This invention generally relates to implants placed within gastrointestinal systems, including the esophagus, the stomach and the intestines. In particular, it relates to implant systems having components implantable and removable using laparoscopic and endoscopic techniques for treatment of obesity, diabetes, reflux, and other gastrointestinal conditions.
Bariatric surgery procedures, such as sleeve gastrectomy, the Rouen-Y gastric bypass (RYGB) and the bileo-pancreatic diversion (BPD), modify food intake and/or absorption within the gastrointestinal system to effect weight loss in obese patients. These procedures affect metabolic processes within the gastrointestinal system by either short-circuiting certain natural pathways or creating different interaction between the consumed food, the digestive tract, its secretions and the neuro-hormonal system regulating food intake and metabolism. In the last few years, there has been a growing clinical consensus that obese diabetic patients who undergo bariatric surgery see a remarkable resolution of their Type-2 Diabetes Mellitus (T2DM) soon after the procedure. The remarkable resolution of diabetes after RYGB and BPD typically occurs too fast to be accounted for by weight loss alone, suggesting that there may be a direct impact on glucose homeostasis. The mechanism of this resolution of T2DM is not well understood, and it is quite likely that multiple mechanisms are involved.
One of the drawbacks of bariatric surgical procedures is that they require fairly invasive surgery with potentially serious complications and long patient recovery periods. In recent years, there is an increasing amount of ongoing effort to develop minimally invasive procedures to mimic the effects of bariatric surgery using minimally invasive procedures. One such procedure involves the use of gastrointestinal implants that modify transport and absorption of food and organ secretions. For example, U.S. Pat. No. 7,476,256 describes an implant having a tubular sleeve with an anchor having barbs. While these implants may be delivered endoscopically, the implants offer the physician limited flexibility and are not readily removable or replaceable, since the entire implant is subject to tissue in-growth after implantation. Moreover, stents with active fixation means, such as barbs that penetrate into the surrounding tissue, may potentially cause tissue necrosis and erosion of the implants through the tissue, which can lead to serious complications, such as systemic infection. Also, due to the intermittent peristaltic motion within the digestive tract, implants such as stents have a tendency to migrate.
According to various embodiments, the present invention is a gastrointestinal implant system for treating metabolic disorders, such as diabetes and obesity. The system includes a tubular implant adapted for placement within at least a portion of the duodenum, the tubular implant having a securing feature and an external band configured for implantation around at least one of a pylorus, and a duodenum, the external band having a coupling feature for removably engaging and coupling with the securing feature of the internal tubular implant without penetrating the duodenum or pylorus, such that the therapeutic implant resists migration within the gastrointestinal tract, wherein the external band has an inner diameter generally equal to a corresponding outer diameter of the duodenum or pylorus, and the securing feature and coupling feature are configured such that the tubular implant is releasably coupled to the external band to facilitate removal of the tubular implant.
According to various embodiments, the present invention is a modular gastrointestinal implant system for treating metabolic conditions, such as diabetes and obesity. The system includes an external implant configured for affixing around at least a portion of a duodenum or pylorus, the external implant having a docking feature, and a therapeutic implant adapted for placement within a gastrointestinal tract, the therapeutic implant having a securing feature adapted to removably couple with the docking feature without penetrating the gastrointestinal tract, such that the therapeutic implant resists migration within the gastrointestinal tract, wherein the external band has a diameter generally equal to the diameter of the duodenum or pylorus.
According to other exemplary embodiments, the present invention is a method of treating metabolic conditions, such as diabetes and obesity. The method includes placing an external implant around at least a portion of the duodenum, the external implant having a docking feature and the external implant having an inner diameter generally equal to an outer diameter of the corresponding portion of the esophagus, implanting, using a minimally-invasive technique, an internal tubular implant having a securing feature to a location within the duodenum corresponding to the location of the external implant, and causing the securing feature to removably couple with the docking feature without penetrating the duodenum.
According to various disclosed embodiments, systems for anchoring intra-luminal implants within hollow body organs (e.g., the gastrointestinal organs) include an external fixation mechanism that can be delivered to an external surface of the organ (e.g., by laparoscopic techniques) and an intra-luminal implant configured to engage with the external fixation means, without the need for excessive radial force on the organ and without penetrating the tissue. According to various embodiments, the fixation mechanisms operate using techniques such as shape modification of the organ to capture the implant longitudinally or magnetic attraction, repulsion or levitation of the implant. Various embodiments of the present invention are useful for treating metabolic conditions, including for example, diabetes and obesity.
The present invention according to various embodiments is a modular system for creating internal bypass of food and organ secretions within the gastrointestinal tract that includes low-profile implants that are affixed around the stomach, the esophagus, the intestine or externally around junctions of these organs, and gastrointestinal implants that permit internal by-pass of food and organ secretions from one site within the gastrointestinal tract to other sites within the gastrointestinal tract that have complementary design features to the external implant that enables secure placement within the gastrointestinal tract.
The present invention according to various embodiments is a modular system for creating a completely reversible internal bypass of food and organ secretions within the gastrointestinal tract that includes low-profile implants that are affixed around the stomach, the esophagus, the intestine or externally around junctions of these organs and which enable secure attachment of other implants within the gastrointestinal tract, and gastrointestinal implants that permit internal by-pass of food and organ secretions from one site within the gastrointestinal tract to other sites within the gastrointestinal tract that have complementary design features to the external implant that enables secure placement within the gastrointestinal tract.
The present invention according to various embodiments is a modular system for treating gastro-esophageal reflux disease (GERD) that includes low-profile implants that are affixed around the stomach, the esophagus, the intestine or externally around junctions of these organs and which enable secure attachment of other implants within the gastrointestinal tract, and an internal tubular implant of a design that normally permits only one-way passage of food from the esophagus to the stomach and that can be secured within the gastrointestinal tract by the external low-profile implant.
The present invention according to various embodiments is a method for creating a reversible treatment for metabolic disorders, such as diabetes and obesity, and for the treatment of gastro-esophageal reflux disease (GERD), including placing low-profile implants that can be affixed around the stomach, the esophagus, the intestine or externally around junctions of these organs and which enable secure attachment of other implants within the gastrointestinal tract, and placing other gastrointestinal implants that permit internal by-pass of food and organ secretions from one site within the gastrointestinal tract to other sites within the gastrointestinal tract, which do not directly anchor to the tissue but are securely held by the external implant so that the procedure can be reversed easily.
The present invention according to various embodiments is a method of treating metabolic disorders, such as obesity and diabetes, by placing a permanently band like structure around the esophagus, the stomach, the intestine or externally around junctions of these organs, and endoscopically placing a long tubular sleeve within the GI tract with expandable elements at its ends, those expandable elements having design functionality that enables it to be reversibly secured in position by the external band.
The present invention according to various embodiments is a method for creating a gastrointestinal bypass, the method including delivering a band like structure at appropriate locations around the gastrointestinal tract, such as the esophagus, the stomach, the duodenal bulb, the pyloric junction, the gastro-esophageal junction, etc.; and delivering a tubular sleeve with expandable ring shaped elements at its ends, those rings having outward indentations that enable it to be reversibly secured in position by the external band.
According to various embodiments, as a second mode of anchoring, stabilizing, or preventing migration, the external band is coupled to an anatomical feature (e.g., a ligament) external to the tissue of the esophagus, stomach, pylorus, or intestine. In some embodiments, the external band is intertwined with, interlocked with or threaded between the anatomical feature and the tissue. According to one exemplary embodiment, the external band is coupled to the hepatoduodenal ligament. This second mode of anchoring enables the use of external bands that do not rely on excessive compressive force to keep the implant in place, since excessive compressive forces can cause tissue necrosis and erosion.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
As shown, an external band 110 is implanted around the duodenal bulb 107 and an internal tubular implant 111 is attached to the external band and extended into the duodenum 112 (e.g., to the ligament of Treitz 109). Magnets 135 on the external band 110 and magnets 136 on the internal tubular implant 111 magnetically interact with (e.g., attraction, repulsion, or levitation) each other and secure the internal tubular implant to the 111 to the external band implant 110 in a removable or reversible configuration. The external band 110 and the internal implant 111 anchor by coupling with each other using any of a variety of techniques including, for example, anchoring means that are based on mechanical interference, elasticity, spring force, shape memory transformation, magnetic attraction, repulsion and/or levitation.
According to some embodiments, the internal implant 111 is configured such that it exerts little or no radial force against an internal surface of the gastrointestinal tract. Likewise, according to various embodiments, the external band is sized and shaped such that, in its final implant configuration, it exerts little or no radial force against an external surface of the gastrointestinal tract. For example, in certain embodiments, the external band has an implanted inner diameter generally equal to an outer diameter of the desired mounting location of the gastrointestinal tract. More specifically, in some such embodiments, the implanted inner diameter of the external band is within ten percent of the corresponding outer diameter of the implant location of the gastrointestinal tract. In other such embodiments, the implanted inner diameter of the external band is within five percent of the corresponding outer diameter of the implant location of the gastrointestinal tract. In other such embodiments, the implanted inner diameter of the external band is within two percent of the corresponding outer diameter of the implant location of the gastrointestinal tract.
According to various embodiments, as a second mode of anchoring, stabilizing, or preventing migration, the external band 110 is coupled to an anatomical feature (e.g., a ligament) external to the tissue of the esophagus, stomach, pylorus, or intestine. In some embodiments, the external band 110 is intertwined with or threaded between the anatomical feature and the tissue. According to one exemplary embodiment, the external band 110 is coupled to the hepatoduodenal ligament. This second mode of anchoring enables the use of external bands that do not rely on excessive compressive force to keep the implant in place, since excessive compressive forces can cause tissue necrosis and erosion.
Section A-A in
Next, as shown in
Next, as shown in
Then, as shown in
Then, as shown in
According to various embodiments, the stent 137 stent is laser cut from a round tubing or from a flat sheet of metal. The flat representation of the stent circumference is shown in item 138. The flat representation of an expanded stent is shown in item 139. The end view of the stent is shown 141. Magnets 140 are attached to the stent on the outside diameter. The magnets 140 may be attached to the stent by use of a mechanical fastener, glue, suture, welding, snap fit or other suitable means. The stent can be either balloon expandable or self expanding. The magnets may be located in middle of the stent or at the ends of the stent. Suitable materials for the magnets include: neodymium-iron-boron [Nd—Fe—B], samarium-cobalt [Sm—Co], alnico, and hard ferrite [ceramic] or other suitable material.
To load the tubular implant onto the delivery catheter the outer sheath handle 153 is retracted towards the inner catheter handle 154 until distance is a small as possible. The outer sheath is then partially closed by advancing the outer sheath handle 153 away from the inner sheath handle 154. Continue advancing the outer sheath 151, when the tubular implant is completely covered by the outer sheath 151, the loading process is complete for the tubular implant. The delivery catheter also has a space on the inner catheter for the modular implant to be loaded. Attached to the inner catheter is a stent retainer 159. The purpose of the stent retainer 159 is to prevent the stent from releasing from the delivery catheter prematurely during deployment. The stent retainer 159 is fastened to the inner catheter. The stent retainer 159 can be made from metal or plastic and can be made radio-opaque by making it from a radio-opaque material such as tantalum. The stent retainer 159 has a complementary shape that holds the tips on the stent and does not allow the stent to move distally or forward until the outer sheath 151 is fully retracted to the stent retainer 159. The catheter has a side port 156 which allows the space between the inner and outer sheaths to be flushed with saline. The outer sheath 151 and inner sheath 152 may be made from a simple single layer polymer extrusion, such as from polyethylene or PTFE. The outer sheath 151 may also be constructed in the following manner. The sheath inner diameter surface is constructed of a thin wall PTFE liner 157. A layer of reinforcement 158 is placed over the PTFE liner 157. According to various embodiments, the reinforcement is either a braid of wire or a coil of wire. The wire cross-section can be either round or rectangular. In some embodiments, the wire is made from a metal such as 316, 304 stainless steel, Nitinol, or other suitable material. The wire diameters are typically in the 0.0005 inch to 0.010 inch diameter range. The outer jacket material may be reflowed into the reinforcement layer by melting the material and flowing the melted polymer into the spaces in between the braided wire or the coiled wires.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application claims the benefit under 35 U.S.C. §119(e) to U.S. provisional patent application 61/270,588, filed Jul. 10, 2009, entitled “Systems for Anchoring Intra-Luminal Implants within Hollow Body Organs,” which is incorporated herein by reference in its entirety. This application is related to U.S. patent application Ser. No. 12/752,697, filed Apr. 1, 2010, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4134405 | Smit | Jan 1979 | A |
4204530 | Finney | May 1980 | A |
4246893 | Berson | Jan 1981 | A |
4314405 | Park | Feb 1982 | A |
4315509 | Smit | Feb 1982 | A |
4416267 | Garren et al. | Nov 1983 | A |
4501264 | Rockey | Feb 1985 | A |
4641653 | Rockey | Feb 1987 | A |
4716900 | Ravo et al. | Jan 1988 | A |
4719916 | Ravo | Jan 1988 | A |
4763653 | Rockey | Aug 1988 | A |
4899747 | Garren et al. | Feb 1990 | A |
4905693 | Ravo | Mar 1990 | A |
5234454 | Bangs | Aug 1993 | A |
5246456 | Wilkinson | Sep 1993 | A |
5306300 | Berry | Apr 1994 | A |
5322697 | Meyer | Jun 1994 | A |
5423872 | Cigaina | Jun 1995 | A |
5474563 | Myler et al. | Dec 1995 | A |
5749921 | Lenker et al. | May 1998 | A |
5753253 | Meyer | May 1998 | A |
5820584 | Crabb | Oct 1998 | A |
6017563 | Knight et al. | Jan 2000 | A |
6267988 | Meyer | Jul 2001 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6540789 | Silverman et al. | Apr 2003 | B1 |
6558400 | Deem et al. | May 2003 | B2 |
6675809 | Stack et al. | Jan 2004 | B2 |
6740121 | Geitz | May 2004 | B2 |
6755869 | Geitz | Jun 2004 | B2 |
6802868 | Silverman et al. | Oct 2004 | B2 |
6845776 | Stack et al. | Jan 2005 | B2 |
6946002 | Geitz | Sep 2005 | B2 |
6994095 | Burnett | Feb 2006 | B2 |
7025791 | Levine et al. | Apr 2006 | B2 |
7037343 | Imran | May 2006 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7044979 | Silverman et al. | May 2006 | B2 |
7090699 | Geitz | Aug 2006 | B2 |
7111627 | Stack et al. | Sep 2006 | B2 |
7121283 | Stack et al. | Oct 2006 | B2 |
7122058 | Levine et al. | Oct 2006 | B2 |
7146984 | Stack et al. | Dec 2006 | B2 |
7152607 | Stack et al. | Dec 2006 | B2 |
7163554 | Williams et al. | Jan 2007 | B2 |
7175638 | Gannoe et al. | Feb 2007 | B2 |
7175669 | Geitz | Feb 2007 | B2 |
7211094 | Gannoe et al. | May 2007 | B2 |
7211114 | Bessler et al. | May 2007 | B2 |
7214233 | Gannoe et al. | May 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7220284 | Kagan et al. | May 2007 | B2 |
7223277 | DeLegge | May 2007 | B2 |
7229428 | Gannoe et al. | Jun 2007 | B2 |
7261725 | Binmoeller | Aug 2007 | B2 |
7267694 | Levine et al. | Sep 2007 | B2 |
7288099 | Deem et al. | Oct 2007 | B2 |
7288101 | Deem et al. | Oct 2007 | B2 |
7291160 | DeLegge | Nov 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7314489 | McKenna et al. | Jan 2008 | B2 |
7316716 | Egan | Jan 2008 | B2 |
7329285 | Levine et al. | Feb 2008 | B2 |
7335210 | Smit | Feb 2008 | B2 |
7347875 | Levine et al. | Mar 2008 | B2 |
7354454 | Stack et al. | Apr 2008 | B2 |
7364542 | Jambor et al. | Apr 2008 | B2 |
7364591 | Silverman et al. | Apr 2008 | B2 |
7367937 | Jambor et al. | May 2008 | B2 |
7431725 | Stack et al. | Oct 2008 | B2 |
7476256 | Meade et al. | Jan 2009 | B2 |
7503922 | Deem et al. | Mar 2009 | B2 |
7507218 | Aliski et al. | Mar 2009 | B2 |
7510559 | Deem et al. | Mar 2009 | B2 |
7513914 | Schurr et al. | Apr 2009 | B2 |
7569056 | Cragg et al. | Aug 2009 | B2 |
7601178 | Imran et al. | Oct 2009 | B2 |
7608114 | Levine et al. | Oct 2009 | B2 |
7608578 | Miller et al. | Oct 2009 | B2 |
7618435 | Opolski et al. | Nov 2009 | B2 |
7628821 | Stack et al. | Dec 2009 | B2 |
7678068 | Levine et al. | Mar 2010 | B2 |
7682330 | Meade et al. | Mar 2010 | B2 |
7695446 | Levine et al. | Apr 2010 | B2 |
7758535 | Levine et al. | Jul 2010 | B2 |
7766861 | Levine et al. | Aug 2010 | B2 |
7766973 | Levine et al. | Aug 2010 | B2 |
7815589 | Levine et al. | Oct 2010 | B2 |
7837643 | Levine et al. | Nov 2010 | B2 |
7935073 | Levine et al. | May 2011 | B2 |
7976488 | Levine et al. | Jul 2011 | B2 |
7981163 | Levine et al. | Jul 2011 | B2 |
20020183768 | Deem et al. | Dec 2002 | A1 |
20020188354 | Peghini et al. | Dec 2002 | A1 |
20030040804 | Stack et al. | Feb 2003 | A1 |
20030040808 | Stack et al. | Feb 2003 | A1 |
20030060894 | Dua et al. | Mar 2003 | A1 |
20030109892 | Deem et al. | Jun 2003 | A1 |
20030109931 | Geitz | Jun 2003 | A1 |
20030109935 | Geitz | Jun 2003 | A1 |
20030120265 | Deem et al. | Jun 2003 | A1 |
20030158601 | Silverman et al. | Aug 2003 | A1 |
20030191476 | Smit | Oct 2003 | A1 |
20030199989 | Stack et al. | Oct 2003 | A1 |
20030199990 | Stack et al. | Oct 2003 | A1 |
20030199991 | Stack et al. | Oct 2003 | A1 |
20040019388 | Starkebaum | Jan 2004 | A1 |
20040024386 | Deem et al. | Feb 2004 | A1 |
20040039452 | Bessler | Feb 2004 | A1 |
20040088022 | Chen | May 2004 | A1 |
20040092892 | Kagan et al. | May 2004 | A1 |
20040093091 | Gannoe et al. | May 2004 | A1 |
20040107004 | Levine et al. | Jun 2004 | A1 |
20040117031 | Stack et al. | Jun 2004 | A1 |
20040122452 | Deem et al. | Jun 2004 | A1 |
20040122453 | Deem et al. | Jun 2004 | A1 |
20040122526 | Imran | Jun 2004 | A1 |
20040133147 | Woo | Jul 2004 | A1 |
20040138760 | Schurr | Jul 2004 | A1 |
20040138761 | Stack et al. | Jul 2004 | A1 |
20040143342 | Stack et al. | Jul 2004 | A1 |
20040148034 | Kagan et al. | Jul 2004 | A1 |
20040158331 | Stack et al. | Aug 2004 | A1 |
20040172141 | Stack et al. | Sep 2004 | A1 |
20040172142 | Stack et al. | Sep 2004 | A1 |
20040172143 | Geitz | Sep 2004 | A1 |
20040199262 | Dua et al. | Oct 2004 | A1 |
20040204768 | Geitz | Oct 2004 | A1 |
20040220682 | Levine et al. | Nov 2004 | A1 |
20040249362 | Levine et al. | Dec 2004 | A1 |
20050004681 | Stack et al. | Jan 2005 | A1 |
20050022827 | Woo et al. | Feb 2005 | A1 |
20050033331 | Burnett et al. | Feb 2005 | A1 |
20050043817 | McKenna et al. | Feb 2005 | A1 |
20050049718 | Dann et al. | Mar 2005 | A1 |
20050055039 | Burnett et al. | Mar 2005 | A1 |
20050070934 | Tanaka et al. | Mar 2005 | A1 |
20050075622 | Levine et al. | Apr 2005 | A1 |
20050080395 | Levine et al. | Apr 2005 | A1 |
20050080431 | Levine et al. | Apr 2005 | A1 |
20050080444 | Kraemer et al. | Apr 2005 | A1 |
20050080480 | Bolea et al. | Apr 2005 | A1 |
20050080491 | Levine et al. | Apr 2005 | A1 |
20050085923 | Levine et al. | Apr 2005 | A1 |
20050096673 | Stack et al. | May 2005 | A1 |
20050096750 | Kagan et al. | May 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050125075 | Meade et al. | Jun 2005 | A1 |
20050149200 | Silverman et al. | Jul 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050183730 | Byrum | Aug 2005 | A1 |
20050192614 | Binmoeller | Sep 2005 | A1 |
20050197714 | Sayet | Sep 2005 | A1 |
20050228413 | Binmoeller et al. | Oct 2005 | A1 |
20050228504 | Demarais | Oct 2005 | A1 |
20050240279 | Kagan et al. | Oct 2005 | A1 |
20050246037 | Starkebaum | Nov 2005 | A1 |
20050247320 | Stack et al. | Nov 2005 | A1 |
20050250980 | Swanstrom et al. | Nov 2005 | A1 |
20050251157 | Saadat et al. | Nov 2005 | A1 |
20050251206 | Maahs et al. | Nov 2005 | A1 |
20050256587 | Egan | Nov 2005 | A1 |
20050267499 | Stack et al. | Dec 2005 | A1 |
20050273060 | Levy et al. | Dec 2005 | A1 |
20050277963 | Fields | Dec 2005 | A1 |
20050283107 | Kalanovic et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20060009858 | Levine et al. | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060020277 | Gostout et al. | Jan 2006 | A1 |
20060030949 | Geitz | Feb 2006 | A1 |
20060064120 | Levine et al. | Mar 2006 | A1 |
20060155310 | Binmoeller | Jul 2006 | A1 |
20060155312 | Levine et al. | Jul 2006 | A1 |
20060155375 | Kagan et al. | Jul 2006 | A1 |
20060161139 | Levine et al. | Jul 2006 | A1 |
20060161172 | Levine et al. | Jul 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20060206063 | Kagan et al. | Sep 2006 | A1 |
20060206064 | Kagan et al. | Sep 2006 | A1 |
20060249165 | Silverman et al. | Nov 2006 | A1 |
20060258906 | Binmoeller | Nov 2006 | A1 |
20060265082 | Meade et al. | Nov 2006 | A1 |
20060282087 | Binmoeller | Dec 2006 | A1 |
20060293742 | Dann et al. | Dec 2006 | A1 |
20070004963 | Benchetrit | Jan 2007 | A1 |
20070005147 | Levine et al. | Jan 2007 | A1 |
20070010794 | Dann et al. | Jan 2007 | A1 |
20070010864 | Dann et al. | Jan 2007 | A1 |
20070010865 | Dann et al. | Jan 2007 | A1 |
20070010866 | Dann et al. | Jan 2007 | A1 |
20070021761 | Phillips | Jan 2007 | A1 |
20070027548 | Levine et al. | Feb 2007 | A1 |
20070032702 | Ortiz | Feb 2007 | A1 |
20070032879 | Levine et al. | Feb 2007 | A1 |
20070038308 | Geitz | Feb 2007 | A1 |
20070060932 | Stack et al. | Mar 2007 | A1 |
20070078302 | Ortiz et al. | Apr 2007 | A1 |
20070083271 | Levine et al. | Apr 2007 | A1 |
20070100367 | Quijano et al. | May 2007 | A1 |
20070118158 | Deem et al. | May 2007 | A1 |
20070118159 | Deem et al. | May 2007 | A1 |
20070135825 | Binmoeller | Jun 2007 | A1 |
20070167963 | Deem et al. | Jul 2007 | A1 |
20070198074 | Dann et al. | Aug 2007 | A1 |
20070203517 | Williams et al. | Aug 2007 | A1 |
20070213740 | Deem et al. | Sep 2007 | A1 |
20070213748 | Deem et al. | Sep 2007 | A1 |
20070213751 | Scirica et al. | Sep 2007 | A1 |
20070213837 | Ferreri et al. | Sep 2007 | A1 |
20070219570 | Deem et al. | Sep 2007 | A1 |
20070239284 | Skerven et al. | Oct 2007 | A1 |
20070250083 | Deem et al. | Oct 2007 | A1 |
20070250132 | Burnett | Oct 2007 | A1 |
20070265709 | Rajan et al. | Nov 2007 | A1 |
20070276432 | Stack et al. | Nov 2007 | A1 |
20070282349 | Deem et al. | Dec 2007 | A1 |
20070282418 | Weitzner | Dec 2007 | A1 |
20070282452 | Weitzner et al. | Dec 2007 | A1 |
20070282453 | Weitzner et al. | Dec 2007 | A1 |
20070282454 | Krueger et al. | Dec 2007 | A1 |
20070293885 | Binmoeller | Dec 2007 | A1 |
20080033574 | Bessler et al. | Feb 2008 | A1 |
20080045803 | Williams et al. | Feb 2008 | A1 |
20080065122 | Stack et al. | Mar 2008 | A1 |
20080065136 | Young | Mar 2008 | A1 |
20080071383 | Levine et al. | Mar 2008 | A1 |
20080086214 | Hardin et al. | Apr 2008 | A1 |
20080092910 | Brooks | Apr 2008 | A1 |
20080097466 | Levine et al. | Apr 2008 | A1 |
20080103604 | Levine et al. | May 2008 | A1 |
20080109086 | Voegele et al. | May 2008 | A1 |
20080109087 | Durgin | May 2008 | A1 |
20080161935 | Albrecht et al. | Jul 2008 | A1 |
20080167606 | Dann et al. | Jul 2008 | A1 |
20080167610 | Dann et al. | Jul 2008 | A1 |
20080167629 | Dann et al. | Jul 2008 | A1 |
20080167724 | Ruane et al. | Jul 2008 | A1 |
20080183238 | Chen | Jul 2008 | A1 |
20080195225 | Silverman et al. | Aug 2008 | A1 |
20080195226 | Williams et al. | Aug 2008 | A1 |
20080208135 | Annunziata | Aug 2008 | A1 |
20080208161 | Kaji et al. | Aug 2008 | A1 |
20080208224 | Surti et al. | Aug 2008 | A1 |
20080208239 | Annunziata | Aug 2008 | A1 |
20080208355 | Stack et al. | Aug 2008 | A1 |
20080208356 | Stack et al. | Aug 2008 | A1 |
20080208357 | Melanson et al. | Aug 2008 | A1 |
20080221597 | Wallace et al. | Sep 2008 | A1 |
20080221702 | Wallace et al. | Sep 2008 | A1 |
20080234834 | Meade et al. | Sep 2008 | A1 |
20080243151 | Binmoeller et al. | Oct 2008 | A1 |
20080249533 | Godin | Oct 2008 | A1 |
20080249566 | Harris et al. | Oct 2008 | A1 |
20080249635 | Weitzner et al. | Oct 2008 | A1 |
20080255476 | Boyajian et al. | Oct 2008 | A1 |
20080255587 | Cully et al. | Oct 2008 | A1 |
20080255594 | Cully et al. | Oct 2008 | A1 |
20080255678 | Cully et al. | Oct 2008 | A1 |
20080262529 | Jacques | Oct 2008 | A1 |
20080269715 | Faller et al. | Oct 2008 | A1 |
20080269797 | Stack et al. | Oct 2008 | A1 |
20080287969 | Tsonton et al. | Nov 2008 | A1 |
20080312559 | Santilli et al. | Dec 2008 | A1 |
20080319455 | Harris et al. | Dec 2008 | A1 |
20090005637 | Chin et al. | Jan 2009 | A1 |
20090012541 | Dahl et al. | Jan 2009 | A1 |
20090012542 | N'diaye et al. | Jan 2009 | A1 |
20090012544 | Thompson et al. | Jan 2009 | A1 |
20090012553 | Swain et al. | Jan 2009 | A1 |
20090093767 | Kelleher | Apr 2009 | A1 |
20090093839 | Kelleher | Apr 2009 | A1 |
20090118749 | Shalon et al. | May 2009 | A1 |
20090125119 | Obermiller et al. | May 2009 | A1 |
20090138094 | Schurr | May 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090164028 | Chen | Jun 2009 | A1 |
20090177215 | Stack et al. | Jul 2009 | A1 |
20090182355 | Levine et al. | Jul 2009 | A1 |
20090187206 | Binmoeller et al. | Jul 2009 | A1 |
20090198210 | Burnett et al. | Aug 2009 | A1 |
20090216262 | Burnett et al. | Aug 2009 | A1 |
20090240105 | Smit et al. | Sep 2009 | A1 |
20090240340 | Levine et al. | Sep 2009 | A1 |
20090248171 | Levine et al. | Oct 2009 | A1 |
20090276055 | Harris et al. | Nov 2009 | A1 |
20090281379 | Binmoeller et al. | Nov 2009 | A1 |
20090299486 | Shohat et al. | Dec 2009 | A1 |
20090299487 | Stack et al. | Dec 2009 | A1 |
20090326433 | Albrecht et al. | Dec 2009 | A1 |
20090326675 | Albrecht et al. | Dec 2009 | A1 |
20100004755 | Imran | Jan 2010 | A1 |
20100016988 | Stack et al. | Jan 2010 | A1 |
20100030017 | Baker et al. | Feb 2010 | A1 |
20100256775 | Belhe et al. | Oct 2010 | A1 |
20110106273 | Belhe et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2006227471 | Sep 2006 | AU |
0137878 | Apr 1985 | EP |
1420730 | May 2004 | EP |
1492477 | Jan 2005 | EP |
1492478 | Jan 2005 | EP |
1520528 | Apr 2005 | EP |
1555970 | Jul 2005 | EP |
1569582 | Sep 2005 | EP |
1585458 | Oct 2005 | EP |
1585460 | Oct 2005 | EP |
1603488 | Dec 2005 | EP |
1680054 | Jul 2006 | EP |
1708641 | Oct 2006 | EP |
1708655 | Oct 2006 | EP |
1709508 | Oct 2006 | EP |
1749482 | Feb 2007 | EP |
1750595 | Feb 2007 | EP |
1768618 | Apr 2007 | EP |
1778069 | May 2007 | EP |
1786310 | May 2007 | EP |
1799145 | Jun 2007 | EP |
1817072 | Aug 2007 | EP |
1832250 | Sep 2007 | EP |
1850811 | Nov 2007 | EP |
1850812 | Nov 2007 | EP |
1881781 | Jan 2008 | EP |
1883370 | Feb 2008 | EP |
1887995 | Feb 2008 | EP |
1895887 | Mar 2008 | EP |
1933721 | Jun 2008 | EP |
1937164 | Jul 2008 | EP |
1992314 | Nov 2008 | EP |
1416861 | Dec 2008 | EP |
1749480 | Dec 2008 | EP |
2010270 | Jan 2009 | EP |
1610720 | Feb 2009 | EP |
2023828 | Feb 2009 | EP |
2026713 | Feb 2009 | EP |
2061397 | May 2009 | EP |
2066243 | Jun 2009 | EP |
2068719 | Jun 2009 | EP |
2080242 | Jul 2009 | EP |
1610719 | Jan 2010 | EP |
WO 9849943 | Nov 1998 | WO |
WO 02096327 | Dec 2002 | WO |
WO 03017882 | Mar 2003 | WO |
WO 03086246 | Oct 2003 | WO |
WO 03086247 | Oct 2003 | WO |
WO 03094785 | Nov 2003 | WO |
WO 2004011085 | Feb 2004 | WO |
WO 2004017863 | Mar 2004 | WO |
WO 2004041133 | May 2004 | WO |
WO 2004049982 | Jun 2004 | WO |
WO 2004064680 | Aug 2004 | WO |
WO 2004064685 | Aug 2004 | WO |
WO 2004087014 | Oct 2004 | WO |
WO 2004087233 | Oct 2004 | WO |
WO 2005037152 | Apr 2005 | WO |
WO 2005037152 | Apr 2005 | WO |
WO 2005058415 | Jun 2005 | WO |
WO 2005060869 | Jul 2005 | WO |
WO 2005060882 | Jul 2005 | WO |
WO 2005065412 | Jul 2005 | WO |
WO 2005097012 | Oct 2005 | WO |
WO 2005099591 | Oct 2005 | WO |
WO 2005110244 | Nov 2005 | WO |
WO 2005110280 | Nov 2005 | WO |
WO 2005112822 | Dec 2005 | WO |
WO 2005120363 | Dec 2005 | WO |
WO 2006014496 | Feb 2006 | WO |
WO 2006016894 | Feb 2006 | WO |
WO 2006020370 | Feb 2006 | WO |
WO 2006028898 | Mar 2006 | WO |
WO 2006034062 | Mar 2006 | WO |
WO 2006060049 | Jun 2006 | WO |
WO 2006062996 | Jun 2006 | WO |
WO 2006078781 | Jul 2006 | WO |
WO 2006078927 | Jul 2006 | WO |
WO 2006102012 | Sep 2006 | WO |
WO 2006124880 | Nov 2006 | WO |
WO 2006127593 | Nov 2006 | WO |
WO 2006133311 | Dec 2006 | WO |
WO 2007019117 | Feb 2007 | WO |
WO 2007030829 | Mar 2007 | WO |
WO 2007038715 | Apr 2007 | WO |
WO 2007041598 | Apr 2007 | WO |
WO 2007075396 | Jul 2007 | WO |
WO 2007092390 | Aug 2007 | WO |
WO 2007107990 | Sep 2007 | WO |
WO 2007127209 | Nov 2007 | WO |
WO 2007136468 | Nov 2007 | WO |
WO 2007139920 | Dec 2007 | WO |
WO 2007142829 | Dec 2007 | WO |
WO 2007142832 | Dec 2007 | WO |
WO 2007142833 | Dec 2007 | WO |
WO 2007142834 | Dec 2007 | WO |
WO 2007145684 | Dec 2007 | WO |
WO 2008005510 | Jan 2008 | WO |
WO 2008030403 | Mar 2008 | WO |
WO 2008033409 | Mar 2008 | WO |
WO 2008033474 | Mar 2008 | WO |
WO 2008039800 | Apr 2008 | WO |
WO 2008101048 | Aug 2008 | WO |
WO 2008106041 | Sep 2008 | WO |
WO 2008106279 | Sep 2008 | WO |
WO 2008112942 | Sep 2008 | WO |
WO 2008127552 | Oct 2008 | WO |
WO 2008141288 | Nov 2008 | WO |
WO 2008148047 | Dec 2008 | WO |
WO 2008150905 | Dec 2008 | WO |
WO 2008154450 | Dec 2008 | WO |
WO 2008154594 | Dec 2008 | WO |
WO 2009011881 | Jan 2009 | WO |
WO 2009011882 | Jan 2009 | WO |
WO 2009012335 | Jan 2009 | WO |
WO 2009036244 | Mar 2009 | WO |
WO 2009046126 | Apr 2009 | WO |
WO 2009082710 | Jul 2009 | WO |
WO 2009085107 | Jul 2009 | WO |
WO 2009086549 | Jul 2009 | WO |
WO 2009097582 | Aug 2009 | WO |
WO 2009097585 | Aug 2009 | WO |
WO 2011073970 | Jun 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20110009690 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
61270588 | Jul 2009 | US |