The present invention relates to finishing systems for the exterior of building structures and the like.
The exterior structural supports of a building are typically covered with a substrate, such as plywood, to which an exterior material is attached. Building, as used herein, may include, for example, a house as well as various single and multi-story commercial or industrial buildings. A surface of the exterior material then forms an exterior surface of the building. It is important that the exterior material is durable and resistant to damage from environmental conditions, such as moisture and temperatures. However, the exterior material in combination with materials used to attach the exterior material to the substrate may be difficult to store, transport, handle, and install. Accordingly, there is a need for improved exterior finishing systems including an exterior layer and materials used to attach the exterior layer to the substrate of the structure.
These and other needs and disadvantages may be overcome by the compositions of matter and related methods of use disclosed herein. Additional improvements and advantages may be recognized by those of ordinary skill in the art upon study of the present disclosure.
In various aspects, an exterior finishing system for a building is disclosed herein. The exterior finishing system, in various aspects, includes a panel comprised of high density closed-cell foam, the panel securable to a substrate of a building. The exterior finishing system, in various aspects, further includes a bonding layer disposed upon a surface of the panel, the bonding layer comprising water and acrylic polymer. The exterior finishing system, in various aspects, further includes an exterior layer comprising calcium carbonate disposed upon a surface of the bonding layer.
Methods of use of the exterior finishing system are disclosed herein. In various aspects, the methods of use include the step of disposing a bonding layer upon a surface of a panel, the bonding layer comprising water and acrylic polymer. The methods of use may include the step of disposing an exterior layer comprising calcium carbonate upon a surface of the bonding layer and the step of securing the panel to a substrate of a building, in various aspects.
This summary is presented to provide a basic understanding of some aspects of the apparatus and methods disclosed herein as a prelude to the detailed description that follows below. Accordingly, this summary is not intended to identify key elements of the apparatus and methods disclosed herein or to delineate the scope thereof.
The Figures are exemplary only, and the implementations illustrated therein are selected to facilitate explanation. The number, position, relationship and dimensions of the elements shown in the Figures to form the various implementations described herein, as well as dimensions and dimensional proportions to conform to specific force, weight, strength, flow and similar requirements are explained herein or are understandable to a person of ordinary skill in the art upon study of this disclosure. Where used in the various Figures, the same numerals designate the same or similar elements. Furthermore, when the terms “top,” “bottom,” “right,” “left,” “forward,” “rear,” “first,” “second,” “inside,” “outside,” and similar terms are used, the terms should be understood in reference to the orientation of the implementations shown in the drawings and are utilized to facilitate description thereof. Use herein of relative terms such as generally, about, approximately, essentially, may be indicative of engineering, manufacturing, or scientific tolerances such as ±0.1%, ±1%, ±2.5%, ±5%, or other such tolerances, as would be recognized by those of ordinary skill in the art upon study of this disclosure.
Substrate 15, for example, may be formed of plywood, concrete, insulating material, water barrier material, combinations thereof, and so forth, as would be readily recognized by those of ordinary skill in the art upon study of this disclosure. Substrate 15 may be anchored to various structural members (not shown) such as wooden, steel, or aluminum framing, concrete structures, and so forth, as would be readily recognized by those of ordinary skill in the art upon study of this disclosure. Substrate 15 may be formed of wooden, steel, or aluminum framing, in various implementations.
Panel 20 overlays substrate 15 with surface 27 of panel 20 oriented toward substrate surface 19 of substrate 15, as illustrated. In some implementations, surface 27 of panel 20 is in biased engagement with substrate surface 19 of substrate 15, while, in other implementations, surface 27 of panel 20 is offset, at least in part, from substrate surface 19 of substrate 15, for example, to form an air gap between surface 27 and substrate surface 19. Panel 20 may be attached to substrate 15 by various fasteners such as clips, nails, screws, adhesives, and so forth, as would be readily recognized by those of ordinary skill in the art upon study of this disclosure. In certain implementations, a flat aluminum bar is used to keep the foam board panels in plane and to serve as a mechanical sealant backer rod. A plurality of 0.25-inch aluminum clips are then used to anchor the foam board panels to the wall with standard Z-clips.
Panel 20 may be formed as a sheet of a composite comprising a high density, closed-cell foam such as a polyurethane foam and the foam may be reinforced with fiberglass. For example, panel 20 may be formed, at least in part, using ENERFOAM available from The Dow Chemical Company.
Bonding layer 40 is formed as a coating bonded to panel 20 with surface 47 of bonding layer 40 overlaying surface 29 of panel 20, as illustrated. In various implementations, the bonding layer 40 includes water, acrylic polymer, and octylphenol ethoxylate. An exemplary acrylic polymer as may be comprised by bonding layer 40 is commercially available from The Dow Chemical Company under the name Rhoplex EI-2000. An exemplary octylphenol ethoxylate as may be comprised by bonding layer 40 is commercially available from The Dow Chemical Company under the name Triton X. Bonding layer 40 may include other materials such as, for example, anti-foaming agents, antimicrobials, pigments, and the like (see exemplary compositions given in Table 1 and Table 2 below).
Another exemplary composition of bonding layer 40 is given in Table 1.
Ethyl hydroxyethyl cellulose is commercially available as Bermocoll® E 481 FQ by Nouryon. Ethyl hydroxyethyl cellulose acts as a rheology modifier, and may be suitable for use in latex paints for thickening and stabilizing effects. Ethyl hydroxyethyl cellulose is non-ionic, water soluble and helps improve the consistency, stability and water retention of water-based products.
Foamaster® NXZ, commercially available from BASF, is a blend of hydrocarbons and non-ionic surfactants. Used as a defoamer for emulsion adhesives. Compatible with styrene-butadiene, acrylic, polyvinyl chloride and its copolymers, ethylene vinyl acetate, vinylidene chloride and water-soluble alkyds.
Proxel GXL antimicrobial is a broad spectrum biocide for the preservation of industrial water-based products against spoilage from bacteria, yeasts and fungi comprising aqueous dipropylene glycol solution of 1,2-benzisothiazolin-3-one. Available commercially from Lonza Monson Co of Leominster Mass.
G260 is commercially available from Huber Engineered Materials and comprises a calcium carbonate. G260 may act as an extender, gloss control agent, anti-slip additive, rheology modifier and densifier.
Yet another exemplary composition of bonding layer 40 is given in Table 2.
Tamol™ 851, which is commercially available from The Dow Chemical Company, is a formaldehyde-free polyacid dispersant for flats through semi-gloss latex paints.
Tylose® H15000 YP2 is a water-soluble, non-ionic hydroxyethyl cellulose powder with standard etherification, and is commercially supplied by SE Tylose GmbH & Co. KG.
RCL 596 is a multipurpose chloride-process rutile titanium dioxide pigment designed for use in both aqueous and solvent based coating systems. RCL 596 may be characterized by a combination of gloss, color and dispersibility coupled with high exterior durability. RCL 596 is commercially available from INEOS Pigments of Glen Burnie, Md.
Ester alcohol is a coalescent for latex paints available as Texanol from Eastman Chemical Company.
Zinc Omadine® ZOE by Lonza is a dry film and in-can preservative for water-based paints. Also used as a dry film preservative for marine anti-fouling paints. It is a highly active, broad spectrum zinc complex of pyrithione.
As illustrated, surface 67 of exterior layer 60 overlays surface 49 of bonding layer 40 in biased adhesive attachment, and surface 69 of exterior layer 60 forms the exterior surface 99. Exterior layer 60 is thus attached adhesively to bonding layer 40, bonding layer 40 is bonded to panel 20, and panel 20 is attached to substrate 15 thereby securing exterior layer 60 to substrate 15, in this implementation.
Exterior layer 60 may comprise calcium carbonate including other cementitious materials. Surface 69, which forms exterior surface 99 of the structure, may be configured to have an aesthetically pleasing appearance. For example, surface 69 of exterior layer 60 may have a faux finish with an appearance of brick, metal panel, stucco, stone, wood, and the like, in various implementations. Exterior layer 60 may comprise materials of which bonding layer 40 is comprised. For example, exterior layer 60 may include pigments, acrylics, dispersants, sand (such as #44 sand), acrylic, anti-biologics, surfactants, rheologic agents, and so forth.
In operation, an exterior finishing system, such as exterior finishing system 10, 100, may be used to secure an exterior layer, such as exterior layer 60, 160, to a substrate, such as substrate 15, 115 as indicated by exemplary method 500 shown in
At step 505, one or more panels, such as panels 20, 120, are attached to the substrate. When multiple panels are attached to the substrate, the panels may be engaged with one another by glued tongue and groove connections.
At step 510, a bonding layer, such as bonding layer 40, 140 is applied to a surface, such as surface 29, of the panel(s). The bonding layer may be applied to the panel(s) by trowel including roller, brush, sprayer, screed, and other such tools. A reinforcing layer, such as reinforcing layer 144, may be included in the bonding layer, in certain implementations.
At step 515, the exterior layer is applied over the bonding layer thereby attaching adhesively the exterior layer to the bonding layer. The exterior layer may be applied by trowel, and a surface, such as surface 69, of the exterior layer may be configured to have various appearances such as a faux finish. The bonding layer may be generally liquid or plastic during steps 510, 515.
At step 520, the bonding layer is allowed to dry thereby solidifying, and, thus, adhesively attaching the exterior layer to the panel and thus to the substrate. The exterior layer may be textured or otherwise formed into the faux finish of an exterior surface, such as exterior surface 99.
Method 500 Terminates at Step 531.
In other exemplary operational implementations, panel(s) inclusive of the bonding layer and the exterior layer may be attached to the substrate. In such implementations, fabrication of panels that include the bonding layer and the exterior layer may be performed according to steps 510, 515, 520 of method 500 off site, and the panels with bonding layer and exterior layer attached thereto then transported from off site to the structure for attachment to the substrate of the structure per step 505. An assembly of multiple panels may be formed with bonding layer and exterior layer attached thereto and then transported from off site to the structure for attachment to the substrate. In such implementations, the sequence of steps is therefore 510, 515, 520, 505. The combination of panel, bonding layer, and exterior layer may be about 80% lighter than the typical cement/acrylic based panels currently used in exterior finishing of building structures.
The foregoing discussion along with the Figures discloses and describes various exemplary implementations. These implementations are not meant to limit the scope of coverage, but, instead, to assist in understanding the context of the language used in this specification and in the claims. The Abstract is presented to meet requirements of 37 C.F.R. § 1.72(b) only. Accordingly, the Abstract is not intended to identify key elements of the apparatus and methods disclosed herein or to delineate the scope thereof. Upon study of this disclosure and the exemplary implementations herein, one of ordinary skill in the art may readily recognize that various changes, modifications and variations can be made thereto without departing from the spirit and scope of the inventions described herein and defined in the following claims.
The present application claims priority to and benefit of U.S. Provisional Patent Application No. 63/054,992 filed Jul. 22, 2020, which is hereby incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
7625827 | Egan | Dec 2009 | B2 |
9649663 | Strachan | May 2017 | B2 |
9970192 | Ravellette | May 2018 | B2 |
20100215969 | Brandenburger | Aug 2010 | A1 |
20110258944 | Radoane | Oct 2011 | A1 |
20140087158 | Ciuperca | Mar 2014 | A1 |
20140260034 | Ciuperca | Sep 2014 | A1 |
20140272302 | Ciuperca | Sep 2014 | A1 |
20200123765 | Campacci | Apr 2020 | A1 |
20210095469 | Overman | Apr 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
63054992 | Jul 2020 | US |