This application claims priority to German Patent Application No. 10 2004 025 385.4 filed on May 17, 2004.
The present invention relates to an exterior rearview mirror for vehicles, in particular motor vehicles.
It is known for signal lamps, area lights, or indicator lights to be provided on the exterior rearview mirror. They are accommodated either in the mirror housing or in the mirror base.
The object of the present invention is to design an exterior rearview mirror of this kind so as to permit a simple, advantageous installation of a lamp that does not require a lot of space.
This object is attained with an exterior rearview mirror of the present invention.
In the exterior rearview mirror according to the present invention, the lamp is non-detachably fastened to the frame. It can be accommodated in the frame in an easy, space-saving way and can be held there securely.
Other characteristics of the invention ensue from the remaining claims, the specification, and the drawings.
The present invention will be described in detail below in conjunction with several exemplary embodiments shown in the drawings.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The external rearview mirror 1 depicted in a simplified form in
As will be explained in detail below, the light emitted by the lamp 6 exits by means of at least one light exit surface 9 embodied in the form of a light window above the mirror glass 2 so that the light emitted by the built-in light, when it is used for a display function, is clearly visible to the driver of the vehicle. Since the light 5 is integrated into the mirror glass frame 3, it takes up only a small amount of installation space.
The mirror glass 2 is embodied in the form of a rimless, flat plate and advantageously rests against a mirror glass support plate 10 with the interposition of a heating foil 12. In the exemplary embodiment, the mirror glass support plate 10 is of one piece with the frame 3 and, with an end section 11 that protrudes downward beyond the plane of the plate, adjoins an upward extending frame part 13. In the region below the built-in lights 5, the end section 11 of the support plate 10 is provided with an opening 15 through which a sealing material 16 can be introduced in order to fasten the built-in lights 5 into the frame 3 and protect them from external influences and corrosion. The built-in lights 5 can also be fastened to the mirror glass support plate 10 without sealing material. In that case, the built-in lights 5 can be sealed in a watertight fashion by means of a protective lacquer or the like. It is also possible to seal only the opening 15 or for the seal to be produced in another way. The sealing material 16 offers the advantage of reliably protecting the built-in lights from vibrations and external influences. The built-in lights 5 can also be firmly attached to the mirror glass assembly, for example by means of gluing, detent connection, and the like, so that they are securely attached to the mirror.
The built-in lights 5 are attached by means of their printed circuit board 7 to a step-shaped intermediate section 14 of the support plate 10. The support plate and its end section 11 transition by means of step segments extending up and down essentially at right angles, into a step segment 14′ extending parallel to them, which segment has through openings 17 for plug contacts 18 or a cable outlet of the printed circuit board 7. When the light 5 is mounted in place, these plug contacts protrude downward beyond the end section 11 of the support plate 10. In this manner, the current/voltage supply of the components 8 and the lamp 6 of the lights 5 is automatically produced when the plug contacts 18 are plugged into a mated contact (not shown). The lamp 6, which is preferably constituted by at least one LED, is situated on the edge section 25 of the printed circuit board 7 protruding beyond the mirror glass 2. The lamp 6 is supported by contact feet 24, which are spaced slightly apart from the upright frame part 13 and are inserted through openings in the printed circuit board 7 and connected to the board in an electrically conductive manner. The components 8 are spaced a sufficient distance away from the mirror glass support plate 10.
The mirror glass support plate 10 protects the printed circuit board 7, fixes it in position, and covers it in relation to the outside. The electrical/electronic components 8 on the printed circuit board 7 can also be eliminated if they have been provided at another location, for example in a current supply line or in a door control unit or the like of the vehicle.
The frame section 13 that extends in a slight curve upward and toward the mirror glass 2 transitions into a roof-shaped upper frame part 20 under which the lamp or lamps 6 is/are situated. The light window 9, which is delimited by the upper frame part 20 and extends to the mirror glass 2 in the installed position of the light 5, permits the light emitted by the lamp 6 to pass through. The light window 9 is advantageously connected to the upper frame part 20 in a form-locked manner by means of a groove/spring connection 19 and advantageously rests against the mirror glass 2 with its edge for protection against the penetration of dirt, moisture, and the like into the built-in light 5. In this manner, penetration of dirt, moisture and the like is at least to a large extent prevented.
The light exit surface or light window 9 can be transparent and can also be provided with different colors in order to achieve different apparent colors. Instead of the light window 9, it is also possible to provide an optical waveguide 21 (
In the embodiment form according to
The lamp 6 can be situated behind or in front of a mirrored surface, which is provided, for example, on the optical waveguide 21. The lights 5 can also be situated so that they can function without an optical waveguide or with only a single optical waveguide, as in the embodiment forms according to
The embodiment form according to
The optical waveguide 21 is approximately C-shaped. With its one leg 27 extending approximately parallel to the mirror glass 2, it adjoins the lamp 6, which protrudes into a semicircular recess 28 at one end. This recess constitutes the light entry surface of the optical waveguide 21. The other leg 29 likewise extends essentially parallel to the mirror glass 2 and rests against it with its underside. The end surface of the leg 29 constitutes the light exit surface 9. On its top side, the leg 29 has the spring-like projection of the groove/spring connection 19. The outsides of the legs 27, 29 transition at an angle into the outside surfaces of the crosspiece 30 of the optical waveguide 21. This crosspiece extends approximately perpendicular to the mirror glass 2, between its edge 22 and the frame section 13. The light emitted by the lamp 6 and conveyed in the optical waveguide exits through the flat light exit surface 9 of the optical waveguide 21 extending transversely to the mirror glass 2, and travels toward the driver's side of the vehicle.
Except for the small regions of the light entry and exit surfaces, the optical waveguide 21 is advantageously provided with a reflective surface that prevents stray light losses between the light entry and exit. As in the embodiment form according to
The embodiment forms according to
As in the mirror according to
As in the embodiment form according to
The widened parts 32, 33 are approximately trapezoidal when viewed from above; they taper slightly as they extend inward from the edge of the mirror glass 2. The light exit surfaces of the lights 5 are once again situated flush with the inner edge 34, 35 of the widened parts 32, 33 of the frame 3. The widened frame parts 31 to 33 are of one piece with the frame 3 and constitute uninterrupted extensions of the outside of the frame. Their respective longitudinal edges 34, 36 oriented toward the mirror glass 2 extend beyond the inner edge 3′ of the frame 3.
As in the embodiment form according to
Instead of the continuous light window according to
The embodiment form according to
As is clear from
As is clear from
The mirror top and/or mirror bottom of the external rearview mirror 1 can contain additional elements such as a repeating turn signal, an area light, a camera, a GPS module, a washer unit for the mirror glass, a speaker, an antenna, a part of a garage door opener, or the like. These elements can be provided in any combination with one another in addition to the built-in lights 5.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 025 385 | May 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5017903 | Krippelz, Sr. | May 1991 | A |
5587699 | Faloon et al. | Dec 1996 | A |
6264353 | Caraher et al. | Jul 2001 | B1 |
6299334 | Schwanz et al. | Oct 2001 | B1 |
6441943 | Roberts et al. | Aug 2002 | B1 |
6502970 | Anderson et al. | Jan 2003 | B1 |
6657767 | Bonardi | Dec 2003 | B2 |
6761472 | Cleaver et al. | Jul 2004 | B1 |
20020126497 | Pastrick | Sep 2002 | A1 |
20030179087 | Stahel | Sep 2003 | A1 |
20050281043 | Eisenbraun | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
296 14 664 | Dec 1997 | DE |
100 39 760 | Mar 2002 | DE |
100 58 659 | May 2002 | DE |
202 15 760 | Dec 2002 | DE |
1 391 755 | Feb 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20050276058 A1 | Dec 2005 | US |