and a wax having a coat weight of from about 0.5 to about 5 lb/ream (on a dry basis), for example, from about 1 to about 3 lb/ream, for example, about 2.5 lb/ream. However, other ranges and amounts are contemplated. Any suitable polymer and/or wax may be used. For example, the polymer may comprise a polyolefin or an olefin copolymer, for example, an undecanoic acid copolymer (e.g., X-6112 polymer from Baker Hughes, Barnsdall, Okla.). The wax may comprise carnauba wax, and more particularly, may comprise micronized carnauba wax (e.g., MICROKLEAR 418 Micronized Carnauba Wax, Micro Powders, Inc., Tarrytown, N.Y.). The polymer and wax may be present in any suitable relative amounts. For example, the polymer and wax may be present in a ratio of from about 3:1 to about 1:3 by weight, for example, from about 2.5:1 to about 1.5:1, for example, about 2:1. However, numerous other components and relative amounts of such components may be used.
The adhesive 110 may generally comprise a thermally activated adhesive that is capable of adhering the remainder of the heat transfer label to the surface 118 of the container 116. Additionally, the adhesive 110 ideally is capable of achieving the desired degree of flexibility and extensibility needed for a particular decorating (i.e., labeling) application. More particularly, the adhesive 110 may ideally stretch or extend at least about 5%, for example, from about 6% to about 20%, for example, from about 8% to about 15%, for example, about 10%, in at least one direction without substantially cracking, speckling, distorting, or forming any other substantial defect in the label 102 when the label is applied to the container.
The type of adhesive used may vary depending on the type of container being used. For example, when the container is polyethylene, one suitable adhesive may be a polyamide adhesive. Alternatively, when the container is glass, one suitable adhesive may be a polyester adhesive. The adhesive may be water-based, solvent-based, or energy curable. One example of an adhesive that may be suitable is 7MXWF3278 water-based adhesive available from Color Resolutions International (Fairfield, Ohio). Another example of an adhesive that may be suitable is RAD-BOND HS-30 RAVG00243 UV curable adhesive available from Actega Wit. However, numerous other possibilities are contemplated.
The amount of adhesive may vary for each application. The adhesive may generally be applied in an amount of from about 0.5 to about 3 lb/ream (dry), for example, from about 1 to about 1.5 lb/ream. As shown in
Any suitable method may be used to make a heat transfer label assembly 100 according to the disclosure, or numerous other heat transfer label assemblies encompassed hereby. Further, different printing techniques may be used to achieve the desired print quality and coat weight while minimizing cost.
For example, in one exemplary apparatus or process 200 schematically illustrated in
In some embodiments (e.g., where the release layer 114 substantially comprises wax), the wax may be applied as a molten wax.
In other embodiments (e.g., where the release layer 114 comprises polymer and a wax), the release layer 114 may be applied to the carrier 112 at ambient temperature as a relatively low solids composition, for example, from about 20% to about 25% solids (wt %) (polymer plus wax), and dried. In one particular example, the release layer composition may include about 22% solids. Other solids levels are contemplated.
The release layer composition may generally include the polymer and wax solids and a diluent, which also may serve as a drying agent. If desired, the release layer composition may include other components, for example, solvents and/or other additives (e.g., optical brighteners, processing aids, printing aids, and so on).
In one example, the release layer composition may include (where all parts are by weight):
In another example, the release layer composition may include the polymer and wax solids, a diluent/drying agent, a solvent, and optionally, an optical brightener. More particularly, the release layer composition may include (where all parts are by weight):
More particularly still, another exemplary release layer composition may include (where all parts are by weight):
While some exemplary release layer compositions are provided, it will be appreciated that countless other compositions are contemplated by the disclosure. Other solvents, release layer solids, diluents/drying agents, and other components may be used. Additionally, the relative amounts of each component may vary for each application. Further, other types of print units or printers may be used to apply the release layer, for example, a lithographic, flexographic, or digital print unit or printer.
A protective coating composition 206 (e.g., such as the energy curable protective coating compositions described above) may be deposited on the release layer 114 at a second printing station 204, which may include a lithographic print unit or printer (e.g., an offset print unit or printer), a flexographic print unit or printer, or any other suitable print unit or printer (e.g., gravure, digital, and so on). The protective coating composition 206 may then be cured at a first curing unit 208, which may be provided with one or more UV lamps (e.g., 200-600W per linear inch bulbs) or other suitable energy source, where sufficient exposure to the UV light cures the coating 206 and forms the thermoset. The resulting protective coating 106 may have a basis weight of from about 1 to about 1.5 lb/ream. However, other suitable weights and ranges thereof may be used. Notably, the resulting protective coating 106 is able to stretch (i.e., extend or elongate) at least about 5%, for example, from about 6% to about 20%, for example, from about 8% to about 15%, for example, about 10%, in at least one direction without substantially cracking, speckling, distorting, or creating any other substantial defect in the label decoration (i.e., ink 108 configured as graphics and/or text). In other embodiments where a non-energy curable protective composition is used, curing unit 208 may be omitted.
One or more ink compositions (all of which are labeled 210 in
The ink composition 210 may be cured at ink curing units 214 which may be provided with one or more UV lamps (e.g., 200-600W per linear inch bulbs) or other suitable energy source, where sufficient exposure to the UV light cures the ink composition 210 and forms the thermoset. In this example, a first curing unit 214 is located between the fourth and fifth ink printing stations 212 and a second curing unit 214 is located after the eighth printing station 212. However, other numbers of curing units 214 and configurations thereof are contemplated. Notably, the resulting ink (i.e., decoration) is able to stretch (i.e., extend or elongate) at least about 5%, for example, from about 6% to about 20%, for example, from about 8% to about 15%, for example, about 10%, in at least one direction without substantially cracking, speckling, distorting, or forming any other substantial defect. In other embodiments where a non-energy curable ink composition 210 is used, one or more of curing units 214 may be omitted.
If desired (e.g., where the heat transfer label is to be applied to a colored container), one or more layers of white ink composition 210 may be deposited onto the cured colored ink at eleventh and twelfth printing stations 216, each of which independently may include a lithographic print unit or printer (e.g., an offset print unit or printer), a flexographic print unit or printer, or any other suitable print unit or printer (e.g., gravure, digital, and so on). When the white ink composition is energy curable (e.g., such as the energy curable ink compositions described above), the ink composition 210 may be cured at curing units 218 which may be similar to those described above. While two white ink print units 216 are shown in the illustrated embodiment, other numbers of print units may be used. Such units 216, 218 also may be omitted in some embodiments.
The adhesive 110 may then be deposited on the cured ink 108 at a thirteenth printing station 220 which may include a lithographic print unit or printer (e.g., an offset print unit or printer) or a flexographic print unit or printer (or, in other embodiments, a gravure print unit or printer or a digital print unit or printer), and subsequently dried. The resulting heat transfer label assembly 100 may then be wound into a roll (not shown) if desired.
The heat transfer label assembly 100 may be used to decorate any suitable container, for example, a conventional container formed from polyethylene, polypropylene, high density polyethylene, polyethylene terephthalate, acrylonitrile, metal, glass, Barex, or any other suitable material or combination of materials. According to one exemplary method, the assembly 100 may be unwound from a roll, and the exterior side of the carrier 112 (i.e., the side of the carrier 112 distal from the release layer 114) may be brought into contact with a preheat plate to soften the release layer 114. The preheat plate may be heated to a temperature of, for example, from about 135° F. to about 220° F., for example, from 135° F. to about 220° F., for example, from about 150° F. to about 160° F., or from about 180° F. to about 220° F., depending on the particular materials used in the assembly 100). A heated platen may then urge the assembly 100 against the container 116 so that the platen is in contact with the exterior side of the carrier 112 and the adhesive 110 is in contact with the container 116. The platen may be heated to a temperature of, for example, from about 225° F. to about 410° F., for example, from about 225° F. to about 300° F., for example, from about 250° F. to 260° F., or from about 350° F. to about 410° F., depending on the particular materials used in the assembly 100). The heat from the platen causes the softened release layer 114 to flow so that the protective coating 106, ink 108, and adhesive 110 (i.e., the label 102) (and, optionally, some of the release layer 114) collectively transfer to the container 116 as the carrier 112 and residual release layer 114 are pulled away from the decorated container 116.
As the label 102 is urged against the container 116, all or a portion of the label 102 may be stretched to ensure close conformance to the shape of the container 116. For example, the entire label may be stretched 1-2% to generally maintain control over the label as it is transferred, and one or more portions of the label may be stretched additionally (e.g., at least about 5%) to accommodate shaped (e.g., tapered or contoured) containers. As stated previously, the heat transfer label is able to flex and extend to conform to the contours of variously shaped containers without forming substantial defects in the label decoration. Notably, prior to the present invention, energy curable compositions could not be used effectively because they lacked the flexibility and extensibility needed to accommodate the contours of the container without forming defects in the label. However, in sharp contrast to commercially available energy curable coating and ink compositions which typically extend only about 1-2% before forming substantial defects, the protective coating and ink compositions described herein form flexible films that can extend at least about 5% without forming substantial defects. As a result, the heat transfer label manufacturer is afforded greater process flexibility, for example, to use UV offset printing, which does not have the problems associated with solvent based processes.
It will be appreciated that countless processes and combinations thereof are contemplated by this disclosure, and the precise process may depend on numerous factors including, but not limited to, the particular requirements for the heat transfer label and/or decorating application. By considering the desired attributes for each layer of the heat transfer label assembly, the various stations or stages of the process may be tailored to provide the required level of print quality at the most economically feasible level, with the most flexibility. Notably, a system that uses at least some UV offset printing and/or flexographic printing may be significantly more cost effective than a system that uses only gravure printing. Further, in a system in which UV offset printing is used (for example, with the UV curable inks and protective coating of the present disclosure or any other suitable materials), the print quality may be equivalent to, or in some cases, superior to, to that of gravure printing, at a reduced cost, with greater flexibility. Thus, the various aspects of the present invention, used alone or in combination, may provide significant advantages over conventional technology that uses gravure printing exclusively.
The present invention may be understood further in view of the following Examples, which are not intended to be limiting in any manner.
A heat transfer label assembly was prepared using offset printing to apply the UV curable protective coating and UV curable ink compositions described below. The heat transfer label was successfully applied to a container with portions of the label being stretched at least about 12% with no observable defects.
Protective coating composition (parts by weight):
Yellow ink composition (parts by weight):
Magenta ink composition (parts by weight):
Cyan ink composition (parts by weight):
Black ink composition (parts by weight):
A heat transfer label assembly was prepared using offset printing to apply the UV curable ink compositions described below. The heat transfer label was successfully applied to a container with portions of the label being stretched at least about 12% with no observable defects.
Yellow ink composition (parts by weight):
Magenta ink composition (parts by weight):
Cyan ink composition (parts by weight):
Black ink composition (parts by weight):
White ink composition (parts by weight):
Green ink composition (parts by weight):
Magenta ink composition (parts by weight):
A heat transfer label assembly was prepared using flexographic printing to apply the UV curable protective coating and UV curable ink composition described below. The heat transfer label was successfully applied to a container with portions of the label being stretched at least about 10% with no observable defects.
Protective coating composition (parts by weight):
White ink composition (parts by weight):
Although certain embodiments of this invention have been described with a certain degree of particularity, those skilled in the art could make numerous alterations without departing from the spirit or scope of this invention. Any directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are used only for identification purposes to aid the reader's understanding of various embodiments, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., joined, attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily imply that two elements are connected directly and in fixed relation to each other.
It will be recognized by those skilled in the art, that various elements discussed with reference to the various embodiments may be interchanged to create entirely new embodiments coming within the scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention. The detailed description set forth herein is not intended nor is to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications, and equivalent arrangements of the present invention.
Accordingly, it will be readily understood by those persons skilled in the art that, in view of the above detailed description of the invention, the present invention is susceptible of broad utility and application. Many adaptations of the present invention other than those herein described, as well as many variations, modifications, and equivalent arrangements will be apparent from or reasonably suggested by the present invention and the above detailed description thereof, without departing from the substance or scope of the present invention.
While the present invention is described herein in detail in relation to specific examples or aspects, it is to be understood that this detailed description is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the present invention and to set forth the best mode of practicing the invention known to the inventors at the time the invention was made. The detailed description set forth herein is not intended nor is to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications, and equivalent arrangements of the present invention.
This application claims the benefit of U.S. Provisional Application No. 61/385,271, filed Sep. 22, 2010, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61385271 | Sep 2010 | US |