Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
The field of the invention generally relates to medical devices for treating disorders of the skeletal system.
Scoliosis is a general term for the sideways (lateral) curving of the spine, usually in the thoracic or thoracolumbar region. Scoliosis is commonly broken up into different treatment groups, Adolescent Idiopathic Scoliosis, Early Onset Scoliosis and Adult Scoliosis.
Adolescent Idiopathic Scoliosis (AIS) typically affects children between ages 10 and 16, and becomes most severe during growth spurts that occur as the body is developing. One to two percent of children between ages 10 and 16 have some amount of scoliosis. Of every 1000 children, two to five develop curves that are serious enough to require treatment. The degree of scoliosis is typically described by the Cobb angle, which is determined, usually from x-ray images, by taking the most tilted vertebrae above and below the apex of the curved portion and measuring the angle between intersecting lines drawn perpendicular to the top of the top vertebrae and the bottom of the bottom. The term idiopathic refers to the fact that the exact cause of this curvature is unknown. Some have speculated that scoliosis occurs when, during rapid growth phases, the ligamentum flavum of the spine is too tight and hinders symmetric growth of the spine. For example, as the anterior portion of the spine elongates faster than the posterior portion, the thoracic spine begins to straighten, until it curves laterally, often with an accompanying rotation. In more severe cases, this rotation actually creates a noticeable deformity, wherein one shoulder is lower than the other. Currently, many school districts perform external visual assessment of spines, for example in all fifth grade students. For those students in whom an “S” shape or “C” shape is identified, instead of an “I” shape, a recommendation is given to have the spine examined by a physician, and commonly followed-up with periodic spinal x-rays.
Typically, patients with a Cobb angle of 20° or less are not treated, but are continually followed up, often with subsequent x-rays. Patients with a Cobb angle of 40° or greater are usually recommended for fusion surgery. It should be noted that many patients do not receive this spinal assessment, for numerous reasons. Many school districts do not perform this assessment, and many children do not regularly visit a physician, so often, the curve progresses rapidly and severely. There is a large population of grown adults with untreated scoliosis, in extreme cases with a Cobb angle as high as or greater than 90°. Many of these adults, though, do not have pain associated with this deformity, and live relatively normal lives, though oftentimes with restricted mobility and motion. In AIS, the ratio of females to males for curves under 10° is about one to one, however, at angles above 30°, females outnumber males by as much as eight to one. Fusion surgery can be performed on the AIS patients or on adult scoliosis patients. In a typical posterior fusion surgery, an incision is made down the length of the back and Titanium or stainless steel straightening rods are placed along the curved portion. These rods are typically secured to the vertebral bodies, for example with hooks or bone screws, or more specifically pedicle screws, in a manner that allows the spine to be straightened. Usually, at the section desired for fusion, the intervertebral disks are removed and bone graft material is placed to create the fusion. If this is autologous material, the bone is harvested from a hip via a separate incision.
Alternatively, the fusion surgery may be performed anteriorly. A lateral and anterior incision is made for access. Usually, one of the lungs is deflated in order to allow access to the spine from this anterior approach. In a less-invasive version of the anterior procedure, instead of the single long incision, approximately five incisions, each about three to four cm long are made in several of the intercostal spaces (between the ribs) on one side of the patient. In one version of this minimally invasive surgery, tethers and bone screws are placed and are secured to the vertebra on the anterior convex portion of the curve. Currently, clinical trials are being performed which use staples in place of the tether/screw combination. One advantage of this surgery in comparison with the posterior approach is that the scars from the incisions are not as dramatic, though they are still located in a visible area, when a bathing suit, for example, is worn. The staples have had some difficulty in the clinical trials. The staples tend to pull out of the bone when a critical stress level is reached.
In some cases, after surgery, the patient will wear a protective brace for a few months as the fusing process occurs. Once the patient reaches spinal maturity, it is difficult to remove the rods and associated hardware in a subsequent surgery, because the fusion of the vertebra usually incorporates the rods themselves. Standard practice is to leave this implant in for life. With either of these two surgical methods, after fusion, the patient's spine is now straight, but depending on how many vertebra were fused, there are often limitations in the degree of flexibility, both in bending and twisting. As these fused patients mature, the fused section can impart large stresses on the adjacent non-fused vertebra, and often, other problems including pain can occur in these areas, sometimes necessitating further surgery. This tends to be in the lumbar portion of the spine that is prone to problems in aging patients. Many physicians are now interested in fusionless surgery for scoliosis, which may be able to eliminate some of the drawbacks of fusion.
One group of patients in which the spine is especially dynamic is the subset known as Early Onset Scoliosis (EOS), which typically occurs in children before the age of five, and more often in boys than in girls. This is a more rare condition, occurring in only about one or two out of 10,000 children, but can be severe, sometimes affecting the normal development of organs. Because of the fact that the spines of these children will still grow a large amount after treatment, non-fusion distraction devices known as growing rods and a device known as the EPTRVertical Expandable Prosthetic Titanium Rib (“Titanium Rib”) have been developed. These devices are typically adjusted approximately every six months, to match the child's growth, until the child is at least eight years old, sometimes until they are 15 years old. Each adjustment requires a surgical incision to access the adjustable portion of the device. Because the patients may receive the device at an age as early as six months old, this treatment requires a large number of surgeries. Because of the multiple surgeries, these patients have a rather high preponderance of infection.
Returning to the AIS patients, the treatment methodology for those with a Cobb angle between 20° and 40° is quite controversial. Many physicians proscribe a brace (for example, the Boston Brace), that the patient must wear on their body and under their clothes 18 to 23 hours a day until they become skeletally mature, for example to age 16. Because these patients are all passing through their socially demanding adolescent years, it is quite a serious prospect to be forced with the choice of either wearing a somewhat bulky brace that covers most of the upper body, having fusion surgery that may leave large scars and also limit motion, or doing nothing and running the risk of becoming disfigured and possibly disabled. It is commonly known that many patients have at times hidden their braces, for example, in a bush outside of school, in order to escape any related embarrassment. The patient compliance with brace wearing has been so problematic that there have been special braces constructed which sense the body of the patient, and keep track of the amount of time per day that the brace is worn. Patients have even been known to place objects into unworn braces of this type in order to fool the sensor. Coupled with the inconsistent patient compliance with brace usage, is a feeling by many physicians that braces, even if used properly, are not at all effective at curing scoliosis. These physicians may agree that bracing can possibly slow down or even temporarily stop curve (Cobb angle) progression, but they have noted that as soon as the treatment period ends and the brace is no longer worn, often the scoliosis rapidly progresses, to a Cobb angle even more severe than it was at the beginning of treatment. Some say the reason for the supposed ineffectiveness of the brace is that it works only on a portion of the torso, and not on the entire spine. Currently a prospective, randomized 500 patient clinical trial known as BrAIST (Bracing in Adolescent Idiopathic Scoliosis Trial) is enrolling patients, 50% of whom will be treated with the brace and 50% of who will simply be watched. The Cobb angle data will be measured continually up until skeletal maturity, or until a Cobb angle of 50° is reached, at which time the patient will likely undergo surgery. Many physicians feel that the BrAIST trial will show that braces are completely ineffective. If this is the case, the quandary about what to do with AIS patients who have a Cobb angle of between 20° and 40° will only become more pronounced. It should be noted that the “20° to 40°” patient population is as much as ten times larger than the “40° and greater” patient population.
Distraction osteogenesis, also known as distraction callotasis and osteodistraction has been used successfully to lengthen long bones of the body. Typically, the bone, if not already fractured, is purposely fractured by means of a corticotomy, and the two segments of bone are gradually distracted apart, which allows new bone to form in the gap. If the distraction rate is too high, there is a risk of nonunion, if the rate is too low, there is a risk that the two segments will completely fuse to each other before the distraction period is complete. When the desired length of the bone is achieved using this process, the bone is allowed to consolidate. Distraction osteogenesis applications are mainly focused on the growth of the femur or tibia, but may also include the humerus, the jaw bone (micrognathia), or other bones. The reasons for lengthening or growing bones are multifold, the applications including, but not limited to: post osteosarcoma bone cancer; cosmetic lengthening (both legs-femur and/or tibia) in short stature or dwarfism/achondroplasia; lengthening of one limb to match the other (congenital, post-trauma, post-skeletal disorder, prosthetic knee joint), nonunions.
Distraction osteogenesis using external fixators has been done for many years, but the external fixator can be unwieldy for the patient. It can also be painful, and the patient is subject to the risk of pin track infections, joint stiffness, loss of appetite, depression, cartilage damage and other side effects. Having the external fixator in place also delays the beginning of rehabilitation.
In response to the shortcomings of external fixator distraction, intramedullary distraction nails have been surgically implanted which are contained entirely within the bone. Some are automatically lengthened via repeated rotation of the patient's limb. This can sometimes be painful to the patient, and can often proceed in an uncontrolled fashion. This therefore makes it difficult to follow the strict daily or weekly lengthening regime that avoids nonunion (if too fast) or early consolidation (if too slow). Lower limb distraction rates are on the order of one mm per day. Other intramedullary nails have been developed which have an implanted motor and are remotely controlled by an antenna. These devices are therefore designed to be lengthened in a controlled manner, but due to their complexity, may not be manufacturable as an affordable product. Others have proposed intramedullary distractors containing and implanted magnet, which allows the distraction to be driven electromagnetically by an external stator. Because of the complexity and size of the external stator, this technology has not been reduced to a simple and cost-effective device that can be taken home, to allow patients to do daily lengthenings.
In one embodiment, an external adjustment device includes at least one permanent magnet configured for rotation about an axis. The external adjustment device further includes a first handle extending linearly at a first end of the device and a second handle disposed at a second end of the device, the second handle extending in a direction that is angled relative to the first handle. The external adjustment device includes a motor mounted inside the first handle and a first button located in the proximity to one of the first handle or the second handle, the first button configured to be operated by the thumb of a hand that grips the one of the first handle or second handle. The first button is configured to actuate the motor causing the at least one permanent magnet to rotate about the axis in a first direction.
In another embodiment, an external adjustment device includes at least one permanent magnet configured for rotation about an axis and a motor configured for rotating the at least one permanent magnet about the axis. The external adjustment device includes a first handle extending linearly at a first end of the device and a second handle disposed at a second end of the device, the second handle extending in a direction that is substantially off axis with respect to the first handle, wherein one of the first and second handle comprises a looped shape. A first drive button is located in the proximity to one of the first handle or the second handle, the first drive button configured to be operated by the thumb of a hand that grips the one of the first handle or second handle. The first drive button is configured to actuate the motor causing the at least one permanent magnet to rotate about the axis in a first direction.
Distraction turns the magnets 706, 708 one direction and retraction turns the magnets 706, 708 in the opposite direction. Magnets 706, 708 have stripes 809 that can be seen in window 811. This allows easy identification of whether the magnets 706, 708 are stationary or turning, and in which direction they are turning. This allows quick trouble shooting by the operator of the device. The operator can determine the point on the patient where the magnet of the distraction device 1000 is implanted, and can then put the external adjustment device 700 in correct location with respect to the distraction device 1000, by marking the corresponding portion of the skin of the patient, and then viewing this spot through the alignment window 716 of the external adjustment device 700.
A control panel 812 includes several buttons 814, 816, 818, 820 and a display 715. The buttons 814, 816, 818, 820 are soft keys, and able to be programmed for an array of different functions. In one configuration, the buttons 814, 816, 818, 820 have corresponding legends which appear in the display. To set the length of distraction to be performed on the distraction device 1000, the target distraction length 830 is adjusted using an increase button 814 and a decrease button 816. The legend with a green plus sign graphic 822 corresponds to the increase button 814 and the legend with a red negative sign graphic 824 corresponds to the decrease button 816. It should be understood that mention herein to a specific color used for a particular feature should be viewed as illustrative. Other colors besides those specifically recited herein may be used in connection with the inventive concepts described herein. Each time the increase button 814 is depressed, it causes the target distraction length 830 to increase 0.1 mm. Each time the decrease button 816 is depressed it causes the target distraction length 830 to decrease 0.1 mm. Of course, other decrements besides 0.1 mm could also be used. When the desired target distraction length 830 is displayed, and the external adjustment device 700 is correctly placed on the patient, the operator then holds down the distraction button 722 and the External Distraction Device 700 operates, turning the magnets 706, 708, until the target distraction length 830 is achieved. Following this, the external adjustment device 700 stops. During the distraction process, the actual distraction length 832 is displayed, starting at 0.0 mm and increasing until the target distraction length 830 is achieved. As the actual distraction length 832 increases, a distraction progress graphic 834 is displayed. For example a light colored box 833 that fills with a dark color from the left to the right. In
The two handles 702, 704 can be held in several ways. For example the first handle 702 can be held with palm facing up while trying to find the location on the patient of the implanted magnet of the distraction device 1000. The fingers are wrapped around the handle 702 and the fingertips or mid-points of the four fingers press up slightly on the handle 702, balancing it somewhat. This allows a very sensitive feel that allows the magnetic field between the magnet in the distraction device 1000 and the magnets 706, 708 of the external adjustment device 700 to be more obvious. During the distraction of the patient, the first handle 702 may be held with the palm facing down, allowing the operator to push the device down firmly onto the patient, to minimize the distance between the magnets 706, 708 of the external adjustment device and the magnet 1010 of the distraction device 1000, thus maximizing the torque coupling. This is especially appropriate if the patient is large or somewhat obese. The second handle 704 may be held with the palm up or the palm down during the magnet sensing operation and the distraction operation, depending on the preference of the operator.
Independently, Hall effect sensors 924, 926, 928, 930, 932, 934, 936, 938 may be used as non-optical encoders to track rotation of one or both of the external magnets 706, 708. While eight (8) such Hall effect sensors are illustrated in
If independent stepper motors are used, the resynchronization process may simply be one of reprogramming, but if the two external magnets 706, 708 are coupled together, by gearing or belt for example, then a mechanical rework may be required. An alternative to the Hall effect sensor configuration of
Returning to
In still another embodiment, additional information may be processed by processor 915 and may be displayed on display 715. For example, distractions using the external adjustment device 700 may be performed in a doctor's office by medical personnel, or by patients or members of patient's family in the home. In either case, it may be desirable to store information from each distraction session that can be accessed later. For example, the exact date and time of each distraction, and the amount of distraction attempted and the amount of distraction obtained. This information may be stored in the processor 915 or in one or more memory modules (not shown) associated with the processor 915. In addition, the physician may be able to input distraction length limits, for example the maximum amount that can be distracted at each session, the maximum amount per day, the maximum amount per week, etc. The physician may input these limits by using a secure entry using the keys or buttons of the device, that the patient will not be able to access.
Returning to
For example, the motor 705 would be commanded to rotate the magnets 706, 708 in a first direction when distracting an antegrade placed distraction device 1000, and in a second, opposite direction when distracting a retrograde placed distraction device 1000. The physician may, for example, be prompted by the display 715 to input using the control panel 812 whether the distraction device 1000 was placed antegrade or retrograde. The patient may then continue to use the same external adjustment device 700 to assure that the motor 705 turns the magnets 706, 708 in the proper directions for both distraction and retraction. Alternatively, the distraction device may incorporate an RFID chip 1022 which can be read and written to by an antenna 1024 on the external adjustment device 700. The position of the distraction device 1000 in the patient (antegrade or retrograde) is written to the RFID chip 1022, and can thus be read by the antenna 1024 of any external adjustment device 700, allowing the patient to get correct distractions or retractions, regardless of which external adjustment device 700 is used.
As explained above, with respect to
Each of the first external magnet 706 and second external magnet 708 defines its own vertical axis, perpendicular to the horizontal axis 1110 and through the magnet's elongate rotational axis. First external magnet 706 has a first magnet vertical axis 1113 that is perpendicular to the horizontal axis 1110 and intersects the first elongate rotational axis (i.e., the horizontal axis 1110 and the first magnet vertical axis 1113 intersect at the center of the circle defined by any plane perpendicular to the longitudinal axis of the first external magnet 706). In the same way, second external magnet 708 has a second magnet vertical axis 1112 that is perpendicular to the horizontal axis 1110 and intersects the second elongate rotational axis (i.e., the horizontal axis 1110 and the second magnet vertical axis 1112 intersect at the center of the circle defined by any plane perpendicular to the longitudinal axis of the second external magnet 708).
The first external magnet 706 and the second external magnet 708 are separated by an intermagnet gap 1130, which is defined as the distance along the horizontal axis 1110 between the rightmost edge of the first external magnet 706 and the leftmost edge of the second external magnet 708. A central vertical axis 1111 bisects the horizontal axis 1110 in the center of the intermagnet gap 1130, perpendicular to the horizontal axis 1110. Therefore, the distance from the center of the first external magnet 706 (i.e., the first elongate rotational axis) to the center of the second external magnet 708 (i.e., the second elongate rotational axis) is equal to one half the first magnet diameter 1134 plus one half the second magnet diameter 1132 plus the intermagnet gap 1130. When the first magnet diameter 1134 of the first external magnet 706 and second magnet diameter 1132 of the second external magnet 708 are equal, as shown in
An ideal reference location for the implanted magnet 1010 is on the central vertical axis 1111. In the case where first magnet diameter 1134 and second magnet diameter 1132 are equal, the first external magnet 706 and second external magnet 708 create equal magnetic fields. Therefore, any point along central vertical axis 1111 will experience equal effects by first external magnet 706 and second external magnet 708. The distance between the lowermost edge of the external magnets (i.e., first external magnet 706 and second external magnet 708) and the uppermost edge of the implanted magnet 1010 is defined as the gap distance 1138. It should be understood that, while a reference location for the implanted magnet 1010 on the central vertical axis 1111 is conceptually helpful, the implanted magnet 1010 may also lie off the central vertical axis 1111.
Turning to
The intermagnet gap 1130 can have an effect on the magnetic flux density observed along the central vertical axis 1111. Magnetic flux density drops off at approximately 1/r3 (an inverse cube). Therefore, a very small gap distance may observe relatively high flux densities along the central vertical axis 1111. By contrast, because of how quickly the flux density drops off, a lower limit of flux density is reached relatively quickly with medium and large intermagnet gaps 1130.
Turning again to
As can be seen, in applications for which a small gap distance is possible or required, intermagnet gap may be varied to increase or decrease the flux density. If higher flux densities are useful or required (such as when higher torques are useful or required), the intermagnet gap may be decreased while holding the gap distance constant—i.e., first external magnet 706 and the second external magnet 708 may be brought closer together on horizontal axis 1110. By contrast, if lower flux densities are useful or required (such as when high torques are not needed or could be detrimental), the intermagnet gap may be increased while holding the gap distance constant—i.e., the first external magnet 706 and the second external magnet 708 may be moved apart on the horizontal axis 1110. Of course, both intermagnet gap and gap distance may be varied.
In some embodiments, the external adjustment device 700 may be “smart” and able to vary the intermagnet gap based one or more factors, such as, but not limited to, user input and a sensed parameter. Therefore, such a “smart” external adjustment device 700 may manipulate intermagnet gap to increase or decrease the flux density as needed. For example, a user may input several parameters that allow the external adjustment device to select the appropriate intermagnet gap distance for the given application. Such variable may include implant location, patient age, patient weight, patient body mass index (BMI), gap distance, etc. By contrast to input parameters, a “smart” external adjustment device 700 may be able to use sensed parameters such as gap distance magnetic coupling slippage, torque generated, force generated, etc.
In response to one or more of these user inputs and sensed parameters, the intermagnet gap may be adjusted. In some embodiments, the external adjustment device 700 may inform a user that a given adjustment could improve treatment efficacy. In such a case, the user could use any of a number of tools, systems, and methods to increase the intermagnet gap. Alternatively, a “smart” external adjustment device 700 may process the user inputs and/or sensed parameters, determine that a change (increase or decrease) in flux density or torque generation would be advantageous, and automatically adjust the intermagnet gap to the optimum intermagnet gap that remains within system capabilities (i.e., due to physical constraints, there are both lower and upper limits on the intermagnet gap).
As explained with reference to
Turning again to
In its reference orientation, shown in both
The first external magnet 706 may be rotated to an example first central magnetic axis 1122′ by a first angle of rotation 1123. In some embodiments, as just mentioned, the first angle of rotation 1123 is positive, and in some embodiments the first angle of rotation 1123 is negative. The first angle of rotation 1123 may rotate the first central magnetic axis 1122 in a positive direction from 0° to 360°. Additionally, the first angle of rotation 1123 may rotate the first central magnetic axis 1122 in a negative direction from 0° to −360°. Rotations of the first external magnet 706 such that the first central magnetic axis 1122 is rotationally offset by a first angle of rotation 1123 of >0° to <180° are uniquely positive rotational offsets. In the same way, rotations of the first external magnet 706 such that the first central magnetic axis 1122 is rotationally offset by first angle of rotation 1123 of <0° to >−180° are uniquely negative rotational offsets. As will be readily understood, rotations of the first external magnet 706 by a first angle of rotation 1123 of >180° to <360° are equivalent to rotations of the first external magnet 706 by a first angle of rotation 1123 of <0° to >−180°, and rotations of the first external magnet 706 by a first angle of rotation 1123 of <−180° to <−360° are equivalent to rotations of the first external magnet 706 by a first angle of rotation 1123 of >0° to <180°. Rotations of the first external magnet 706 by a first angle of rotation 1123 of >0° to <180° are uniquely positive rotational offsets that are known as “upward rotations” or “upward offsets.” By contrast, rotations of the first external magnet 706 by a first angle of rotation 1123 of <0° to >−180° are uniquely negative rotational offsets that are known as “downward rotations” or “downward offsets.”
The second external magnet 708 may also have a rotational offset. The second external magnet 708 may be rotated to an example second central magnetic axis 1120′ by a second angle of rotation 1121. In some embodiments, the second angle of rotation 1121 is positive, and in some embodiments the second angle of rotation 1121 is negative. The second external magnet 708, including the second central magnetic axis 1120, may be rotated by a second angle of rotation 1121 in a positive direction from 0° to 360°. Additionally, the second external magnet 708, including the second central magnetic axis 1120, may be rotated by a second angle of rotation 1121 in a negative direction from 0° to −360°. Rotations of the second external magnet 708 such that the second central magnetic axis 1120 is rotationally offset by a second angle of rotation 1121 of >0° to <180° are uniquely positive rotational offsets. In the same way, rotations of the second external magnet 708 such that the second central magnetic axis 1120 is rotationally offset by second angle of rotation 1121 of <0° to >−180° are uniquely negative rotational offsets. As discussed with respect to the first external magnet 706, rotations of the second external magnet 708 by a second angle of rotation 1121 of >180° to <360° are equivalent to rotations of the second external magnet 708 by a second angle of rotation 1121 of <0° to >−180°, and rotations of the second external magnet 708 by a second angle of rotation 1121 of <−180° to <−360° are equivalent to rotations of the second external magnet 708 by a second angle of rotation 1121 of >0° to <180°. Rotations of the second external magnet 708 by a second angle of rotation 1121 of >0° to <180° are uniquely positive rotational offsets that are known as “upward rotations” or “upward offsets.” By contrast, rotations of the second external magnet 708 by a second angle of rotation 1121 of <0° to >−180° are uniquely negative rotational offsets that are known as “downward rotations” or “downward offsets.”
Either one or both magnets may be rotationally offset. In some embodiments, only the first external magnet 706 is rotated in one of a positive and a negative direction (i.e., upward rotation or downward rotation). In other embodiments, only the second external magnet 708 is rotated in one of a positive and a negative direction (i.e., upward rotation or downward rotation). In yet other embodiments, both magnets are rotated. Any permutation of dual magnet rotation is possible: both first external magnet 706 and second external magnet 708 being rotated upward (by equal or different amounts); both first external magnet 706 and second external magnet 708 being rotated downward (by equal or different amounts); first external magnet 706 being rotated upward while second external magnet 708 being rotated downward (by equal or different amounts); and first external magnet 706 being rotated downward while second external magnet 708 being rotated upward (by equal or different amounts). When both the first external magnet 706 and the second external magnet 708 are rotated equally upward, the rotational systemic offset is the sum of the magnitude of the two offsets. For example, when the first external magnet 706 has an upward rotation of 40° and the second external magnet 708 has a rotation of 40°, the system's rotation is termed, for example, an “upward 80°” or “80° upward.” In the same fashion, if the first external magnet 706 has a downward rotation of −15° and the second external magnet 708 has a downward rotation of −15°, the system's rotation is termed, for example, a “downward 30°” or “30° downward.”
Depending on the point on the central vertical axis 1111, changing the rotational offset of one or both the first external magnet 706 and the second external magnet 708 may either increase or decrease the observed flux density for a given gap distance 1138. For example, as will be discussed in greater detail, below, an upward rotational offset (i.e., >0° to <180°) generally increases flux density on the central vertical axis 1111 at a given gap distance 1138. By contrast, a downward offset (i.e., <0° to >−180°) generally decreases flux density on the central vertical axis 1111 at a given gap distance 1138 (however, downward offsets may increase flux density on the central vertical axis 1111 at small gap distances 1138). Once the first external magnet 706 and second external magnet 708 are unilaterally or bilaterally rotated out of phase in either an upward or a downward direction, they may be rotationally locked with respect to each other and rotated as described above (e.g., at the same angular velocity).
By contrast to
First line 2310 is a plot of magnetic flux density versus gap distance for a two magnet system (e.g., a system having a first external magnet 706 and a second external magnet 708) in which the magnets have a intermagnet gap of 0.75 inches and no angular offset (i.e., neither the first external magnet 706 nor the second external magnet 708 is rotated out of phase). An example flux map of such a system is shown in
Second line 2320 is a plot of magnetic flux density versus gap distance for a two magnet system (e.g., a system having a first external magnet 706 and a second external magnet 708) in which the magnets have an intermagnet gap of 0.75 inches and a systemic angular offset of an upward 40 degrees (i.e., each of first external magnet 706 and second external magnet 708 has an upward rotation of 20 degrees). An example flux map of such a system is shown in
Third line 2330 is a plot of magnetic flux density versus gap distance for a two magnet system (e.g., a system having a first external magnet 706 and a second external magnet 708) in which the magnets have an intermagnet gap of 0.75 inches and a systemic angular offset of a downward 40 degrees (i.e., each of the first external magnet 706 and the second external magnet 708 has a downward rotation of 20 degrees). An example flux map of such a system is shown in
Finally, fourth line 2340 is a plot of magnetic flux density versus gap distance for a two magnet system (e.g., a system having a first external magnet 706 and a second external magnet 708) in which the magnets have an intermagnet gap of 0.75 inches and a systemic angular offset of a downward 80 degrees (i.e., each of the first external magnet 706 and the second external magnet 708 has a downward rotation of 40 degrees). An example flux map of such a system is shown in
As just mentioned, the two magnet system that produced first line 1510 and second line 1520 have a zero degree rotational offset. However, the first two magnet system that produced first line 1510 had an intermagnet gap of about 0.2 inches whereas the second two magnet system that produced second line 1520 had an intermagnet gap of about 0.75 inches. The system in which the magnets were closer together initially has a significantly higher flux density than the system in which the magnets were farther apart—in fact, it is approximately 30% higher at a gap distance of zero. The graph illustrates that the gains achieved through small intermagnet gaps are realized at only relatively short gap distance. The first line 1510 and the second line 1520 substantially converge at about 30 mm, after which they remain approximately equal. This is entirely consistent with
As discussed above, and by contrast to the zero rotational offset system just discussed, the two magnet system that produced third line 1530 and fourth line 1540 have a systemic downward 80 degree rotational offset. However, the first two magnet system that produced third line 1530 had an intermagnet gap of about 0.2 inches whereas the second two magnet system that produced fourth line 1540 had an intermagnet gap of about 0.75 inches. The system in which the magnets were closer together initially had a significantly higher flux density than the system in which the magnets were farther apart—in fact, it is approximately 70% higher at a gap distance of zero. The graph illustrates that the gains achieved through small intermagnet gaps in systems having a downward rotational offset are realized across a much broader range of gap distances than for systems having no rotational offset. As mentioned above, systems having no rotational offset maintain an increased flux density only for gap distances lower than about 25 mm. By marked contrast, the system having a downward 80 degree rotational offset still experienced an increased flux density at about 50 mm—twice the gap distance. The rotationally offset systems converged at about 50 mm at which point in time they continued to track each other. However, they remain above the systems having no rotational offset.
It will also be understood that there are some applications in which small gap distances are uncommon if not impossible, and where medium to large gap distances must be addressed. An instance of such an application is in magnetically adjustable intramedullary femoral nails. Such nails are placed in the intramedullary canal of the femur; consequently, while adipose, fascia, and muscle may be compressed to some degree, the gap distance is substantially increased by the tissues overlying the femur. Some examples of such devices are disclosed in U.S. Pat. Nos. 8,449,543 and 8,852,187, which are incorporated by reference in their entirety herein. As noted above, a downward rotational offset generally causes an increase in flux density as gap distance increases. Therefore, in these applications, downward rotational offset systems will likely be more effective than their aligned counterparts. For systems having a downward rotational offset of 80 degrees, any increase in flux density due to decreased intermagnet gap is generally lost by about 50 mm. Therefore, if an application for which increased torque (and therefore flux density) is desirable, has a gap distance of greater than about 50 mm, decreasing the intermagnet gap will play very little role in increasing torque. However, if the gap distance is less than about 50 mm, decreasing the gap distance could dramatically increase the possible torque. While it is unlikely that any femoral intramedullary nail would ever experience a small gap distance, if the gap distance is smaller than about 25 mm, having a downward rotational offset would degrade the system's ability to generate higher torques. In that case, a rotationally aligned system having a small gap distance would be better. It should be noted that the effects of rotational offset and intermagnet gap have been discussed here in only a very limited context, and for example's sake only. As is discussed herein there are additional ranges and variables that may be altered to either increase or decrease the magnetic flux density experienced at a given point.
With continued reference to
The third external magnet 2408 may be rotated by a third angle of rotation 2425 to a third central magnetic axis 2424 (shown in
While
In addition to simple magnets, such as a compass, a horseshoe magnet, or even a rotational poled cylindrical magnet such as the first external magnet 706 and second external magnet 708, it is possible to create complex magnets in which the flux direction for each pole may be selected at will. A common example of a complex magnet is the refrigerator magnet in which magnetism exists only on one side—the back of the magnet will stick to a refrigerator while the front will not. This phenomenon is due to selective orientation of the flux direction during construction of the magnet that allows magnetic field to only to be present on one side of the magnet. The phenomenon is known as the Halbach effect and the arrangement known as a Halbach array. Straight magnets may be created in Halbach arrays so that a magnetic field exists on only one side by simply arranging north-south poled pieces side-by-side so that each consecutive piece's north pole has been rotated a quarter turn from the previous magnet. Once aligned as described, the direction of magnetization will be rotating uniformly as you progress in a particular direction.
Generally a Halbach array is an arrangement of permanent magnets that can augment the magnetic field on one side of the Halbach array while canceling the magnetic field to near zero or substantially near zero on the other side of the Halbach array. For example, the magnetic field can be enhanced on the bottom side of the Halbach array and cancelled on the top side (a one-sided flux) of the Halbach array. The quarter turn rotating pattern of permanent magnets can be continued indefinitely and have the same effect. Increasingly complex Halbach arrays may be used to shape the magnetic field for any magnet, including cylindrical magnets.
The International Commission on Non-Ionizing Radiation Protection has issued “Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (Up To 300 GHz)” and “Guidelines on Limits of Exposure to Static Magnetic Fields.” Both sets of guidelines are incorporated by reference in their entirety herein. These guidelines limit exposure to both time-varying magnetic fields and static magnetic fields to protect health. The limits are, however, different for different areas of the body. For example, a finger may have a higher limit than the brain. For time varying magnetic field limits, two variables are particularly important: field strength and field movement speed (e.g., with respect to the body). A weak magnetic field could generally be moved around the body relatively quickly while staying within the prescribed limits. By contrast, a very strong magnet would need to be move very slowly around the body to stay within the prescribed limits. This is one reason that patients undergoing MRI scans are told not to move—they are being subjected to incredibly strong magnetic fields. Much movement by a person in an MRI machine would likely exceed the prescribed limits. By contrast to time varying magnetic field limits, static field limits are concerned primarily with field strength. However, the guidelines note that they “do not apply to the exposure of patients undergoing medical diagnosis or treatment.” If they did apply, it is almost certain that MRI machines would fall outside the limits.
In view of the guidelines discussed above, it can be seen that magnetic medical devices should ideally use the weakest magnetic field possible in the slowest manner possible to still achieve the desired clinical outcome. Several of the systems disclosed herein, including the external adjustment device 700 shown in
Parameters that may be varied by a user in an external adjustment device 700 or by a “smart” external adjustment device 700 itself, include: intermagnet gap; gap distance; rotational offset (unilateral and bilateral); and magnet rotational velocity. Selectively varying one or more of these variable may allow the user or the “smart” external adjustment device 700 to optimize the system to have the lowest flux (weakest magnetic field) that is still clinically effective.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Similarly, this method of disclosure, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.
Number | Name | Date | Kind |
---|---|---|---|
2702031 | Wenger | Feb 1955 | A |
3111945 | Von Solbrig | Nov 1963 | A |
3372476 | Peiffer | Mar 1968 | A |
3377576 | Langberg | Apr 1968 | A |
3512901 | Law | May 1970 | A |
3597781 | Eibes | Aug 1971 | A |
3900025 | Barnes, Jr. | Aug 1975 | A |
3915151 | Kraus | Oct 1975 | A |
RE28907 | Eibes et al. | Jul 1976 | E |
3976060 | Hildebrandt et al. | Aug 1976 | A |
4010758 | Rockland et al. | Mar 1977 | A |
4056743 | Clifford et al. | Nov 1977 | A |
4068821 | Morrison | Jan 1978 | A |
4078559 | Nissinen | Mar 1978 | A |
4204541 | Kapitanov | May 1980 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4386603 | Mayfield | Jun 1983 | A |
4448191 | Rodnyansky et al. | May 1984 | A |
4486176 | Tardieu et al. | Dec 1984 | A |
4501266 | McDaniel | Feb 1985 | A |
4522501 | Shannon | Jun 1985 | A |
4537520 | Ochiai et al. | Aug 1985 | A |
4550279 | Klein | Oct 1985 | A |
4561798 | Elcrin et al. | Dec 1985 | A |
4573454 | Hoffman | Mar 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4642257 | Chase | Feb 1987 | A |
4658809 | Uhich et al. | Apr 1987 | A |
4700091 | Wuthrich | Oct 1987 | A |
4747832 | Buffet | May 1988 | A |
4854304 | Zielke | Aug 1989 | A |
4904861 | Epstein et al. | Feb 1990 | A |
4931055 | Bumpus et al. | Jun 1990 | A |
4940467 | Tronzo | Jul 1990 | A |
4957495 | Kluger | Sep 1990 | A |
4973331 | Pursley et al. | Nov 1990 | A |
5010879 | Moriya et al. | Apr 1991 | A |
5030235 | Campbell, Jr. | Jul 1991 | A |
5041112 | Mingozzi et al. | Aug 1991 | A |
5064004 | Lundell | Nov 1991 | A |
5074882 | Grammont et al. | Dec 1991 | A |
5092889 | Campbell, Jr. | Mar 1992 | A |
5133716 | Plaza | Jul 1992 | A |
5142407 | Varaprasad et al. | Aug 1992 | A |
5156605 | Pursley et al. | Oct 1992 | A |
5263955 | Baumgart et al. | Nov 1993 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5334202 | Carter | Aug 1994 | A |
5336223 | Rogers | Aug 1994 | A |
5356411 | Spievack | Oct 1994 | A |
5356424 | Buzerak et al. | Oct 1994 | A |
5364396 | Robinson et al. | Nov 1994 | A |
5403322 | Herzenberg et al. | Apr 1995 | A |
5429638 | Muschler et al. | Jul 1995 | A |
5437266 | McPherson et al. | Aug 1995 | A |
5466261 | Richelsoph | Nov 1995 | A |
5468030 | Walling | Nov 1995 | A |
5480437 | Draenert | Jan 1996 | A |
5509888 | Miller | Apr 1996 | A |
5516335 | Kummer et al. | May 1996 | A |
5527309 | Shelton | Jun 1996 | A |
5536269 | Spievack | Jul 1996 | A |
5549610 | Russell et al. | Aug 1996 | A |
5573012 | McEwan | Nov 1996 | A |
5575790 | Chen et al. | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5620445 | Brosnahan et al. | Apr 1997 | A |
5620449 | Faccioli et al. | Apr 1997 | A |
5626579 | Muschler et al. | May 1997 | A |
5626613 | Schmieding | May 1997 | A |
5632744 | Campbell, Jr. | May 1997 | A |
5659217 | Petersen | Aug 1997 | A |
5662683 | Kay | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5672177 | Seldin | Sep 1997 | A |
5700263 | Schendel | Dec 1997 | A |
5704938 | Staehlin et al. | Jan 1998 | A |
5704939 | Justin | Jan 1998 | A |
5720746 | Soubeiran | Feb 1998 | A |
5743910 | Bays et al. | Apr 1998 | A |
5762599 | Sohn | Jun 1998 | A |
5771903 | Jakobsson | Jun 1998 | A |
5810815 | Morales | Sep 1998 | A |
5827286 | Incavo et al. | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5879375 | Larson, Jr. et al. | Mar 1999 | A |
5902304 | Walker et al. | May 1999 | A |
5935127 | Border | Aug 1999 | A |
5945762 | Chen et al. | Aug 1999 | A |
5961553 | Coty et al. | Oct 1999 | A |
5976138 | Baumgart et al. | Nov 1999 | A |
5979456 | Magovern | Nov 1999 | A |
6022349 | McLeod et al. | Feb 2000 | A |
6033412 | Losken et al. | Mar 2000 | A |
6034296 | Elvin et al. | Mar 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6106525 | Sachse | Aug 2000 | A |
6126660 | Dietz | Oct 2000 | A |
6126661 | Faccioli et al. | Oct 2000 | A |
6138681 | Chen et al. | Oct 2000 | A |
6139316 | Sachdeva et al. | Oct 2000 | A |
6162223 | Orsak et al. | Dec 2000 | A |
6183476 | Gerhardt et al. | Feb 2001 | B1 |
6200317 | Aalsma et al. | Mar 2001 | B1 |
6234956 | He et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6245075 | Betz et al. | Jun 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319255 | Grundei et al. | Nov 2001 | B1 |
6331744 | Chen et al. | Dec 2001 | B1 |
6336929 | Justin | Jan 2002 | B1 |
6343568 | McClasky | Feb 2002 | B1 |
6358283 | Hogfors et al. | Mar 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6389187 | Greenaway et al. | May 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6402753 | Cole et al. | Jun 2002 | B1 |
6409175 | Evans et al. | Jun 2002 | B1 |
6416516 | Stauch et al. | Jul 2002 | B1 |
6499907 | Baur | Dec 2002 | B1 |
6500110 | Davey et al. | Dec 2002 | B1 |
6508820 | Bales | Jan 2003 | B2 |
6510345 | Van Bentem | Jan 2003 | B1 |
6537196 | Creighton, IV et al. | Mar 2003 | B1 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6565573 | Ferrante et al. | May 2003 | B1 |
6565576 | Stauch et al. | May 2003 | B1 |
6582313 | Perrow | Jun 2003 | B2 |
6583630 | Mendes et al. | Jun 2003 | B2 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6656135 | Zogbi et al. | Dec 2003 | B2 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6667725 | Simons et al. | Dec 2003 | B1 |
6673079 | Kane | Jan 2004 | B1 |
6702816 | Buhler | Mar 2004 | B2 |
6706042 | Taylor | Mar 2004 | B2 |
6709293 | Mori et al. | Mar 2004 | B2 |
6730087 | Butsch | May 2004 | B1 |
6761503 | Breese | Jul 2004 | B2 |
6769499 | Cargill et al. | Aug 2004 | B2 |
6789442 | Forch | Sep 2004 | B2 |
6796984 | Soubeiran | Sep 2004 | B2 |
6802844 | Ferree | Oct 2004 | B2 |
6809434 | Duncan et al. | Oct 2004 | B1 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6852113 | Nathanson et al. | Feb 2005 | B2 |
6918838 | Schwarzler et al. | Jul 2005 | B2 |
6918910 | Smith et al. | Jul 2005 | B2 |
6921400 | Sohngen | Jul 2005 | B2 |
6923951 | Contag et al. | Aug 2005 | B2 |
6971143 | Domroese | Dec 2005 | B2 |
7001346 | White | Feb 2006 | B2 |
7008425 | Phillips | Mar 2006 | B2 |
7011658 | Young | Mar 2006 | B2 |
7029472 | Fortin | Apr 2006 | B1 |
7029475 | Panjabi | Apr 2006 | B2 |
7041105 | Michelson | May 2006 | B2 |
7060080 | Bachmann | Jun 2006 | B2 |
7063706 | Wittenstein | Jun 2006 | B2 |
7105029 | Doubler et al. | Sep 2006 | B2 |
7105968 | Nissen | Sep 2006 | B2 |
7114501 | Johnson et al. | Oct 2006 | B2 |
7115129 | Heggeness | Oct 2006 | B2 |
7135022 | Kosashvili et al. | Nov 2006 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7163538 | Altarac et al. | Jan 2007 | B2 |
7189005 | Ward | Mar 2007 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7218232 | DiSilvestro et al. | May 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7243719 | Baron et al. | Jul 2007 | B2 |
7255682 | Bartol, Jr. et al. | Aug 2007 | B1 |
7282023 | Frering | Oct 2007 | B2 |
7285087 | Moaddeb et al. | Oct 2007 | B2 |
7302015 | Kim et al. | Nov 2007 | B2 |
7302858 | Walsh et al. | Dec 2007 | B2 |
7314443 | Jordan et al. | Jan 2008 | B2 |
7333013 | Berger | Feb 2008 | B2 |
7357037 | Hnat et al. | Apr 2008 | B2 |
7357635 | Belfor et al. | Apr 2008 | B2 |
7360542 | Nelson et al. | Apr 2008 | B2 |
7390007 | Helms et al. | Jun 2008 | B2 |
7390294 | Hassler, Jr. | Jun 2008 | B2 |
7402134 | Moaddeb et al. | Jul 2008 | B2 |
7402176 | Malek | Jul 2008 | B2 |
7429259 | Cadeddu et al. | Sep 2008 | B2 |
7445010 | Kugler et al. | Nov 2008 | B2 |
7458981 | Fielding et al. | Dec 2008 | B2 |
7485149 | White | Feb 2009 | B1 |
7489495 | Stevenson | Feb 2009 | B2 |
7530981 | Kutsenko | May 2009 | B2 |
7531002 | Sutton et al. | May 2009 | B2 |
7553298 | Hunt et al. | Jun 2009 | B2 |
7561916 | Hunt et al. | Jul 2009 | B2 |
7611526 | Carl et al. | Nov 2009 | B2 |
7618435 | Opolski | Nov 2009 | B2 |
7658754 | Zhang et al. | Feb 2010 | B2 |
7666184 | Stauch | Feb 2010 | B2 |
7666210 | Franck et al. | Feb 2010 | B2 |
7678136 | Doubler et al. | Mar 2010 | B2 |
7678139 | Garamszegi et al. | Mar 2010 | B2 |
7708737 | Kraft et al. | May 2010 | B2 |
7708762 | McCarthy et al. | May 2010 | B2 |
7727143 | Birk et al. | Jun 2010 | B2 |
7753913 | Szakelyhidi, Jr. et al. | Jul 2010 | B2 |
7753915 | Eksler et al. | Jul 2010 | B1 |
7762998 | Birk et al. | Jul 2010 | B2 |
7763080 | Worth | Jul 2010 | B2 |
7766855 | Miethke | Aug 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7776068 | Ainsworth et al. | Aug 2010 | B2 |
7776075 | Bruneau et al. | Aug 2010 | B2 |
7787958 | Stevenson | Aug 2010 | B2 |
7794476 | Wisnewski | Sep 2010 | B2 |
7811328 | Molz, IV et al. | Oct 2010 | B2 |
7835779 | Anderson et al. | Nov 2010 | B2 |
7837691 | Cordes et al. | Nov 2010 | B2 |
7862586 | Malek | Jan 2011 | B2 |
7867235 | Fell et al. | Jan 2011 | B2 |
7875033 | Richter et al. | Jan 2011 | B2 |
7901381 | Birk et al. | Mar 2011 | B2 |
7909852 | Boomer et al. | Mar 2011 | B2 |
7918844 | Byrum et al. | Apr 2011 | B2 |
7938841 | Sharkawy et al. | May 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
7988709 | Clark et al. | Aug 2011 | B2 |
8002809 | Baynham | Aug 2011 | B2 |
8011308 | Picchio | Sep 2011 | B2 |
8034080 | Malandain et al. | Oct 2011 | B2 |
8043299 | Conway | Oct 2011 | B2 |
8043338 | Dant | Oct 2011 | B2 |
8057473 | Orsak et al. | Nov 2011 | B2 |
8057513 | Kohm et al. | Nov 2011 | B2 |
8083741 | Morgan et al. | Dec 2011 | B2 |
8092499 | Roth | Jan 2012 | B1 |
8095317 | Ekseth et al. | Jan 2012 | B2 |
8105360 | Connor | Jan 2012 | B1 |
8114158 | Carl et al. | Feb 2012 | B2 |
8123805 | Makower et al. | Feb 2012 | B2 |
8133280 | Voellmicke et al. | Mar 2012 | B2 |
8147549 | Metcalf, Jr. et al. | Apr 2012 | B2 |
8162897 | Byrum | Apr 2012 | B2 |
8162979 | Sachs et al. | Apr 2012 | B2 |
8177789 | Magill et al. | May 2012 | B2 |
8197490 | Pool et al. | Jun 2012 | B2 |
8211149 | Justis | Jul 2012 | B2 |
8211151 | Schwab et al. | Jul 2012 | B2 |
8221420 | Keller | Jul 2012 | B2 |
8226690 | Altarac et al. | Jul 2012 | B2 |
8236002 | Fortin et al. | Aug 2012 | B2 |
8241331 | Arnin | Aug 2012 | B2 |
8246630 | Manzi et al. | Aug 2012 | B2 |
8252063 | Stauch | Aug 2012 | B2 |
8267969 | Altarac et al. | Sep 2012 | B2 |
8278941 | Kroh et al. | Oct 2012 | B2 |
8282671 | Connor | Oct 2012 | B2 |
8323290 | Metzger et al. | Dec 2012 | B2 |
8357182 | Seme | Jan 2013 | B2 |
8366628 | Denker et al. | Feb 2013 | B2 |
8372078 | Collazo | Feb 2013 | B2 |
8386018 | Stauch et al. | Feb 2013 | B2 |
8394124 | Biyani | Mar 2013 | B2 |
8403958 | Schwab | Mar 2013 | B2 |
8414584 | Brigido | Apr 2013 | B2 |
8419734 | Walker | Apr 2013 | B2 |
8425608 | Dewey et al. | Apr 2013 | B2 |
8435268 | Thompson et al. | May 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8444693 | Reiley | May 2013 | B2 |
8469908 | Asfora | Jun 2013 | B2 |
8470004 | Reiley | Jun 2013 | B2 |
8486070 | Morgan et al. | Jul 2013 | B2 |
8486076 | Chavarria et al. | Jul 2013 | B2 |
8486147 | De Villiers et al. | Jul 2013 | B2 |
8494805 | Roche et al. | Jul 2013 | B2 |
8496662 | Novak et al. | Jul 2013 | B2 |
8518062 | Cole et al. | Aug 2013 | B2 |
8523866 | Sidebotham et al. | Sep 2013 | B2 |
8529474 | Gupta et al. | Sep 2013 | B2 |
8529606 | Alamin et al. | Sep 2013 | B2 |
8529607 | Alamin et al. | Sep 2013 | B2 |
8556901 | Anthony et al. | Oct 2013 | B2 |
8556911 | Mehta et al. | Oct 2013 | B2 |
8556975 | Ciupik et al. | Oct 2013 | B2 |
8562653 | Alamin et al. | Oct 2013 | B2 |
8568457 | Hunziker | Oct 2013 | B2 |
8617220 | Skaggs | Oct 2013 | B2 |
8579979 | Edie et al. | Nov 2013 | B2 |
8585595 | Heilman | Nov 2013 | B2 |
8585740 | Ross et al. | Nov 2013 | B1 |
8591549 | Lange | Nov 2013 | B2 |
8591553 | Eisermann et al. | Nov 2013 | B2 |
8613758 | Linares | Dec 2013 | B2 |
8623036 | Harrison et al. | Jan 2014 | B2 |
8632544 | Haaja et al. | Jan 2014 | B2 |
8632548 | Soubeiran | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636771 | Butler et al. | Jan 2014 | B2 |
8636802 | Serhan et al. | Jan 2014 | B2 |
8641719 | Gephart et al. | Feb 2014 | B2 |
8641723 | Connor | Feb 2014 | B2 |
8657856 | Gephart et al. | Feb 2014 | B2 |
8663285 | Dall et al. | Mar 2014 | B2 |
8663287 | Butler et al. | Mar 2014 | B2 |
8668719 | Alamin et al. | Mar 2014 | B2 |
8709090 | Makower et al. | Apr 2014 | B2 |
8758347 | Weiner et al. | Jun 2014 | B2 |
8758355 | Fisher et al. | Jun 2014 | B2 |
8771272 | LeCronier et al. | Jul 2014 | B2 |
8777947 | Zahrly et al. | Jul 2014 | B2 |
8777995 | McClintock et al. | Jul 2014 | B2 |
8790343 | McClellan et al. | Jul 2014 | B2 |
8790409 | Van den Heuvel et al. | Jul 2014 | B2 |
8828058 | Elsebaie et al. | Sep 2014 | B2 |
8828087 | Stone et al. | Sep 2014 | B2 |
8840651 | Reiley | Sep 2014 | B2 |
8870881 | Rezach et al. | Oct 2014 | B2 |
8870959 | Arnin | Oct 2014 | B2 |
8915915 | Harrison et al. | Dec 2014 | B2 |
8915917 | Doherty et al. | Dec 2014 | B2 |
8920422 | Homeier et al. | Dec 2014 | B2 |
8939924 | Paulos | Jan 2015 | B1 |
8945188 | Rezach et al. | Feb 2015 | B2 |
8961521 | Keefer et al. | Feb 2015 | B2 |
8961567 | Hunziker | Feb 2015 | B2 |
8968402 | Myers et al. | Mar 2015 | B2 |
8992527 | Guichet | Mar 2015 | B2 |
9022917 | Kasic et al. | May 2015 | B2 |
9044218 | Young | Jun 2015 | B2 |
9060810 | Kercher et al. | Jun 2015 | B2 |
9078703 | Arnin | Jul 2015 | B2 |
10835290 | Cheng | Nov 2020 | B2 |
20020050112 | Koch et al. | May 2002 | A1 |
20020072758 | Reo et al. | Jun 2002 | A1 |
20020164905 | Bryant | Nov 2002 | A1 |
20030040671 | Somogyi et al. | Feb 2003 | A1 |
20030144669 | Robinson | Jul 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20030220644 | Thelen et al. | Nov 2003 | A1 |
20040011137 | Hnat et al. | Jan 2004 | A1 |
20040011365 | Govari et al. | Jan 2004 | A1 |
20040019353 | Freid et al. | Jan 2004 | A1 |
20040023623 | Stauch et al. | Feb 2004 | A1 |
20040055610 | Forsell | Mar 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040138725 | Forsell | Jul 2004 | A1 |
20040193266 | Meyer | Sep 2004 | A1 |
20050034705 | McClendon | Feb 2005 | A1 |
20050049617 | Chatlynne et al. | Mar 2005 | A1 |
20050065529 | Liu et al. | Mar 2005 | A1 |
20050090823 | Bartimus | Apr 2005 | A1 |
20050159754 | Odrich | Jul 2005 | A1 |
20050234448 | McCarthy | Oct 2005 | A1 |
20050234462 | Hershberger | Oct 2005 | A1 |
20050246034 | Soubeiran | Nov 2005 | A1 |
20050261779 | Meyer | Nov 2005 | A1 |
20050272976 | Tanaka et al. | Dec 2005 | A1 |
20060004459 | Hazebrouck et al. | Jan 2006 | A1 |
20060009767 | Kiester | Jan 2006 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060036324 | Sachs et al. | Feb 2006 | A1 |
20060047282 | Gordon | Mar 2006 | A1 |
20060058792 | Hynes | Mar 2006 | A1 |
20060069447 | DiSilvestro et al. | Mar 2006 | A1 |
20060074448 | Harrison et al. | Apr 2006 | A1 |
20060079897 | Harrison et al. | Apr 2006 | A1 |
20060136062 | DiNello et al. | Jun 2006 | A1 |
20060142767 | Green et al. | Jun 2006 | A1 |
20060155279 | Ogilvie | Jul 2006 | A1 |
20060195087 | Sacher et al. | Aug 2006 | A1 |
20060195088 | Sacher et al. | Aug 2006 | A1 |
20060200134 | Freid et al. | Sep 2006 | A1 |
20060204156 | Takehara et al. | Sep 2006 | A1 |
20060235299 | Martinelli | Oct 2006 | A1 |
20060235424 | Vitale et al. | Oct 2006 | A1 |
20060241746 | Shaoulian et al. | Oct 2006 | A1 |
20060241767 | Doty | Oct 2006 | A1 |
20060249914 | Dulin | Nov 2006 | A1 |
20060271107 | Harrison et al. | Nov 2006 | A1 |
20060282073 | Simanovsky | Dec 2006 | A1 |
20060293683 | Stauch | Dec 2006 | A1 |
20070010814 | Stauch | Jan 2007 | A1 |
20070010887 | Williams et al. | Jan 2007 | A1 |
20070021644 | Woolson et al. | Jan 2007 | A1 |
20070031131 | Griffitts | Feb 2007 | A1 |
20070038410 | Tunay | Feb 2007 | A1 |
20070043376 | Leatherbury et al. | Feb 2007 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070161984 | Cresina et al. | Jul 2007 | A1 |
20070163367 | Sherman | Jul 2007 | A1 |
20070173837 | Chan et al. | Jul 2007 | A1 |
20070179493 | Kim | Aug 2007 | A1 |
20070185374 | Kick et al. | Aug 2007 | A1 |
20070233098 | Mastrorio et al. | Oct 2007 | A1 |
20070239159 | Altarac et al. | Oct 2007 | A1 |
20070239161 | Giger et al. | Oct 2007 | A1 |
20070255088 | Jacobson et al. | Nov 2007 | A1 |
20070270803 | Giger et al. | Nov 2007 | A1 |
20070276368 | Trieu et al. | Nov 2007 | A1 |
20070276369 | Allard et al. | Nov 2007 | A1 |
20070276373 | Malandain | Nov 2007 | A1 |
20070276378 | Harrison et al. | Nov 2007 | A1 |
20070276493 | Malandain et al. | Nov 2007 | A1 |
20070288024 | Gollogly | Dec 2007 | A1 |
20070288183 | Bulkes et al. | Dec 2007 | A1 |
20080009792 | Henniges et al. | Jan 2008 | A1 |
20080015577 | Loeb | Jan 2008 | A1 |
20080021454 | Chao et al. | Jan 2008 | A1 |
20080021455 | Chao et al. | Jan 2008 | A1 |
20080021456 | Gupta et al. | Jan 2008 | A1 |
20080027436 | Cournoyer et al. | Jan 2008 | A1 |
20080033431 | Jung et al. | Feb 2008 | A1 |
20080033436 | Song et al. | Feb 2008 | A1 |
20080051784 | Gollogly | Feb 2008 | A1 |
20080082118 | Edidin et al. | Apr 2008 | A1 |
20080086128 | Lewis | Apr 2008 | A1 |
20080097487 | Pool et al. | Apr 2008 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080108995 | Conway et al. | May 2008 | A1 |
20080154127 | DiSilvestro | Jun 2008 | A1 |
20080161933 | Grotz et al. | Jul 2008 | A1 |
20080167685 | Allard et al. | Jul 2008 | A1 |
20080172063 | Taylor | Jul 2008 | A1 |
20080177319 | Schwab | Jul 2008 | A1 |
20080177326 | Thompson | Jul 2008 | A1 |
20080190237 | Radinger et al. | Aug 2008 | A1 |
20080228186 | Gall et al. | Sep 2008 | A1 |
20080255615 | Vittur et al. | Oct 2008 | A1 |
20080272928 | Shuster | Nov 2008 | A1 |
20080275557 | Makower et al. | Nov 2008 | A1 |
20090030462 | Buttermann | Jan 2009 | A1 |
20090076597 | Dahlgren et al. | Mar 2009 | A1 |
20090082815 | Zylber et al. | Mar 2009 | A1 |
20090088803 | Justis et al. | Apr 2009 | A1 |
20090093820 | Trieu et al. | Apr 2009 | A1 |
20090093890 | Gelbart | Apr 2009 | A1 |
20090112263 | Pool et al. | Apr 2009 | A1 |
20090163780 | Tieu | Jun 2009 | A1 |
20090171356 | Klett | Jul 2009 | A1 |
20090192514 | Feinberg et al. | Jul 2009 | A1 |
20090198144 | Phillips et al. | Aug 2009 | A1 |
20090216113 | Meier et al. | Aug 2009 | A1 |
20090275984 | Kim et al. | Nov 2009 | A1 |
20100004654 | Schmitz et al. | Jan 2010 | A1 |
20100057127 | McGuire et al. | Mar 2010 | A1 |
20100094306 | Chang et al. | Apr 2010 | A1 |
20100100185 | Trieu et al. | Apr 2010 | A1 |
20100106192 | Barry | Apr 2010 | A1 |
20100114322 | Clifford et al. | May 2010 | A1 |
20100130941 | Conlon et al. | May 2010 | A1 |
20100137872 | Kam et al. | Jun 2010 | A1 |
20100145449 | Makower et al. | Jun 2010 | A1 |
20100145462 | Ainsworth et al. | Jun 2010 | A1 |
20100168751 | Anderson et al. | Jul 2010 | A1 |
20100217271 | Pool et al. | Aug 2010 | A1 |
20100249782 | Durham | Sep 2010 | A1 |
20100256626 | Muller et al. | Oct 2010 | A1 |
20100262239 | Boyden et al. | Oct 2010 | A1 |
20100318129 | Seme et al. | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110004076 | Janna et al. | Jan 2011 | A1 |
20110057756 | Marinescu et al. | Mar 2011 | A1 |
20110066188 | Seme et al. | Mar 2011 | A1 |
20110098748 | Jangra | Apr 2011 | A1 |
20110152725 | Demir et al. | Jun 2011 | A1 |
20110196435 | Forsell | Aug 2011 | A1 |
20110202138 | Shenoy et al. | Aug 2011 | A1 |
20110230883 | Zahrly et al. | Sep 2011 | A1 |
20110237861 | Pool | Sep 2011 | A1 |
20110238126 | Soubeiran | Sep 2011 | A1 |
20110257655 | Copf, Jr. | Oct 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20120004494 | Payne et al. | Jan 2012 | A1 |
20120019341 | Gabay et al. | Jan 2012 | A1 |
20120019342 | Gabay et al. | Jan 2012 | A1 |
20120053633 | Stauch | Mar 2012 | A1 |
20120088953 | King | Apr 2012 | A1 |
20120109207 | Trieu | May 2012 | A1 |
20120116535 | Ratron et al. | May 2012 | A1 |
20120158061 | Koch et al. | Jun 2012 | A1 |
20120172883 | Sayago | Jul 2012 | A1 |
20120179215 | Soubeiran | Jul 2012 | A1 |
20120221106 | Makower et al. | Aug 2012 | A1 |
20120271353 | Barry | Oct 2012 | A1 |
20120296234 | Wilhelm et al. | Nov 2012 | A1 |
20120329882 | Messersmith et al. | Dec 2012 | A1 |
20130013066 | Landry et al. | Jan 2013 | A1 |
20130072932 | Stauch | Mar 2013 | A1 |
20130123847 | Anderson et al. | May 2013 | A1 |
20130138017 | Jundt et al. | May 2013 | A1 |
20130138154 | Reiley | May 2013 | A1 |
20130150863 | Baumgartner | Jun 2013 | A1 |
20130150889 | Fening et al. | Jun 2013 | A1 |
20130178903 | Abdou | Jul 2013 | A1 |
20130211521 | Shenoy et al. | Aug 2013 | A1 |
20130245692 | Hayes et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253587 | Carls et al. | Sep 2013 | A1 |
20130261672 | Horvath | Oct 2013 | A1 |
20130296863 | Globerman et al. | Nov 2013 | A1 |
20130296864 | Burley et al. | Nov 2013 | A1 |
20130296940 | Northcutt et al. | Nov 2013 | A1 |
20130325006 | Michelinie et al. | Dec 2013 | A1 |
20130325071 | Niemiec et al. | Dec 2013 | A1 |
20140005788 | Haaja et al. | Jan 2014 | A1 |
20140025172 | Lucas et al. | Jan 2014 | A1 |
20140052134 | Orisek | Feb 2014 | A1 |
20140058392 | Mueckter et al. | Feb 2014 | A1 |
20140058450 | Arlet | Feb 2014 | A1 |
20140066987 | Hestad et al. | Mar 2014 | A1 |
20140088715 | Ciupik | Mar 2014 | A1 |
20140128920 | Kantelhardt | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140236234 | Kroll et al. | Aug 2014 | A1 |
20140236311 | Vicatos et al. | Aug 2014 | A1 |
20140257412 | Patty et al. | Sep 2014 | A1 |
20140277446 | Clifford et al. | Sep 2014 | A1 |
20140296918 | Fening et al. | Oct 2014 | A1 |
20140303538 | Baym et al. | Oct 2014 | A1 |
20140303539 | Baym et al. | Oct 2014 | A1 |
20140358150 | Kaufman et al. | Dec 2014 | A1 |
20150105782 | D'Lima et al. | Apr 2015 | A1 |
20150105824 | Moskowitz et al. | Apr 2015 | A1 |
20150313745 | Cheng | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
1697630 | Nov 2005 | CN |
101040807 | Sep 2007 | CN |
1541262 | Jun 1969 | DE |
8515687 | Dec 1985 | DE |
19626230 | Jan 1998 | DE |
19745654 | Apr 1999 | DE |
102005045070 | Apr 2007 | DE |
0663184 | Jul 1995 | EP |
1905388 | Apr 2008 | EP |
2901991 | Dec 2007 | FR |
2900563 | Aug 2008 | FR |
2892617 | Sep 2008 | FR |
2916622 | Sep 2009 | FR |
2961386 | Jul 2012 | FR |
H0956736 | Mar 1997 | JP |
2002500063 | Jan 2002 | JP |
WO1998044858 | Jan 2002 | WO |
WO1999051160 | Jan 2002 | WO |
WO2001024697 | Jan 2002 | WO |
WO2001045485 | Jan 2002 | WO |
WO2001045487 | Jan 2002 | WO |
WO2001067973 | Jan 2002 | WO |
WO2001078614 | Jan 2002 | WO |
2002034131 | May 2002 | WO |
2007144489 | Dec 2007 | WO |
WO2007015239 | Jan 2008 | WO |
WO2007013059 | Apr 2009 | WO |
WO2011116158 | Jan 2012 | WO |
WO2013119528 | Aug 2013 | WO |
WO2014040013 | Mar 2014 | WO |
Entry |
---|
Abe et al., “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.”, SPINE, 1999, pp. 646-653, 24, No. 7. |
Ahlbom et al., “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.”, Health Physics, 1998, pp. 494-522, 74, No. 4. |
Amer et al., “Evaluation of treatment of late-onset tibia vara using gradual angulation translation high tibial osteotomy”, ACTA Orthopaedica Belgica, 2010, pp. 360-366, 76, No. 3. |
Angrisani et al., “Lap-Band® Rapid Port™ System: Preliminary results in 21 patients”, Obesity Surgery, 2005, p. 936, 15, No. 7. |
Baumgart et al., “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.”, Practice of Intramedullary Locked Nails, 2006, pp. 189-198. |
Baumgart et al., “The bioexpandable prosthesis: A new perspective after resection of malignant bone tumors in children.”, J Pediatr Hematol Oncol, 2005, pp. 452-455, 27, No. 8. |
Bodó et al., “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.”, Eklem Hastaliklari ve Cerrahisi—Joint Diseases and Related Surgery, 2008, pp. 27-32, 19, No. 1. |
Boudjemline et al., “Off-label use of an adjustable gastric banding system for pulmonary artery banding.”, The Journal of Thoracic and Cardiovascular Surgery, 2006, pp. 1130-1135, 131, No. 5. |
Brown et al., “Single port surgery and the Dundee Endocone.”, SAGES Annual Scientific Sessions: Emerging Technology Poster Abstracts, 2007, ETP007, pp. 323-324. |
Buchowski et al., “Temporary internal distraction as an aid to correction of severe scoliosis”, J Bone Joint Surg Am, 2006, pp. 2035-2041, 88-A, No. 9. |
Burghardt et al., “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening.”, J Bone Joint Surg Br, 2011, pp. 639-643, 93-B, No. 5. |
Burke, “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature”, Studies in Health Technology and Informatics, 2006, pp. 378-384, 123. |
Carter et al., “A cumulative damage model for bone fracture.”, Journal of Orthopaedic Research, 1985, pp. 84-90, 3, No. 1. |
Chapman et al., “Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review.”, Surgery, 2004, pp. 326-351, 135, No. 3. |
Cole et al., “Operative technique intramedullary skeletal kinetic distractor: Tibial surgical technique.”, Orthofix, 2005. |
Cole et al., “The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia.”, Injury, 2001, pp. S-D-129-S-D-139, 32. |
Dailey et al., “A novel intramedullary nail for micromotion stimulation of tibial fractures.”, Clinical Biomechanics, 2012, pp. 182-188, 27, No. 2. |
Daniels et al., “A new method for continuous intraoperative measurement of Harrington rod loading patterns.”, Annals of Biomedical Engineering, 1984, pp. 233-246, 12, No. 3. |
De Giorgi et al., “Cotrel-Dubousset instrumentation for the treatment of severe scoliosis.”, European Spine Journal, 1999, pp. 8-15, No. 1. |
Dorsey et al., “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy.”, Journal of Knee Surgery, 2006, pp. 95-98, 19, No. 2. |
Edeland et al., “Instrumentation for distraction by limited surgery in scoliosis treatment.”, Journal of Biomedical Engineering, 1981, pp. 143-146, 3, No. 2. |
Elsebaie, “Single growing rods (Review of 21 cases). Changing the foundations: Does it affect the results?”, Journal of Child Orthop, 2007, 1:258. |
Ember et al., “Distraction forces required during growth rod lengthening.”, J of Bone Joint Surg BR, 2006, p. 229, 88-B, No. Suppl. II. |
European Patent Office, “Observations by a third party under Article 115 EPC in EP08805612 by Soubeiran.”, 2010. |
Fabry et al., “A technique for prevention of port complications after laparoscopic adjustable silicone gastric banding.”, Obesity Surgery, 2002, pp. 285-288, 12, No. 2. |
Fried et al., “In vivo measurements of different gastric band pressures towards the gastric wall at the stoma region.”, Obesity Surgery, 2004, p. 914, 14, No. 7. |
Gao et al., CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis, American Journal of Human Genetics, 2007, pp. 957-965, 80. |
Gebhart et al., “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet; The Phenix M. system”, International Society of Limb Salvage 14th International Symposium on Limb Salvage. Sep. 3, 2007, Hamburg, Germany. (2 pages). |
Gillespie et al. “Harrington instrumentation without fusion.”, J Bone Joint Surg Br, 1981, p. 461, 63-B, No. 3. |
Goodship et al., “Strain rate and timing of stimulation in mechanical modulation of fracture healing.”, Clinical Orthopaedics and Related Research, 1998, pp. S105-S115, No. 355S. |
Grass et al., “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.”, SPINE, 1997, pp. 1922-1927, 22, No. 16. |
Gray, “Gray's anatomy of the human body.”, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007. |
Grimer et al. “Non-invasive extendable endoprostheses for children—Expensive but worth it!”, International Society of Limb Salvage 14th International Symposium on Limb Salvage, 2007. |
Grünert, “The development of a totally implantable electronic sphincter.” (translated from the German “Die Entwicklung eines total implantierbaren elektronischen Sphincters”), Langenbecks Archiv fur Chirurgie, 1969, pp. 1170-1174, 325. |
Guichet et al. “Gradual femoral lengthening with the Albizzia intramedullary nail”, J Bone Joint Surg Am, 2003, pp. 838-848, 85-A, No. 5. |
Gupta et al., “Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.”, J Bone Joint Surg Br, 2006, pp. 649-654, 88-B, No. 5. |
Hankemeier et al., “Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD).”, Oper Orthop Traumatol, 2005, pp. 79-101, 17, No. 1. |
Harrington, “Treatment of scoliosis. Correction and internal fixation by spine instrumentation.”, J Bone Joint Surg Am, 1962, pp. 591-610, 44-A, No. 4. |
Hennig et al., “The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis.”, Journal of Knee Surgery, 2007, pp. 6-14, 20, No. 1. |
Hofmeister et al., “Callus distraction with the Albizzia nail.”, Practice of Intramedullary Locked Nails, 2006, pp. 211-215. |
Horbach et al., “First experiences with the routine use of the Rapid Port™ system with the Lap-Band®.”, Obesity Surgery, 2006, p. 418, 16, No. 4. |
Hyodo et al., “Bone transport using intramedullary fixation and a single flexible traction cable.”, Clinical Orthopaedics and Related Research, 1996, pp. 256-268, 325. |
International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to static magnetic fields.” Health Physics, 2009, pp. 504-514, 96, No. 4. |
INVIS®/Lamello Catalog, 2006, Article No. 68906A001 GB. |
Kasliwal et al., “Management of high-grade spondylolisthesis.”, Neurosurgery Clinics of North America, 2013, pp. 275-291, 24, No. 2. |
Kenawey et al., “Leg lengthening using intramedullay skeletal kinetic distractor: Results of 57 consecutive applications.”, Injury, 2011, pp. 150-155, 42, No. 2. |
Kent et al., “Assessment and correction of femoral mahotation following intramedullary nailing of the femur.”, Acta Orthop Belg, 2010, pp. 580-584, 76, No. 5. |
Klemme et al., “Spinal instrumentation without fusion for progressive scoliosis in young children”, Journal of Pediatric Orthopaedics. 1997, pp. 734-742, 17, No. 6. |
Korenkov et al., “Port function after laparoscopic adjustable gastric banding for morbid obesity.”, Surgical Endoscopy, 2003, pp. 1068-1071, 17, No. 7. |
Krieg et al., “Leg lengthening with a motorized nail in adolescents.”, Clinical Orthopaedics and Related Research, 2008, pp. 189-197, 466, No. 1. |
Kucukkaya et al., “The new intramedullary cable bone transport technique.”, Journal of Orthopaedic Trauma, 2009, pp. 531-536, 23, No. 7. |
Lechner et al., “In vivo band manometry: A new method in band adjustment”, Obesity Surgery, 2005, p. 935, 15, No. 7. |
Lechner et al., “Intra-band manometry for band adjustments: The basics”, Obesity Surgery, 2006, pp. 417-418, 16, No. 4. |
Li et al., “Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated segment.”, Injury, 1999, pp. 525-534, 30, No. 8. |
Lonner, “Emerging minimally invasive technologies for the management of scoliosis.”, Orthopedic Clinics of North America, 2007, pp. 431-440, 38, No. 3. |
Matthews et al., “Magnetically adjustable intraocular lens.”, Journal of Cataract and Refractive Surgery, 2003, pp. 2211-2216, 29, No. 11. |
Micromotion, “Micro Drive Engineering-General catalogue.”, 2009, pp. 14-24. |
Mineiro et al., “Subcutaneous rodding for progressive spinal curvatures: Early results.”, Journal of Pediatric Orthopaedics, 2002, pp. 290-295, 22, No. 3. |
Moe et al., “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.”, Clinical Orthopaedics and Related Research, 1984, pp. 35-45, 185. |
Montague et al., “Magnetic gear dynamics for servo control.”, Melecon 2010—2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta, 2010, pp. 1192-1197. |
Montague et al., “Servo control of magnetic gears.”, IEEE/ASME Transactions on Mechatronics, 2012, pp. 269-278, 17, No. 2. |
Nachemson et al., “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.”, The Journal of Bone and Joint Surgery, 1971, pp. 445-465, 53, No. 3. |
Nachlas et al., “The cure of experimental scoliosis by directed growth control.”, The Journal of Bone and Joint Surgery, 1951, pp. 24-34, 33-A, No. 1. |
Newton et al., “Fusionless scoliosis correction by anterolateral tethering . . . can it work?.”, 39th Annual Scoliosis Research Society Meeting, 2004. |
Oh et al., “Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia.”, Archives of Orthopaedic and Trauma Surgery, 2008, pp. 801-808, 128, No. 8. |
Ozcivici et al., “Mechanical signals as anabolic agents in bone.”, Nature Reviews Rheumatology, 2010, pp. 50-59, 6, No. 1. |
Piorkowski et al., Preventing Port Site Inversion in Laparoscopic Adjustable Gastric Banding, Surgery for Obesity and Related Diseases, 2007, 3(2), pp. 159-162, Elsevier; New York, U.S.A. |
Prontes, “Longest bone in body.”, eHow.com, 2012. |
Rathjen et al., “Clinical and radiographic results after implant removal in idiopathic scoliosis.”, SPINE, 2007, pp. 2184-2188, 32, No. 20. |
Ren et al., “Laparoscopic adjustable gastric banding: Surgical technique”, Journal of Laparoendoscopic & Advanced Surgical Techniques, 2003, pp. 257-263, 13, No. 4. |
Reyes-Sanchez et al., “External fixation for dynamic correction of severe scoliosis”, The Spine Journal, 2005, pp. 418-426, 5, No. 4. |
Rinsky et al., “Segmental instrumentation without fusion in children with progressive scoliosis.”, Journal of Pediatric Orthopedics, 1985, pp. 687-690, 5, No. 6. |
Rode et al., “A simple way to adjust bands under radiologic control”, Obesity Surgery, 2006, p. 418, 16, No. 4. |
Schmerling et al., “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.”, Journal of Biomedical Materials Research, 1976, pp. 879-892, 10, No. 6. |
Scott et al., “Transgastric, transcolonic and transvaginal cholecystectomy using magnetically anchored instruments.”, SAGES Annual Scientific Sessions, Poster Abstracts, Apr. 18-22, 2007, P511, p. 306. |
Sharke, “The machinery of life”, Mechanical Engineering Magazine, Feb. 2004, Printed from Internet site Oct. 24, 2007 http://www.memagazine.org/contents/current/features/moflife/moflife.html. |
Shiha et al., “Ilizarov gradual correction of genu varum deformity in adults.”, Acta Orthop Belg, 2009, pp. 784-791,75, No. 6. |
Simpson et al., “Femoral lengthening with the intramedullary skeletal kinetic distractor.”, Journal of Bone and Joint Surgery, 2009, pp. 955-961, 91-B, No. 7. |
Smith, “The use of growth-sparing instrumentation in pediatric spinal deformity.”, Orthopedic Clinics of North America, 2007, pp. 547-552, 38, No. 4. |
Soubeiran et al. “The Phenix M System, a fully implanted non-invasive lengthening device externally controllable through the skin with a palm size permanent magnet. Applications in limb salvage.” International Society of Limb Salvage 14th International Symposium on Limb Salvage, Sep. 13, 2007, Hamburg, Germany. (2 pages). |
Soubeiran et al., “The Phenix M System. A fully implanted lengthening device externally controllable through the skin with a palm size permanent magnet; Applications to pediatric orthopaedics”, 6th European Research Conference in Pediatric Orthopaedics, Oct. 6, 2006, Toulouse, France (7 pages). |
Stokes et al., “Reducing radiation exposure in early-onset scoliosis surgery patients: Novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Prospective validation study and assessment of clinical algorithm”, 20th International Meeting on Advanced Spine Techniques, Jul. 11, 2013. Vancouver, Canada. Scoliosis Research Society. |
Sun et al., “Masticatory mechanics of a mandibular distraction osteogenesis site: Interfragmentary micromovement.”, Bone, 2007, pp. 188-196, 41, No. 2. |
Synthes Spine, “VEPTR II. Vertical Expandable Prosthetic Titanium Rib II: Technique Guide.”, 2008, 40 pgs. |
Synthes Spine, “VEPTR Vertical Expandable Prosthetic Titanium Rib, Patient Guide.”, 2005, 26 pgs. |
Takaso et al., “New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children.”, Journal of Orthopaedic Science, 1998, pp. 336-340, 3, No. 6. |
Teli et al., “Measurement of forces generated during distraction of growing rods.”, Journal of Children's Orthopaedics, 2007, pp. 257-258, 1, No. 4. |
Tello, “Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities: Experience and technical details.”, The Orthopedic Clinics of North America, 1994, pp. 333-351, 25, No. 2. |
Thaller et al., “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.”, Injury, 2014 (E-published Oct. 28, 2013), pp. S60-S65, 45. |
Thompson et al., “Early onset scoliosis: Future directions”, 2007, J Bone Joint Surg Am, pp. 163-166, 89-A, Suppl 1. |
Thompson et al., “Growing rod techniques in early-onset scoliosis”, Journal of Pediatric Orthopedics, 2007, pp. 354-361, 27, No. 3. |
Thonse et al., “Limb lengthening with a fully implantable, telescopic, intramedullary nail.”, Operative Techniques in Orthopedics, 2005, pp. 355-362, 15, No. 4. |
Trias et al., “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.”, SPINE, 1979, pp. 228-235, 4, No. 3. |
Verkerke et al., “An extendable modular endoprosthetic system for bone tumor management in the leg”, Journal of Biomedical Engineering, 1990, pp. 91-96, 12, No. 2. |
Verkerke et al., “Design of a lengthening element for a modular femur endoprosthetic system”, Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 1989, pp. 97-102, 203, No. 2. |
Verkerke et al., “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.”, The International Journal of Artificial Organs, 1994, pp. 155-162, 17, No. 3. |
Weiner et al., “Initial clinical experience with telemetrically adjustable gastric banding”, Surgical Technology International, 2005, pp. 63-69, 15. |
Wenger, “Spine jack operation in the correction of scoliotic deformity: A direct intrathoracic attack to straighten the laterally bent spine: Preliminary report”, Arch Surg, 1961, pp. 123-132 (901-910), 83, No. 6. |
White, III et al., “The clinical biomechanics of scoliosis.”, Clinical Orthopaedics and Related Research, 1976, pp. 100-112, 118. |
Yonnet, “A new type of permanent magnet coupling.”, IEEE Transactions on Magnetics, 1981, pp. 2991-2993, 17, No. 6. |
Yonnet, “Passive magnetic bearings with permanent magnets.”, IEEE Transactions on Magnetics, 1978, pp. 803-805, 14, No. 5. |
Zheng et al., “Force and torque characteristics for magnetically driven blood pump.”, Journal of Magnetism and Magnetic Materials, 2002, pp. 292-302, 241, No. 2. |
Number | Date | Country | |
---|---|---|---|
20210100588 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62276196 | Jan 2016 | US | |
62265430 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16004099 | Jun 2018 | US |
Child | 17066338 | US | |
Parent | PCT/US2016/066179 | Dec 2016 | US |
Child | 16004099 | US |