The present invention relates to an extension-retraction link and a suspension.
A vehicle has a suspension provided between its body and a wheel. The suspension is a device that makes vibrations due to fluctuation of a road surface less likely to be transmitted to the vehicle body, and that positions the wheel. A multi-link suspension is known as one of suspension types. Prior Art 1, for example, describes an example of the multi-link suspension.
Prior Art 1: Japanese Laid-open Patent Publication No. 2015-155255
In some cases, a relative posture of the wheel with respect to the vehicle body is required to be changed in accordance with motion performance required for the vehicle.
The present disclosure has been made in view of the above, and aims to provide an extension-retraction link that can easily change a relative posture of the wheel with respect to the vehicle body.
To achieve the purpose described above, an extension-retraction link according to an aspect of the present disclosure includes: a stationary shaft having a tubular shape; a first universal joint that connects the stationary shaft to a vehicle body side member such that the stationary shaft is capable of rotating and swinging with respect to the vehicle body side member; a movable shaft, part of which is located inside the stationary shaft, and that is capable of sliding with respect to the stationary shaft; a second universal joint that connects the movable shaft to a hub carrier such that the movable shaft is capable of rotating and swinging with respect to the hub carrier; and an actuator that includes: a motor attached to the stationary shaft; a screw shaft rotated by the motor; a bearing unit that supports the screw shaft; and a nut that engages with the screw shaft and is fixed to the movable shaft. The movable shaft includes: a first plane surface; a second plane surface making an angle with respect to the first plane surface; a third plane surface located on the opposite side of the first plane surface; and a fourth plane surface located on the opposite side of the second plane surface. The stationary shaft includes: a first bush in contact with the first plane surface; a second bush in contact with the second plane surface; a third bush in contact with the third plane surface; a fourth bush in contact with the fourth plane surface; a first elastic member pressing the third bush to the third plane surface; and a second elastic member pressing the fourth bush to the fourth plane surface. The bearing unit includes: a bearing that is in contact with the screw shaft; a bearing holder that fits in a mounting groove provided to the stationary shaft and holds the bearing; and a third elastic member that is located between a bottom surface of the mounting groove and the bearing holder.
Accordingly, the extension-retraction link can change the posture of the wheel by moving the movable shaft. The extension-retraction link can easily change the relative posture of the wheel with respect to the vehicle body.
Further, the first elastic member and the second elastic member maintain the state where the first bush, the second bush, the third bush, and the fourth bush are in contact with the movable shaft. This can prevent backlash of the movable shaft without high machining accuracy. The extension-retraction link can hold, in a freely selected manner, the relative posture of the wheel with respect to the vehicle body.
The movable shaft can also move with respect to the stationary shaft in a radius direction within ranges in which the first elastic member and the second elastic member can be deformed. Accordingly, the nut attached to the movable shaft moves in the radius direction. However, a displacement of the axis of the nut from the rotation axis of the screw shaft is not preferable, because the displacement may cause reduction in durability of the rolling elements arranged between the nut and the screw shaft. When the nut is eccentric with respect to the screw shaft, a load is not evenly applied to the multiple rolling elements and then a large load is applied to some of the rolling elements, thereby reducing the durability of these rolling elements. For this reason, the nut is preferably not eccentric with respect to the screw shaft even when the nut moves in the radius direction.
In the extension-retraction link of the present disclosure, the screw shaft is supported by the bearing unit. The third elastic member is provided between the bottom surface of the mounting groove and the bearing holder, so that the screw shaft can move in the radius direction within a range in which the third elastic member can be deformed. Accordingly, the screw shaft moves in the radius direction with the movement of the nut in the radius direction. Reduction of eccentricity between the nut and the screw shaft increases durability of the rolling elements arranged between the nut and the screw shaft.
As a preferred aspect of the extension-retraction link, a connected portion of the first universal joint and the vehicle body side member and a connected portion of the second universal joint and the hub carrier are located on an identical side with respect to a plane including a rotation axis of the screw shaft, and are located on the opposite side of the third bush and the fourth bush.
The positional relation among the stationary shaft, the first universal joint, the movable shaft, and the second universal joint causes force toward the first bush and the second bush to act on the movable shaft with the movement of the movable shaft. Even in such a case, a gap becomes harder to be formed between the third bush and the third plane surface and between the fourth bush and the fourth plane surface. Accordingly, the extension-retraction link can prevent backlash of the movable shaft even when force in the radius direction is applied to the movable shaft.
As a preferred aspect of the extension-retraction link, the angle made between the first plane surface and the second plane surface and an angle made between the third plane surface and the fourth plane surface are acute angles.
Accordingly, stiffness of the movable shaft with respect to a moment applied to the movable shaft increases. This prevents deformation of the movable shaft, and makes the movement of the movable shaft smoother.
As a preferred aspect of the extension-retraction link, each of the first bush, the second bush, the third bush, and the fourth bush includes a plurality of lubricant grooves, in which lubricant is filled.
This makes it harder for lubricant surrounding the movable shaft to be exhausted, thereby making the movement of the movable shaft smoother.
As a preferred aspect of the extension-retraction link, the bearing unit includes: a washer that is disposed in the mounting groove and that overlaps with the bearing holder in an axial direction parallel with a rotation axis of the screw shaft; and a shim that is disposed between the bearing holder and the washer.
This allows adjustment of the maximum distance in the axial direction from the end surface of the bearing holder to the end surface of the washer. Accordingly, the gap between the bearing holder and the mounting groove and the gap between the washer and the mounting groove in the axial direction can be reduced or eliminated. As a result, backlash of the bearing unit in the axial direction is prevented.
As a preferred aspect of the extension-retraction link, the bearing holder includes a first tapered surface that is disposed at an external end of the bearing holder in a radius direction perpendicular to the axial direction such that the first tapered surface becomes closer to the washer toward a bottom surface of the mounting groove. The washer includes a second tapered surface that is disposed at an external end of the washer in the radius direction such that the second tapered surface becomes closer to the bearing holder toward the bottom surface of the mounting groove.
This makes it easier to fit the bearing holder and the washer in the mounting groove. As a result, the extension-retraction link is easily assembled.
A suspension according to another aspect of the present disclosure includes the extension-retraction link.
The extension-retraction link of the suspension according to the aspect of the present disclosure can easily change the relative posture of the wheel with respect to the vehicle body. Further, in the suspension of the aspect of the present disclosure, the movable shaft, backlash of which is prevented, prevents the relative posture of the wheel with respect to the vehicle body from being abruptly changed by external force acting on the wheel.
The present disclosure can provide the extension-retraction link that can easily change the relative posture of the wheel with respect to the vehicle body.
The following describes the present invention in detail with reference to the accompanying drawings. The following embodiment for carrying out the invention (hereinafter described as the embodiment) does not limit the invention. The constituent elements in the embodiment described below include elements that can be easily conceived of by a person skilled in the art, elements substantially equivalent thereto, and elements within a so-called range of equivalents. The constituent elements disclosed in the following embodiment can be combined as appropriate.
The suspension 1 is a device that connects the vehicle body (chassis) of the vehicle 10 and the hub unit 101. The suspension 1 is a multi-link suspension. As illustrated in
The shock absorber 11 is a device that reduces shock transmitted to the vehicle body from a road surface during vehicle running. One end of the shock absorber 11 is fixed to the vehicle body. The other end of the shock absorber 11 is fixed to the hub carrier 19. The shock absorber 11 can extend and retract in an upper-lower direction. The shock absorber 11 can extend and extract within a certain range in a direction along the axial direction of the shock absorber 11.
The extension-retraction link 2 is a member that connects the vehicle body side member 18 and the hub carrier 19. As illustrated in
The stationary shaft 3 is connected to the vehicle body side member 18 (refer to
The movable shaft 4 is connected to the hub carrier 19 (refer to
As illustrated in
The rotation axis Z is the rotation axis of a screw shaft 57, which is described later. That is, the rotation axis Z is a straight line passing through the gravity center of each cross-sectional surface when the screw shaft 57 is cut with a plane perpendicular to the extending direction of the screw shaft 57. In the following description, the direction parallel with the rotation axis Z is described as an axial direction. The direction perpendicular to the rotation axis Z is described as a radius direction.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The angles α and β illustrated in
As illustrated in
As illustrated in
The arm 61 is the member connected to the hub carrier 19 (refer to
As illustrated in
As illustrated in
The supporting member 69 supports the internal bush 65. As illustrated in
As illustrated in
The elastic member 67 is a disc spring, for example. Two elastic members 67 are arranged overlapping with each other between the body portion 653 and the bottom surface of the second recess 695.
The inside of the housing 60 is filled with lubricant. The lubricant is grease, for example. The sliding portion 617 of the arm 61 can move along the external bush 63 and the internal bush 65. Accordingly, the arm 61 can rotate and swing relatively with respect to the external bush 63 and the internal bush 65. As illustrated in
The materials used for the respective first universal joint 6a and second universal joint 6b are not limited to those described above. The number of elastic members 67 included in the first universal joint 6a and the second universal joint 6b is not limited to any specific number. The number may be one or three or more. The first universal joint 6a and the second universal joint 6b do not necessarily have the same structure.
The first universal joint 6a and the second universal joint 6b are not necessarily used for the extension-retraction link 2. The extension-retraction link 2 is an example of objects to which the first universal joint 6a and the second universal joint 6b are applied. For example, the first universal joint 6a and the second universal joint 6b can be applied to a part other than the suspension 1 of the vehicle 10 and can also be applied to an apparatus other than the vehicle 10.
As illustrated in
As illustrated in
The screw shaft 57 is connected to the shaft 511 with the clutch 7 interposed therebetween. The screw shaft 57 rotates together with the shaft 511 around the rotation axis Z serving as the rotation center. Part of the screw shaft 57 is inserted into the movable shaft 4. The end of the screw shaft 57 is located in the internal space 40 of the movable shaft 4. The screw shaft 57 passes through the nut 59.
The bearing unit 55 supports the screw shaft 57 such that the screw shaft 57 can rotate with respect to the stationary shaft 3. The bearing unit 55 is fixed to the stationary shaft 3 and has bearings 551 built-in. The bearings 551 are fitted in the outer circumferential surface of the screw shaft 57.
As illustrated in
As illustrated in
As illustrated in
The key 515 fits in the key groove 715. Accordingly, the input side member 71 rotates together with the shaft 511. The first pin 711 and the second pin 712 protrude from the end surface of the main body 710 toward the screw shaft 57 side. The second pin 712 is disposed on the opposite side of the first pin 711 with respect to the rotation axis Z. As illustrated in
As illustrated in
As illustrated in
The second engagement groove 751 and the second elastic member grooves 753 are the grooves provided on the surface on the first brake shoe 73 side. The second engagement groove 751 is disposed between the two second elastic member grooves 753. The second engagement groove 751 has a length corresponding to the entire length of the second brake shoe 75 in the axial direction. The second elastic member grooves 753 are arranged at the center of the second brake shoe 75 in the axial direction. The second fitting portion 750 is not necessarily a hole, and may be a recess, for example.
As illustrated in
The brake drum 77 is a member that puts a brake on the first brake shoe 73 and the second brake shoe 75. As illustrated in
The engagement element 79, which is attached to the screw shaft 57, rotates together with the screw shaft 57. As illustrated in
The elastic member 74 is a helical compression spring, for example. The elastic member 74 is disposed in a gap formed by the first elastic member groove 733 and the second elastic member groove 753. The elastic members 74 apply force to the first brake shoe 73 and the second brake shoe 75 in such a direction that the first brake shoe 73 and the second brake shoe 75 separate from each other.
When the motor 51 operates, the input side member 71 rotates together with the shaft 511. The rotation of the first pin 711 and the second pin 712 of the input side member 71 applies force to the first brake shoe 73 and the second brake shoe 75 in such a direction that the first brake shoe 73 and the second brake shoe 75 approach each other. Accordingly, the engagement element 79 is held by the first brake shoe 73 and the second brake shoe 75. The integral rotation of the first brake shoe 73, the second brake shoe 75, and the engagement element 79 causes the rotation of the shaft 511 to be transmitted to the screw shaft 57.
When the motor 51 stops, external force is applied to the movable shaft 4 in some cases. When external force in the axial direction is applied to the movable shaft 4, the screw shaft 57 rotates. When the engagement element 79 rotates together with the screw shaft 57, force is applied in such a direction that the first brake shoe 73 and the second brake shoe 75 separate from each other. Accordingly, the first brake shoe 73 and the second brake shoe 75 are pressed to the brake drum 77. Frictional force restricts the rotation of the first brake shoe 73 and the second brake shoe 75. This prevents the engagement element 79 and the screw shaft 57 from rotating. In this way, even when external force is applied to the movable shaft 4 at the time of stoppage of the motor 51, the movement of the movable shaft 4 is restricted. That is, generating reaction force for maintaining the position of the movable shaft 4 requires no supply of electrical power to the motor 51. The external force applied to the movable shaft 4 at the time of stoppage of the motor 51 is, for example, external force transmitted to the movable shaft 4 in a case where the wheel 102 touches a curbstone or the like when the vehicle 10 is being parked. External force received by the wheel 102 from the curb or the like is transmitted to the movable shaft 4, thereby causing the screw shaft 57 to rotate.
The clutch 7 does not necessarily include the elastic members 74. In such a case, the first elastic member grooves 733 and the second elastic member grooves 753 may be omitted. The engagement element 79 viewed from the axial direction does not necessarily have an oval shape, and is only required to have a shape other than a circular shape. A distance from the rotation axis Z to the outer circumferential surface of the engagement element 79 is only required to be not constant.
The bearing 551 is an angular contact ball bearing, for example. As illustrated in
The bearing holder 550 is a member that holds the bearings 551. The bearing holder 550 is supported by the first member 31 and the second member 32. The bearing holder 550 includes a main body 5501, a flange portion 5502, and a bottom portion 5503. The main body 5501 is formed in a substantially cylindrical shape and in contact with outer rings of the bearings 551. The flange portion 5502 protrudes outward in the radius direction from one end of the main body 5501. The flange portion 5502 is fitted in a mounting groove 39 provided on the stationary shaft 3. The mounting groove 39 is an annular groove formed by a mounting groove 319 provided on the first member 31 and a mounting groove 329 provided on the second member 32. As illustrated in
The snap ring 553 is an annular member attached to the inner circumferential surface of the bearing holder 550. The snap ring 553 is in contact with the end surface of the outer ring of one of the bearings 551. The spacer 552 is attached to the screw shaft 57 and in contact with the end surface of the inner ring of one of the bearings 551. The locknut 558 is fixed to the screw shaft 57 and presses the spacer 552 to the bearing 551. The bearings 551 are positioned by the screw shaft 57, the bearing holder 550, the snap ring 553, the spacer 552, and the locknut 558.
The third elastic member 556 is located between the bottom surface of the mounting groove 39 and the flange portion 5502 of the bearing holder 550. The third elastic member 556, which is an annular member, is an O ring formed of, for example, rubber. The third elastic member 556 is attached to the flange portion 5502. The third elastic member 556 is in contact with the bottom surface of the mounting groove 39. When the bearing holder 550 moves in the radius direction, the third elastic member 556 is deformed.
The washer 555 is disposed in the mounting groove 39, and overlaps with the flange portion 5502 in the axial direction. The washer 555, together with the flange portion 5502, fits in the mounting groove 39. As illustrated in
The gap S allows the washer 555 to move in the radius direction together with the bearing holder 550.
As illustrated in
The shim 557 is disposed between the flange portion 5502 and the washer 555. The shim 557 is a member for making the maximum distance in the axial direction from the end surface of the flange portion 5502 to the end surface of the washer 555 close to the length of the mounting groove 39 in the axial direction. The bearing unit 55 is fitted in the mounting groove 39 with the shim 557 being sandwiched by the flange portion 5502 and the washer 555. The shim 557 adjusts the maximum distance in the axial direction from the end surface of the flange portion 5502 to the end surface of the washer 555, thereby preventing backlash of the bearing unit 55 in the axial direction.
The controller 9 illustrated in
The suspension 1 in the embodiment includes five extension-retraction links 2 for each wheel 102. The suspension 1 can change a toe angle, a camber angle, a caster angle, a tread width, and a wheelbase by changing the length of each extension-retraction link 2. The toe angle is, when the vehicle 10 is viewed from the vertical direction, an angle made by a straight line perpendicular to the rotation axis of the wheel 102 with respect to the straight line parallel with the front-rear direction of the vehicle. The camber angle is, when the vehicle 10 is viewed from the front-rear direction, an angle made by the straight line perpendicular to the rotation axis of the wheel 102 with respect to the vertical line. The caster angle is, when the vehicle 10 is viewed from the horizontal direction, an angle made by a straight line parallel with the longitudinal direction of the shock absorber 11 with respect to the vertical line. The tread width is a distance between the centers of the left and right wheels 102. The wheelbase is a distance between the centers of the front and rear wheels 102.
The suspension 1 is not necessarily applied to vehicles with the hub units 101 having motors and the like built-in. The suspension 1 may be connected to the hub carrier including a hub bearing supporting the wheel 102.
The suspension 1 does not necessarily include five extension-retraction links 2. The suspension 1 is only required to include a plurality of links, at least one of which should be the extension-retraction link 2.
As described above, the suspension 1 includes a plurality of links that connect the vehicle body side member 18 and the hub carrier 19. At least one of the links is the extension-retraction link 2. The extension-retraction link 2 includes: the stationary shaft 3; the first universal joint 6a that connects the stationary shaft 3 to the vehicle body side member 18 such that the stationary shaft 3 can rotate and swing with respect to the vehicle body side member 18; the movable shaft 4 that can slide with respect to the stationary shaft 3; the second universal joint 6b that connects the movable shaft 4 to the hub carrier 19 such that the movable shaft 4 can rotate and swing with respect to the hub carrier 19; and the actuator 5 that is fixed to the stationary shaft 3 and moves the movable shaft 4.
Accordingly, the suspension 1 can change the posture of the wheel 102 by moving the movable shaft 4. The suspension 1 can easily change the relative posture of the wheel 102 with respect to the vehicle body.
The suspension 1 includes five extension-retraction links 2.
Accordingly, the suspension 1 can change the toe angle, the camber angle, the caster angle, the tread width, and the wheelbase by moving the movable shaft 4. The suspension 1 can easily change the relative posture of the wheel 102 with respect to the vehicle body.
The extension-retraction link 2 includes: the tubular stationary shaft 3; the first universal joint 6a that connects the stationary shaft 3 to the vehicle body side member 18 such that the stationary shaft 3 can rotate and swing with respect to the vehicle body side member 18; the movable shaft 4, part of which is located inside the stationary shaft 3 and that can slide with respect to the stationary shaft 3; the second universal joint 6b that connects the movable shaft 4 to the hub carrier 19 such that the movable shaft 4 can rotate and swing with respect to the hub carrier 19; and the actuator 5. The actuator 5 includes: the motor 51 attached to the stationary shaft 3; the screw shaft 57 rotated by the motor 51; the bearing unit 55 that supports the screw shaft 57; and the nut 59 that engages with the screw shaft 57 and is fixed to the movable shaft 4. The movable shaft 4 includes: the first plane surface 41; the second plane surface 42 making an angle with respect to the first plane surface 41; the third plane surface 43 located on the opposite side of the first plane surface 41; and the fourth plane surface 44 located on the opposite side of the second plane surface 42. The stationary shaft 3 includes: the first bush 351 in contact with the first plane surface 41; the second bush 352 in contact with the second plane surface 42; the third bush 353 in contact with the third plane surface 43; the fourth bush 354 in contact with the fourth plane surface 44; the first elastic member 363 pressing the third bush 353 to the third plane surface 43; and the second elastic member 364 pressing the fourth bush 354 to the fourth plane surface 44. The bearing unit 55 includes: the bearings 551 in contact with the screw shaft 57; the bearing holder 550 that fits in the mounting groove 39 provided on the stationary shaft 3 and holds the bearings 551; and the third elastic member 556 located between the bottom surface of the mounting groove 39 and the bearing holder 550.
Accordingly, the movement of the movable shaft 4 connected to the hub carrier 19 enables the posture of the wheel 102 to change. The extension-retraction link 2 can easily change the relative posture of the wheel 102 with respect to the vehicle body.
Further, the first elastic member 363 and the second elastic member 364 can maintain a state where the first bush 351, the second bush 352, the third bush 353, and the fourth bush 354 are in contact with the movable shaft 4. This prevents backlash of the movable shaft 4 without requiring high machining accuracy. The extension-retraction link 2 can hold the relative posture of the movable shaft 4 and that of the stationary shaft 3 without being abruptly changed by external force acting on the extension-retraction link 2.
The movable shaft 4 can move in the radius direction with respect to the stationary shaft 3 within ranges in which the first elastic member 363 and the second elastic member 364 can be deformed. Accordingly, the nut 59 attached to the movable shaft 4 moves in the radius direction. However, a displacement of the axis of the nut 59 from the rotation axis Z of the screw shaft 57 is not preferable, because the displacement may cause reduction in durability of the multiple rolling elements arranged between the nut 59 and the screw shaft 57. When the nut 59 is eccentric with respect to the screw shaft 57, a load is not evenly applied to the multiple rolling elements and then a large load is applied to some of the rolling elements, thereby reducing the durability of these rolling elements. For this reason, the nut 59 is preferably not eccentric with respect to the screw shaft 57 even when the nut 59 moves in the radius direction.
In the extension-retraction link 2 in the embodiment, the screw shaft 57 is supported by the bearing unit 55. The third elastic member 556 is provided between the bottom surface of the mounting groove 39 and the bearing holder 550, so that the screw shaft 57 can move in the radius direction within a range in which the third elastic member 556 can be deformed. Accordingly, the screw shaft 57 moves in the radius direction with the movement of the nut 59 in the radius direction. Reduction of eccentricity between the nut 59 and the screw shaft 57 increases durability of the rolling elements arranged between the nut 59 and the screw shaft 57.
In the extension-retraction link 2, the connected portion (fastening portion 611) of the first universal joint 6a with the vehicle body side member 18, and the connected portion (fastening portion 611) of the second universal joint 6b with the hub carrier 19 are located on the same side with respect to the plane (e.g., the plane PZ illustrated in
The positional relation among the stationary shaft 3, the first universal joint 6a, the movable shaft 4, and the second universal joint 6b causes force toward the first bush 351 and the second bush 352 to act on the movable shaft 4 with the movement of the movable shaft 4. Even in such a case, the first elastic member 363 and the second elastic member 364 make it harder for a gap to be formed between the third bush 353 and the third plane surface 43 and between the fourth bush 354 and the fourth plane surface 44. Accordingly, the extension-retraction link 2 can prevent backlash of the movable shaft 4 even when force in the radius direction is applied to the movable shaft 4.
In the extension-retraction link 2, the angle α made between the first plane surface 41 and the second plane surface 42 and the angle β made between the third plane surface 43 and the fourth plane surface 44 are acute angles.
For example, the movable shaft 4 may be deformed by a wheel load and the like received by the wheel 102 while the vehicle 10 is moving (especially while turning). In particular, the movable shaft 4 may be deformed around an axis that is in parallel with the plane PZ illustrated in
In the extension-retraction link 2, each of the first bush 351, the second bush 352, the third bush 353, and the fourth bush 354 includes multiple lubricant grooves 35d filled with lubricant.
This makes it harder for lubricant surrounding the movable shaft 4 to be exhausted, thereby making the movement of the movable shaft 4 smoother. The angles α and β are acute angles, thereby preventing deformation of the movable shaft 4. As a result, lubricant surrounding the movable shaft 4 is applied on the movable shaft 4.
In the extension-retraction link 2, the bearing unit 55 includes: the washer 555 disposed in the mounting groove 39 and overlapping with the bearing holder 550 in the axial direction; and the shim 557 disposed between the bearing holder 550 and the washer 555.
This allows adjustment of the maximum distance in the axial direction from the end surface of the bearing holder 550 to the end surface of the washer 555. Accordingly, the gap between the bearing holder 550 and the mounting groove 39 and the gap between the washer 555 and the mounting groove 39 in the axial direction can be reduced or eliminated. As a result, backlash of the bearing unit 55 in the axial direction is prevented.
In the extension-retraction link 2, the bearing holder 550 includes the first tapered surface 550t at its external end in the radius direction such that the first tapered surface 550t becomes closer to the washer 555 toward the bottom surface of the mounting groove 39. The washer 555 includes the second tapered surface 555t at its external end in the radius direction such that the second tapered surface 555t becomes closer to the bearing holder 550 toward the bottom surface of the mounting groove 39.
This makes it easier to fit the bearing holder 550 and the washer 555 in the mounting groove 39. As a result, the extension-retraction link 2 is easily assembled.
The suspension 1 including the extension-retraction link 2 can make the movement of the wheel 102 smooth by the movable shaft 4, the backlash of which is prevented.
The universal joint (the first universal joint 6a or the second universal joint 6b) includes: the housing 60; the arm 61, part of which is located inside the housing 60; the external bush 63 located between the inner circumferential surface of the housing 60 and the arm 61; the internal bush 65 located on the opposite side of the external bush 63 with the arm 61 interposed therebetween; and the supporting member 69 supporting the internal bush 65. The arm 61 includes: the arm convex surface 617p that is a spherical convex surface; and the arm concave surface 617q that is a spherical concave surface. The external bush 63 includes the bush concave surface 63q that is a spherical concave surface in contact with the arm convex surface 617p. The internal bush 65 includes the bush convex surface 651p that is a spherical convex surface in contact with the arm concave surface 617q.
With use of a conventionally available ball joint having a ball and a socket, the increase of a movable range and a permissible load requires the increase of the diameter of the ball. On the other hand, with the universal joint (the first universal joint 6a or the second universal joint 6b) in the embodiment, the arm 61 is sandwiched and held by the bush concave surface 63q of the external bush 63 and the bush convex surface 651p of the internal bush 65. Accordingly, a contact area between the arm 61 and the external bush 63 and a contact area between the arm 61 and the internal bush 65 can be easily maintained constant, thereby increasing the permissible load of the universal joint. Consequently, the universal joint is smaller than the ball joint even when the movable range and the permissible load are increased. Therefore, the universal joint can easily increase the movable range and achieve a compact size.
The universal joint (the first universal joint 6a or the second universal joint 6b) includes the elastic members 67 that push the internal bush 65 toward the arm 61.
This makes it harder for a gap to be formed between the arm 61 and the internal bush 65 and between the arm 61 and the external bush 63. This prevents backlash of the universal joint (the first universal joint 6a or the second universal joint 6b). As a result, the posture of the wheel 102 is stabilized, thereby increasing running stability of the vehicle 10.
In the universal joint (the first universal joint 6a or the second universal joint 6b), the arm 61 includes the arm end surface 617e located between the arm convex surface 617p and the arm concave surface 617q. When the arm end surface 617e is in contact with the supporting member 69, the gap 60c is present between the arm 61 and the housing 60.
This reduces bending stress applied to the arm 61 when the arm 61 is tilted at a maximum with respect to the housing 60. As a result, the arm 61 is prevented from being broken.
In the universal joint (the first universal joint 6a or the second universal joint 6b), the housing 60 includes the female screw 601. The supporting member 69 includes the male screw 691 engaging with the female screw 601. That is, the supporting member 69 is fixed to the housing 60 by the engagement of the male screw 691 with the female screw 601.
This makes it possible to fix the supporting member 69 to the housing 60 at a lower cost than a case where the supporting member 69 is fixed to the housing 60 by swaging the housing 60 or a case where the supporting member 69 is fixed to the housing 60 by welding. Further, the size of the gap 60c between the arm 61 and the housing 60 can be adjusted. Consequently, the universal joint (the first universal joint 6a or the second universal joint 6b) can prevent the interference of the arm 61 with the housing 60.
In the extension-retraction link 2, at least one of the first universal joint 6a and the second universal joint 6b is the universal joint described above.
This allows the first universal joint 6a or the second universal joint 6b to have a wide movable range, thereby allowing the extension-retraction link 2 to easily change the relative posture of the wheel 102 with respect to the vehicle body.
The universal joint (the first universal joint 6a or the second universal joint 6b) has a compact size, thereby allowing the suspension 1 to have a plurality of universal joints arranged close to one another. Accordingly, the suspension 1 can include the multiple extension-retraction links 2, thereby allowing the wheel 102 to easily change its relative posture with respect to the vehicle body.
In the extension-retraction link 2, the actuator 5 includes: the motor 51 attached to the stationary shaft 3; the screw shaft 57 rotated by the motor 51; the clutch 7 disposed between the motor 51 and the screw shaft 57; and the nut 59 that engages with the screw shaft 57 and is fixed to the movable shaft 4. The clutch 7 includes the input side member 71, the first brake shoe 73, the second brake shoe 75, the brake drum 77, and the engagement element 79. The input side member 71 rotates together with the shaft 511 of the motor 51 and has the first pin 711 and the second pin 712. The first brake shoe 73 has the first fitting portion 730, in which the first pin 711 fits. The second brake shoe 75 has the second fitting portion 750, in which the second pin 712 fits, and is located on the opposite side of the first brake shoe 73 with respect to the rotation axis Z of the screw shaft 57. The brake drum 77 has the inner circumferential surface facing the outer circumferential surfaces of the first brake shoe 73 and the second brake shoe 75 and is fixed to the stationary shaft 3. The engagement element 79 rotates together with the screw shaft 57 and fits in the gap between the first brake shoe 73 and the second brake shoe 75.
Accordingly, the extension-retraction link 2 can change the posture of the wheel 102 by moving the movable shaft 4. The extension-retraction link 2 can easily change the relative posture of the wheel 102 with respect to the vehicle body. Further, when the screw shaft 57 is rotated by external force applied to the movable shaft 4, force is applied by the engagement element 79 in such a direction that the first brake shoe 73 and the second brake shoe 75 separate from each other. This causes the first brake shoe 73 and the second brake shoe 75 to be pressed to the brake drum 77, thereby preventing the rotation of the engagement element 79 and the screw shaft 57. In this way, even when external force is applied to the movable shaft 4 at the time of stoppage of the motor 51, the movement of the movable shaft 4 is restricted. The extension-retraction link 2 can easily maintain the relative posture of the wheel 102 with respect to the vehicle body. When the position of the movable shaft 4 is maintained, no electric power supply to the motor 51 is required. Accordingly, the extension-retraction link 2 can reduce power consumption.
The extension-retraction link 2 includes the elastic members 74 that apply force in such a direction that the first brake shoe 73 and the second brake shoe 75 separate from each other.
Accordingly, even when the engagement element 79 does not push the first brake shoe 73 and the second brake shoe 75, the elastic members 74 press the first brake shoe 73 and the second brake shoe 75 to the brake drum 77. Consequently, the extension-retraction link 2 can prevent backlash of the first brake shoe 73 due to the gap between the engagement element 79 and the first brake shoe 73, and backlash of the second brake shoe 75 due to the gap between the engagement element 79 and the second brake shoe 75.
The suspension 1 including the actuator 5 has the clutch 7, thereby reducing the power consumption of the vehicle.
1 suspension
10 vehicle
101 hub unit
102 wheel
11 shock absorber
18 vehicle body side member
19 hub carrier
2 extension-retraction link
3 stationary shaft
31 first member
311 first facing surface
311
d recess
312 second facing surface
312
d recess
315 groove
319 mounting groove
32 second member
323 third facing surface
323
d recess
324 fourth facing surface
324
d recess
329 mounting groove
351 first bush
352 second bush
353 third bush
354 fourth bush
363 first elastic member
364 second elastic member
39 mounting groove
4 movable shaft
40 internal space
41 first plane surface
42 second plane surface
43 third plane surface
44 fourth plane surface
45 stopper
5 actuator
51 motor
511 shaft
515 key
55 bearing unit
550 bearing holder
5501 main body
5502 flange portion
5503 bottom portion
552 spacer
553 snap ring
555 washer
556 third elastic member
557 shim
558 locknut
57 screw shaft
58 snap ring
59 nut
6
a first universal joint
6
b second universal joint
60 housing
60
c gap
61 arm
611 fastening portion
613 flange portion
615 intermediate portion
617 sliding portion
617
e arm end surface
617
p arm convex surface
617
q arm concave surface
63 external bush
63
q bush concave surface
65 internal bush
651 head portion
651
p bush convex surface
653 body portion
67 elastic member
69 supporting member
691 male screw
693 first recess
695 second recess
7 clutch
71 input side member
710 main body
711 first pin
712 second pin
715 key groove
73 first brake shoe
730 first fitting portion
731 first engagement groove
733 first elastic member groove
74 elastic member
75 second brake shoe
750 second fitting portion
751 second engagement groove
753 second elastic member groove
77 brake drum
79 engagement element
9 controller
S gap
Z rotation axis
Number | Date | Country | Kind |
---|---|---|---|
2017-232555 | Dec 2017 | JP | national |
This application is a National Stage of PCT international application Ser. No. PCT/JP2018/038135 filed on Oct. 12, 2018, which designates the United States, incorporated herein by reference, and which is based upon and claims the benefit of priority from Japanese Patent Application No. 2017-232555 filed on Dec. 4, 2017, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/038135 | 10/12/2018 | WO | 00 |