Improvements in building construction have resulted in wall assemblies that are highly energy efficient. These wall assemblies are often highly insulated and include sealed joints around windows and doors to prevent drafts. While these walls have high thermal efficiency, it has been observed that moisture can potentially accumulate inside the wall over time due to naturally occurring temperature and/or humidity gradients. In addition, moisture can potentially accumulate inside sealed walls due to water running down a steeply pitched roof, for example in the case where the joint/seal between the wall and the roof deteriorates and provides an ingress location for water into the wall.
Moisture trapped inside of the walls includes moisture vapor and bulk water, such as condensation. Condensation can form inside a wall due to temperature differences across the insulated walls. For example, during typical northern cold winter months, the air outside of an insulated wall is cold and dry, and the air inside of the wall is relatively warm and humid. Thus, a natural humidity gradient is formed that drives moisture vapor in the air inside the wall toward the exterior of the wall. Large gradients between outside and inside air temperature and humidity can lead to a significant accumulation of moisture condensation within the insulated wall. Exterior wall systems can employ drainage features, such as weep holes, for example, that can be aesthetically unacceptable. Often exterior insulation and finish systems (EIFS) do not include drainage features, and particularly, do not include aesthetically acceptable drainage features to divert water from a drainage plane of an exterior wall system.
In the following Detailed Description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
As used herein, moisture includes bulk liquid water, such as rain or rain droplets, and moisture vapor, such as humidity contained in the air.
As used herein, fluid is a broad term that includes both gases and liquids.
As used herein, barrier means to substantially prevent or deny the through-passage of air and to substantially prevent or deny the passage of moisture vapor. Thus, barrier as used herein means to substantially prevent the through-passage of moisture through the barrier, whether the moisture is in the form of moisture vapor or bulk liquid.
As defined herein, building envelope assembly is a broad term which includes any assemblies which separate interior and exterior environments of a building. A building envelope assembly serves to protect the indoor environment from the elements of nature (e.g., rain, snow, etc.) and facilitate its climate control. A building envelope assembly as defined herein includes vertical assemblies, such as walls, and non-vertical assemblies, for example.
The rigid insulative substrate 18 can be formed of rigid foam insulation, such as expanded polystyrene (EPS) or extruded polystyrene (XPS), for example. Other suitable types of rigid insulation or substrates are also acceptable. The rigid insulative substrate 18 is a suitable thickness and material to provide the desired insulative value (R-value) and comply with applicable building codes. The rigid insulative substrate 18 can have any suitable thickness. In one embodiment, the rigid insulative substrate 18 of the base member has a thickness of 2 inches and the insert member has a thickness of approximately 1 inch. The rigid insulative substrate 18 can also include recesses, cutouts, bevels, channels, grooves, etc. (e.g., for architectural or other purposes) that vary the thickness across select portions of the rigid insulative substrate 18, without changing the overall insulative value of the exterior wall insulation and finish assembly 10. The rigid insulative substrate 18 can include a single or multiple sections fit together to form a continuous layer. The rigid insulative substrate 18 can be formed into any appropriate shape including, but not limited to, planar, curved, or angled. The exterior surface of the rigid insulative substrate 18 can be scarified or rasped to provide a textured bonding surface for adherence of coatings or finishes.
As illustrated in
With additional reference to
The exterior wall member 12 can include the base coat 20 disposed on, and encapsulates, the bottom edge 28, the recessed surface 40, and the first face 44 of the tail portion. In one embodiment, the base coat 20 extends approximately 2 ½″ from the bottom edge 28 along the recessed surface 40 and the first face 44. Other suitable distances of coverage can also be acceptable. A groove 45 can be included in the rigid insulative layer 18 along the first surface 30, above a top terminating edge of the base coat 20, to provide a transition of the body portion 22 to facilitate rasping of the insulation to prepare for additional finishes, for example. The first surface 30 of the body portion 22 can be generally planar to an exterior surface of the base coat 20 on the tail portion 24.
With continued reference to
With additional reference to
The moisture barrier 66 can be disposed across the outer surface of the sheathing 64. The moisture barrier 66 can be a membrane formed of latex-based coating serving to resist moisture and air penetration. The moisture barrier 66 can be fluid applied or applied as a sheet building wrap. A flashing membrane 68 that is resistive to fluid (e.g., air and water) can be selectively applied to the substrate 64. In some embodiments, the moisture barrier 66 and the flashing membrane are formed of the same material. The flashing membrane 68 is a fluid resistive membrane barrier over the sheathing 64 and to bridge across sheathing joints at openings, such as horizontal joints. The flashing membrane 68 can be a liquid applied membrane or a sheet membrane. The flashing membrane 68 can be a flexible, water-based polymer material applied over a mesh, or non-woven blend fabric. In one example, Dryvit AquaFlash® is used. The flashing membrane 68 can be applied along a lower portion of the sheathing 64 and along a bottom surface of the framing 62 and the sheathing 64 within a joint space.
The insert member 14 of the exterior wall insulation finish assembly can be attached to the sheathing 64 over the flashing membrane 68 with adhesive 58 or other means. The flashing membrane 68 can then be applied over the top face 56 and front face 50 of the insert member 14 and extending above the top face 50 onto the moisture barrier 66 and/or sheathing 64 to prevent moisture from between the insert member 14 and the sheathing 64 and provide drainage along the front face 50.
Adhesive is applied to adhere the exterior wall member 12 to the sheathing 64 and/or moisture barrier 66. The adhesive can be applied with a notched trowel in a manner that provides vertical grooves formed by the notches, within the adhesive. When assembled, the bottom edge 28 of the exterior wall member 12 can extend generally planar to the bottom face 54 of the tail portion 14. The bottom edge 28 can be substantially aligned with the bottom face 54. The drainage channel 16 can be formed between or within the exterior panel member and insert members 14, 16 with the flashing membrane 68 extending therethrough.
The interior or, second and back surfaces 32, 52, of the exterior wall member 12 and insert member 14 extend along a first plane when assembled. The flashing membrane 68 can channel, or direct, moisture from an interior surface of the rigid insulative layer 18 along the top face 56 and front face 50 with the aid of gravity without moisture penetrating either the insert member 14 or the exterior wall member 12. Sealant 74 and backer rod 76 can be included at horizontal and vertical joints between panels 100, etc. The sealant 74 is disposed behind, or interior to, the front face 50 of the insert member 14 to allow drainage from between the insert member 14 and the exterior wall member 12 to exterior of the wall system 100.
A finish coating 70 can be included over the exterior wall member 12. The finish coating 70 can include adhesive properties to self-adhere to surfaces. The finish coating 70 can include one or more layers that can be troweled on or spray applied. At least one of the coating layers can be an acrylic copolymer coating, such as Dryvit's Dirt Pickup Resistance (DPR) finishes, for example. Other or additional exterior coatings can also be acceptable.
In accordance with aspects of the present disclosure, the wall system 100 can be prefabricated wall panels fabricated in a controlled manufacturing facility and delivered to a building project site or can be assembled at a building project site. During fabrication, the rigid insulative layer 18 of the exterior wall member 12 and the insert member 14 can be formed from a standard sheet of rigid insulation material and cut to the desired size and shape using computer numerical controlled (CNC) machining. The mesh 21 can adhered to the formed rigid insulative layer 18. For example, a 3 ½″ or 4″ wide self-adhesive fiberglass mesh can be applied to the rigid insulative layer 18. The base coat 20 can be a liquid coating applied using a mud box including a template corresponding to the surfaces of the formed rigid insulative layer 18 to which the base coat 20 is to be applied and feeding the mesh 21 applied exterior wall member 12 and insert member 14 through the mud box either mechanically or manually. Alternatively, the base coat 20 can be applied by machine, spraying, or hand troweling. The mesh 21 and base coat are cured onto the rigid insulative layer 18.
The framing 62 can include a base plate, a top plate, and vertical stud members extending between the base plate and the top plate. The sheathing layer 64 can be attached to the framing 62. Alternatively, or additionally, a hat channel can be disposed along a surface of the sheathing 64. The sheathing 64 can be formed of standard sheets of rigid insulation assembled and abutting edge to edge and/or as desired to form the desired sheathing layer and attached to the framing 62 with adhesive, for example. The moisture barrier 66 and flashing membrane 68 can be disposed over the insert member 14, sheathing 64 and framing 62 to form an edge wrap along terminating edges of the panel assemblies. Edges of the wall panel body can include edge wraps disposed on all or some perimeter edges of the wall panel body.
The assembled exterior wall panels 100 can be any desired shape. For example, the assembled wall panels 100 can include sections that are angled relative to one another. Grooves or other desired surface features can be included for aesthetic or other purposes. In other examples, openings can be included for windows, doors, electrical and mechanical equipment, etc. The wall panels 100 can be ready for installation and loaded for delivery to a jobsite for installation on a building structure. The wall panels 100 can be attached to a floor slab or other structural member of a building structure with embedded angle, clips, or other mechanical methods.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof
This application is a continuation of U.S. patent application Ser. No. 16/983,684, filed Aug. 3, 2020, entitled EXTERIOR INSULATED FINISH WALL ASSEMBLY, which is a continuation of U.S. patent application Ser. No. 16/580,504, filed Sep. 24, 2019, entitled EXTERIOR INSULATED FINISH WALL ASSEMBLY, now U.S. Pat. No. 10,731,334, issued Aug. 4, 2020, which is a Continuation of U.S. patent application Ser. No. 15/977,462 filed on May 11, 2018, entitled EXTERIOR INSULATED FINISH WALL ASSEMBLY, now U.S. Pat. No. 10,472,820, issued Nov. 12, 2019, which claims priority under 35 U.S.C. § 119(e)(1) to U.S. Provisional Patent Application Ser. No. 62/504,875, filed May 11, 2017, entitled EXTERIOR INSULATION AND FINISH WALL DRAINAGE SYSTEM, the entire disclosures of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5027572 | Purcell | Jul 1991 | A |
5363621 | Kroll et al. | Nov 1994 | A |
5410852 | Edgar et al. | May 1995 | A |
5979131 | Remmele et al. | Nov 1999 | A |
7713615 | Black | May 2010 | B2 |
8001736 | Goldberg et al. | Aug 2011 | B2 |
8316597 | Goldberg et al. | Nov 2012 | B2 |
8919062 | Viness | Dec 2014 | B1 |
20060185299 | Poupart | Aug 2006 | A1 |
20060225836 | LeFevre et al. | Oct 2006 | A1 |
20060277854 | Egan | Dec 2006 | A1 |
20070011986 | Serino et al. | Jan 2007 | A1 |
20110036539 | Balduini et al. | Feb 2011 | A1 |
20110078971 | Adams | Apr 2011 | A1 |
20110265416 | Southwell | Nov 2011 | A1 |
20130309454 | Propst | Nov 2013 | A1 |
20150047281 | Cole et al. | Feb 2015 | A1 |
20170306631 | Kirk | Oct 2017 | A1 |
20180328026 | Lutz | Nov 2018 | A1 |
20200018062 | Lutz | Jan 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20220213680 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
62504875 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16983684 | Aug 2020 | US |
Child | 17702409 | US | |
Parent | 16580504 | Sep 2019 | US |
Child | 16983684 | US | |
Parent | 15977462 | May 2018 | US |
Child | 16580504 | US |