The present invention relates generally to the towing equipment field and, more particularly, to a new and improved extension coupling.
The present invention relates to a new extension coupling for interconnecting a trailer to a tow hitch carried on a tow vehicle. The extension coupling provides both softening in the vertical direction and anti-chucking in the longitudinal or horizontal direction so as to provide enhanced performance and a smoother ride. In effect the extension coupling acts as a buffer between the tow vehicle and the trailer, significantly reducing the negative impact of vertical shock and longitudinal chucking to provide an improved ride. The coupling relieves stress on the towing vehicle, trailer frame, cabinets, mechanicals and support mechanisms. The smoother ride also reduces fatigue for drivers and passengers in the towing vehicle.
In accordance with the purposes of the present invention as described herein, an extension coupling is provided for interconnecting a trailer to a tow hitch carried by a tow vehicle. The extension coupling comprises a pin box assembly including a first section, a second section and a pivot connecting the first and second sections together, a shock absorber connected between the first and second sections, an air spring connected between the first and second section, a king pin carried on the second section and a locking wedge carried on the second section.
Further describing the invention, the extension coupling includes a pivot shaft carried on the first section. In addition, the extension coupling includes a trailer mount wherein the trailer mount is fixed to the trailer and the pin box assembly is connected to the trailer mount by the pivot shaft. In one possible embodiment, the trailer mount includes a mounting plate having a reinforcing rib and at least two projecting flanges. In this embodiment the mounting plate includes a hub that receives the pivot shaft and the reinforcing rib is arc shaped and extends concentrically around the hub. In another possible embodiment, the trailer mount includes a v-shaped base and a hub for receiving the pivot shaft. At least two mounting flanges may be provided projecting from that base.
Still further describing the invention the shock absorber is provided between the air spring and the mount. The air spring is provided between the shock absorber and the pivot. The pivot is provided at a front end of the pin box assembly. Still further, the air spring and the shock absorber are provided between the pivot shaft and the king pin. In addition, the shock absorber and the air spring are both offset from the king pin and the pivot shaft. Further, the air spring may comprise a rubber air bladder.
More specifically describing the pin box assembly, the second section thereof includes a skid plate. Two fasteners are provided for securing the locking wedge to the skid plate. Specifically, the locking wedge includes two elongated slots and the two fasteners are received in the two elongated slots. In addition, the king pin is received in and projects through the skid plate adjacent the locking wedge.
In the following description there is shown and described several possible embodiments of this invention, simply by way of illustration of some of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
The accompanying drawings incorporated in and forming a part of this specification, illustrate several aspects of the present invention, and together with the description serve to explain certain principles of the invention. In the drawings:
a and 3b are detailed exploded perspective views, respectively, of the first and second sections of the pin box assembly;
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawing figures.
Reference is now made to
The pin box assembly 10 also includes a second section 30 incorporating a skid plate 32, an upper king pin support plate 34 and two upwardly depending side skirts 36 (see
A locking wedge 400 is carried on the second section 30 of the pin box assembly 12. More specifically, the locking wedge 400 is secured to the skid plate 32 by means of fasteners in the form of two bolts 404. Fasteners 404 extend through two elongated slots 406 in the locking wedge 400 and threadedly engage nuts 408 welded to the skid plate 32. When the fasteners 404 are tightened down, the locking wedge 400 is fixed to the skid plate 32. When the fasteners 404 are loosened, the locking wedge 400 will slide toward and away from the king pin 106 by means of the slots 406. This allows the positioning of the locking wedge 400 on the skid plate 32 to be adjusted to fit properly in the throat N of any trailer hitch H when the king pin 106 is held in the jaw of the hitch H (see
An air spring, generally designated by reference numeral 48, includes an air bladder 50, a bottom or base plate 52 and a top plate 54 (see
The first section 18 and second section 30 are pivotally connected together at the front end thereof by means of a pivot shaft 68 that passes through the aperture 70 in one of the side walls 22, the pivot tube 42 of the second section 30 and the aperture 70 of the other sidewall 22. Bushings 72 provided between the pivot shaft 68 and the pivot tube 42 insure free pivoting action between the two sections 18, 30. Outer retainer washers 74 and cooperating bolts 76 and lockwashers 77 complete the pivotal connection. A cooperating nut and bolt 78 completes the connection of the upper end 79 of the shock absorber 30 to the ears 28 on the first section 18. Aligned apertures 80 in the sidewalls 22 function as the attachment points for securing the pin box assembly 12 to the extension arm assembly 14 by using cooperating bolts, nuts and washers 82 in a manner that will be described in greater detail below.
As should be appreciated from reviewing the drawing figures and particularly
As further illustrated in
As best illustrated in
A pair of L-shaped mounting brackets 230 are welded to the opposed sidewalls 212. The brackets 230 include reverse flanges 232 and reinforcing struts 236 for added strength. Each of the brackets 230 includes apertures 234 for receiving the cooperating bolts, nuts and washers 82 used to secure the first section 18 of the pin box assembly 12 to the extension arm assembly 14 (see
As best illustrated in
The first end of the extension arm assembly 14 is mounted to the trailer through the trailer mount 16. More specifically, the pivot shaft 222 of the extension arm assembly 14 is received in the hub 246 of the trailer mount 16. A low friction bearing such as an annular disc of nylon or polytetrafluoroethylene (not shown) is provided around the pivot shaft 222 between the top wall 210 and the bottom wall 242 of the trailer mount 16. Grease between the pivot shaft 222 and the hub 246 aids in providing free rotary movement of the extension arm and pin box assemblies 14, 12 relative to the trailer mount 16.
The extension arm assembly 14 and trailer mount 16 are secured together by means of a mounting plate or cap 250 and cooperating fasteners 252 that extend through apertures in the cap and engage in the nuts 226 welded to the mounting plates 224, 288 carried at the top of the pivot shaft 222. The mounting cap 250 has a larger diameter than the hub 246 in order to complete a secure connection. A low friction bearing (not shown) such as a nylon or polytetrafluoroethylene disc is provided between the cap 250 and the hub 246 to provide freedom of rotational movement.
The extension coupling 10 is secured between a trailer and a towing vehicle as illustrated in
As illustrated in
When properly positioned in the throat N, the sidewalls 402 of the locking wedge 400 substantially fill the throat N leading to the jaw of the tow hitch H. Engagement of the sidewalls 402 with the skid plate S function to limit or substantially eliminate any pivoting motion between the pin box assembly 12 and the tow hitch H about the king pin 106. Accordingly, while the trailer T is connected to the tow hitch H at the first end of the extension coupling 10, pivotal movement between the trailer T and towing vehicle V occurs only at the second end of the extension coupling underneath the trailer T at the pivot shaft 222.
The expandable and compressible air spring 48 regulates the compression and expansion rates of the pin box assembly 12. Where an air source, such as an air compressor, is contained within the trailer, the driver may adjust the air pressure in the air spring 48 and accordingly, the compression and expansion rates in order to provide more ideal ride characteristics. More specifically, this allows the operator to tune the performance of the pin box assembly 12 so as to avoid operating at the natural harmonic/Hz frequency of the tow vehicle. A valve is used to control the airflow from the source to the bladder 50 of the air spring 48 or from the air spring to the environment to release pressure. When inflated for use, the top plate 52 engages the bearing surface of the cross member 24.
The shock absorber 30 functions to provide conventional dampening during the towing of the trailer. By placing the pivot shaft or pivot point 42 forward of the king pin 106 center line, the pivot now works in better harmony with the fifth wheel hitch H to which the pin box assembly 12 and trailer are connected thereby significantly reducing longitudinal chucking during trailer towing. More specifically, the pin box assembly 12 successfully combines the best performance characteristics of the leading air-ride and anti-chucking couplers to provide better softening in the vertical direction and anti-chucking in the longitudinal direction so as to provide better overall performance than devices of the prior art.
The foregoing description of a preferred embodiment of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. For example, for some applications the air spring is aft of the shock absorber: that is, the positions of the air spring and shock absorber are reversed. Further, the invention may be structurally modified.
For example, alternative embodiments of the trailer mount 16 are illustrated in
The embodiment was chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled. The drawings and preferred embodiments do not and are not intended to limit the ordinary meaning of the claims and their fair and broad interpretation in any way.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/451,670 filed on 13 Jun. 2006.
Number | Name | Date | Kind |
---|---|---|---|
2351151 | Sattler | Jun 1944 | A |
3695213 | Littlefield | Oct 1972 | A |
3792432 | Ellis et al. | Feb 1974 | A |
3897086 | Breford | Jul 1975 | A |
4131296 | Strader | Dec 1978 | A |
5328198 | Adams | Jul 1994 | A |
5403031 | Gottschalk et al. | Apr 1995 | A |
5785341 | Fenton | Jul 1998 | A |
5890728 | Zilm | Apr 1999 | A |
6170849 | McCall | Jan 2001 | B1 |
6170850 | Works | Jan 2001 | B1 |
6375211 | Mackarvich | Apr 2002 | B1 |
6581951 | Lange | Jun 2003 | B2 |
6726396 | Plett | Apr 2004 | B2 |
6746037 | Kaplenski et al. | Jun 2004 | B1 |
6854757 | Rehme | Feb 2005 | B2 |
6877757 | Hayworth | Apr 2005 | B2 |
6913276 | Bauder | Jul 2005 | B1 |
6957823 | Allen | Oct 2005 | B1 |
6971660 | Putnam | Dec 2005 | B1 |
6986624 | Tabler | Jan 2006 | B1 |
7000937 | Dick | Feb 2006 | B2 |
7121574 | Bouwkamp | Oct 2006 | B2 |
7164081 | Tollefson | Jan 2007 | B1 |
7222872 | Bauder | May 2007 | B1 |
20060043694 | Kaun | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080029996 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11451670 | Jun 2006 | US |
Child | 11762268 | US |