The disclosure pertains generally to preventative and rehabilitative equipment, and more particularly to an ankle brace.
In the world of sports, ankle injuries are among the most common cause of lost playing time in a sporting career, with a typical ankle injury leaving the athlete out of competition for up to a month. Ankle sprains occur when there is a rapid shifting of weight from one direction to another. The force generated from the movement causes the foot to roll either inwards, which is known as inversion rotation; or outwards, which is known as eversion rotation. Both the inversion and eversion motion of the ankle cause the ligaments on the outside of the ankle to stretch or tear depending on the force that was generated during the movement.
Current braces vary from woven fabric that acts as a glove and wraps around the ankle, to rigid plastic uprights that are strapped around the ankle. The woven fabric braces typically are made of a thin fabric that envelope the ankle and are laced together to support the ankle from both inversion and eversion rotation. The main drawback with these types of braces is that the material lacks the resistance to prevent the ankle from rolling under intense forces. Further, fabric braces also have to be worn within the shoe, which causes the shoe to fit tighter or, in some cases, forces the user to move up a shoe size in order to wear the brace. In terms of the rigid uprights braces, these braces are typically much heavier than the fabric braces and also much larger. Fitting a rigid brace into a tight shoe almost never works, which forces the user to move up to the next shoe size to accommodate for the bulkiness of the brace. When the user moves up a shoe size, the shoe is no longer sized correctly for the foot and thus loses a portion of its intended use and purpose. These braces leave the user at risk for further injury because either the brace isn't strong enough to support the ankle or the shoe isn't fitted properly to the foot.
In an aspect, an external ankle brace for selectively restricting movement of an ankle in at least one of a first direction and a rotation direction, and selectively permitting movement of the ankle in a second direction is provided. The external ankle brace is disposed on the exterior of a shoe. The shoe has a heel portion, a toe portion longitudinally spaced from the heel portion, a sole, and oppositely disposed sides. The external ankle brace comprises a rigid heel enclosure having a rear portion and a forward portion. The rear portion is configured to receive and at least partially encircle the heel portion of the shoe. The forward portion has a medial sidewall and a lateral sidewall for collectively and concurrently at least partially encircling the sides of the shoe concurrent with the rear portion connecting the medial and lateral sidewalls to collectively at least partially encircle the side, and fully encircle the heel portion, of the shoe. The lateral and medial sidewalls each extend from the rear portion toward a toe of a wearer's foot and each extend beyond a talus of the wearer's foot. A lateral upright extension is selectively perpendicular to the rigid heel enclosure and is pivotally attached to the lateral sidewall. The lateral upright extension includes a lateral reinforcing strut. A medial upright extension is selectively perpendicular to the rigid heel enclosure and is pivotally attached to the medial sidewall. The medial upright extension includes a medial reinforcing strut. A lower fastening system comprises at least one lower connecting strap for connecting the lateral sidewall to the medial sidewall and extending underneath the sole of the shoe. An upper fastening system comprises at least one upper connecting strap for selectively connecting the lateral sidewall to the medial sidewall across the top of the shoe. The upper connecting strap is located longitudinally between the lower connecting strap and the lateral and medial upright extensions.
For a better understanding, reference may be made to the accompanying drawings, in which:
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the present disclosure pertains.
In the context of the present disclosure, the singular forms “a,” “an” and “the” can include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” as used herein, can specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “and/or” can include any and all combinations of one or more of the associated listed items.
As used herein, the term “and/or” can include any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “on,” “attached” to, “connected” to, “coupled” with, “contacting,” etc., another element, it can be directly on, attached to, connected to, coupled with or contacting the other element or intervening elements may also be present. In contrast, when an element is referred to as being, for example, “directly on,” “directly attached” to, “directly connected” to, “directly coupled” with or “directly contacting” another element, there are no intervening elements present. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Spatially relative terms, such as “under,” “below,” “lower,” “over,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms can encompass different orientations of the apparatus in use or operation in addition to the orientation depicted in the figures. For example, if the apparatus in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features.
It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Thus, a “first” element discussed below could also be termed a “second” element without departing from the teachings of the present disclosure.
A “wearer” or “user”, as described herein, is a person who has the external ankle brace on his or her own foot/ankle.
Ankle injuries are among the most common cause of lost playing time in a sporting career and although there are current preventative solutions, those current braces leave the user at risk for further injury because either the brace isn't strong enough to support the ankle or the shoe isn't fitted properly to the foot since “inside the shoe” braces tend to force the user to use a bigger shoe size. In addition, outside the athletic context, ankle braces can be used by the general population while recovering from ankle injury or attempting to prevent reinjury, to wear while going about daily activities.
The present disclosure provides a rigid support and a much faster application time, all without compromising the fit of the shoe. Essentially, the external ankle brace described herein assists anyone recovering from an ankle injury and/or seeking to avoid injury to limit inversion/eversion and rotation, and can also selectively limit plantar flexion/dorsiflexion. This at least partial motion limiting can help an ankle to heal or avoid (re)injury; thus, the patient can return to function and normal daily activities (including athletic activities, as desired) without the need for specialized or temporary-use footwear (e.g., a larger shoe on the braced side). The external ankle brace of the present disclosure may provide superior stability to an internal ankle brace and improved functionality over known solutions, such as a walking boot or internal ankle foot orthoses.
The present disclosure relates to an external ankle brace that is adapted to fit around a shoe to prevent and minimize injury to an ankle. The shoe has a heel portion, a toe portion longitudinally spaced from the heel portion, a sole, and oppositely disposed sides. The term “longitudinal” is used herein to reference a direction oriented along the foot between the heel and toe. The interaction between the external ankle brace and the shoe can be seen in
The external ankle brace of the present disclosure is generally indicated at 50 in
The rigid heel enclosure 10 has a rear portion 12 (
As shown in the Figures, it is contemplated that the lateral and/or medial sidewalls 16 and 18 may each extend from the rear portion 12 in a longitudinal direction toward a toe of the wearer's foot and may each extend beyond a talus (shown as “T” in
The rigid heel enclosure 10 also has an upper end 36 (
The lateral upright extension 20 is oriented generally selectively perpendicular to at least the lateral sidewall 18 of the rigid heel enclosure 10 and is pivotally attached to the lateral sidewall 18 at the upper end 36 by a lateral ankle joint 32 (
In other words, the lateral sidewall 18 is both substantially planar in a vertical fashion(up and down) and substantially planar in a longitudinal fashion (back of shoe to front of shoe), including some minor contours to fit the curves of a shoe and/or a user. The lateral upright extension 20 selectively pivots forward and backward to allow for plantar flexion and dorsiflexion while still providing inversion/eversion and rotational support. As desired, the lateral upright extension 20 may be configured for permanent or temporary fixation with respect to the lateral sidewall 18, which maintains perpendicularity therebetween and does not allow for plantar flexion or dorsiflexion. When the fixation screw (or screws) are removed as discussed below to reverse a temporary fixation situation, then the lateral and medial upright extensions 20 and 22 can move forward and backward to allow for plantar flexion and dorsiflexion.
The lateral upright extension 20 may be made from plastic and/or any other suitable material. The lateral ankle joint 32 includes a fastener 47 and allows the lateral upright extension 20 to rotate relative to the lateral sidewall 18. Although the current embodiment uses at least one screw as the fastener 47, one having ordinary skill in the art will appreciate that a pivot hinge, hex nut, revolving joint, Chicago screw, or any other suitable member could be used to allow the joint to pivot. As shown in
The medial upright extension 22 is oriented generally selectively perpendicular to at least the medial sidewall 16 of the rigid heel enclosure 10 and is pivotally attached to the medial sidewall 16 at the upper end 36 by a medial ankle joint 34, with the perpendicularity and pivotal properties being similar to those of the lateral upright extension 20. The medial upright extension 22 may be made of rigid plastic and/or any other suitable material. The medial ankle joint 34 has a fastener 47 and allows the medial upright extension 22 to rotate relative to the medial sidewall 16—thus, the medial upright extension 22 is perpendicular to the medial sidewall 16 during certain portions of the pivoting process.
To adjust for anatomical positioning of the ankle, the medial ankle joint 34 may be positioned somewhat closer to the upper end 36 than the position of the lateral ankle joint 32, since the medial malleolus (that bone that protrudes from the inside of the user's ankle) may be slightly higher (more cephalad) than the lateral malleolus (the bone that protrudes from the outside of the ankle), in most anatomically normal wearers. The pivot points between the lateral and medial upright extensions 20 and 22, and their respective lateral and medial sidewalls 18 and 16 on each side of the external ankle brace 50 could be desirably aligned with the medial-higher anatomy of the body, although it is contemplated that versions of the external ankle brace 50 could have equal-medial-lateral or medial-lower pivot points for any reason(s), such as, but not limited to, manufacturing considerations or the anatomy of a particular user.
In addition, the medial ankle joint 34 of the external ankle brace 50 may be offset, as desired from a 180-degree directly opposing position relative to the lateral ankle joint 32. For example, the medial ankle joint 34 may be rotated in the range of about 5-20 degrees, and more particularly about 10-15 degrees, forward (towards the toes) from a 180 degree position relative to the lateral ankle joint 32. Similar to the ankle joint height discussed immediately previously, this is anatomically correct. To clarify, imagine a circle that is parallel to the ground (on the same plane). Instead of having the medial and lateral ankle joints 34 and 32 being 180 degrees apart on that circle, the medial ankle joint 34 could be moved (and rotated to keep facing the center of the circle, if desired), some distance toward the toes along that circle because the medial malleolus is closer to the toes than is the lateral malleolus. It is contemplated that versions of the external ankle brace 50 could instead have 180-degree-spaced or lateral-forward pivot points for any reason(s), such as, but not limited to, manufacturing considerations or the anatomy of a particular user.
Although the current embodiment uses at least one screw as the fastener 47, one having ordinary skill in the art will appreciate that a pivot hinge, hex nut, revolving joint, Chicago screw, or any other suitable member could be used to allow the joint to pivot. As shown in
The lower fastening system 24 has at least one lower connecting strap 26 and at least one strap fastener 48 for connecting the lateral sidewall 18 to the medial sidewall 16 (
The upper fastening system 28 has at least one upper connecting strap 30 for selectively connecting the lateral sidewall 18 to the medial sidewall 16 while passing over the top of the shoe. The upper fastening system 28 further includes a D-ring 31 which is fixed on the lateral sidewall. A hook and loop fastener type upper connecting strap 30 is fixed to the medial sidewall and is looped through the D-ring 31 to overlaps back itself. This allows for an adjustable fastening system to accommodate various sizes without compromising support. The term “hook and loop fastener” is used herein to reference a type of fastening device such as, but not limited to, VELCRO® brand fasteners, available from Velcro USA Inc. & Velcro Group Corporation of Manchester, N.H. Although the current embodiment uses a hook and loop fastener upper connecting strap 30 to removeably connect the sidewalls 16 and 18 and/or adjust the tightness of their mutual connection across the wearer's instep, one having ordinary skill in the art would appreciate that any kind of removable and/or adjustable strap can be used. Similarly, although the embodiment of
As shown in
The external ankle brace 50 may include an upright fastening system 40 (
As shown in
Also as shown in
It is also contemplated that the first upper connecting strap 30′ (as shown in the Figures) could be omitted from the external ankle brace 50′, allowing the component shown and described herein as the second upper connecting strap 100 to serve as the (only) upper connecting strap, substantially in the position shown and described herein.
The second upper connecting strap 100 may be longitudinally wider than the first upper connecting strap 30′, as shown, for any reason. For example, in some use environments, the second upper connecting strap 100 will doing the majority of the support work (of the two upper connecting straps 100 and 30′) and be subject to the majority of the forces generated in-use. A wider strap in such circumstances distributes those forces and facilitates increased comfort for the wearer as opposed to a narrower strap (which might be more inclined to “cut in” at the edges to the wearer's foot/leg). Because the force is spread out by the wider strap, the wearer can use the external ankle brace 50′ for a long period of time without pain. The narrower first upper connecting strap 30′ is narrower, as shown, since there will not be enough room for another strap having a similar width to the second upper connecting strap 100 in many use configurations of the external ankle brace 50′.
As can be seen in at least
Additionally, the second upper connecting strap 100, as shown in the Figures, may be permanently or adjustably attached to the respective lateral and/or medial sidewall 18′ or 16′ via a second upper fastener 104. As shown in the Figures, and in contrast to the first upper connecting strap 30′, the second upper fastener 104 attaches the second upper connecting strap 100 to an inner surface of the respective lateral and/or medial sidewall 18′ or 16′, such that the body of the second upper connecting strap 100 is at least partially interposed between the lateral and/or medial sidewall 18′ or 16′ and the shoe. In the case of the external ankle brace 50′ shown in
It is contemplated that one of ordinary skill in the art could similarly configure the strap placements and fastening types (number and kind of fasteners, inside/outside placement, and the like) for a particular use environment and to facilitate economical manufacture balanced with desired bracing results. For example, and as shown in
With reference now to
The lateral and medial reinforcing struts 106 and 108 help with stability of the external ankle brace 50′ during use and may also facilitate custom fitting, or shaping the brace to the contours of an individual ankle and lower calf. Without the lateral and medial reinforcing struts 106 and 108, a prescriber would likely have to heat the plastic to mold it properly, and then it may not retain its shape under wear forces during use. The lateral and medial reinforcing struts 106 and 108 assist the respective lateral and medial upright extensions 20 and 22 in being shaped easily but then also holding a shape and providing stability.
It is contemplated that the lateral and medial upright extensions 20′ and 22′ may be made of a first material, and the lateral and medial reinforcing struts 106 and 108 may be made of a second material which is more ductile than the first material. For example, the first material may be a polymer and the second material may be a metal, such as, but not limited to, aluminum. It is also contemplated that the lateral and medial reinforcing struts 106 and 108 could be made from carbon-fiber and custom-manufactured to fit a particular user or class of users.
The lateral and medial upright extensions 20′ and 22′ may wholly encapsulate the lateral and medial reinforcing struts 106 and 108. This could be accomplished, for example, by the lateral and medial upright extensions 20′ and 22′ being molded around, or otherwise fabricated to encompass, the lateral and medial reinforcing struts 106 and 108. The material of the lateral and medial upright extensions 20′ and 22′ could be significantly larger in cross-sectional size than the respective lateral and medial reinforcing struts 106 and 108, or could instead be a relatively thin “skin” (e.g., a vinyl coating) interposed between the lateral and medial reinforcing struts 106 and 108 and the ambient space. Additionally, it is contemplated that the lateral and/or medial reinforcing struts 106 and 108 could be left bare to themselves serve directly as lateral and/or medial upright extensions 20′ and 22′.
With reference now to
As with the external ankle brace 50 of
Whether or not deformation of the rear reinforcing strut 110 is contemplated, the rear portion 12′ may be made of a first material and the rear reinforcing strut 110 may be made of a second material which is more ductile than the first material. For example, the first material may be a polymer and the second material may be a metal. For example, the first material may be a polymer and the second material may be a metal, such as, but not limited to, aluminum. It is also contemplated that the rear reinforcing strut 110 could be made from carbon-fiber and custom-manufactured to fit a particular user or class of users.
The rear portion 12′ may wholly encapsulate the rear reinforcing strut 110. The rear portion 12′ may be molded around the rear reinforcing strut 110. . The material of the rear portion 12′ could be significantly larger in cross-sectional size than the rear reinforcing strut 110, or could instead be a relatively thin “skin” (e.g., a vinyl coating) interposed between the rear reinforcing strut 110 and the ambient space. Additionally, it is contemplated that the rear reinforcing strut 110 could be left bare to itself directly serve as a rear portion 12′. A material selection (e.g., a high-friction material) and/or surface treatment (e.g., knurling) may be used on the rear portion 12′ (or directly on the rear reinforcing strut 110, when serving as the rear portion 12′) to increase frictional surface area contacting the heel counter of the shoe to provide desired fixation to help restrict plantar flexion and dorsiflexion. (As with several components of the external ankle brace 50′, including, but not limited to, the lateral and medial upright extensions 20′ and 22′ and the rear and forward portions 12′ and 14′, it may be desirable to balance manufacturing considerations, friction of surfaces, area of surfaces, and weight of components in seeking comfort, stability, security/tightness, motion restriction, and usability for the wearer.)
The rear reinforcing strut 110 may include a curved rear strut body 112 extending around the heel portion of the shoe and lateral and medial strut stubs 114 and 116, respectively, extending substantially perpendicularly from the rear strut body 112, at opposed locations on the rear strut body 112. The lateral and medial reinforcing struts 106 and 108 are directly pivotally connected to the lateral and medial strut stubs 114 and 116, respectively. The lateral, medial, and/or rear reinforcing struts 106, 108, and 110, when present, may provide desired rigidity and/or strength, such as to permit a lower-profile size, to the respective lateral and medial upright extensions 20′ and 22′ and/or rear portion 12′.
As shown in the Figures, the rear reinforcing strut 110 may be directly pivotally connected to the lateral and medial reinforcing struts 106 and 108 in any desired manner. For example, at least one restraining bolt 118 may be connected to a chosen one of the lateral and medial upright extensions 20′ and 22′ and be operative to selectively restrict pivoting of the chosen upright extension 20′ and 22′ respective to a corresponding lateral or medial sidewall 18′ or 16′. In
As another example,
It is contemplated, however, that one or more second restraining bolts 1188 could instead be used at a center pivot location of the lateral or medial ankle joint 32 and 34, and at least one restraining bolt 118A could be placed at a location off-center from the pivoting point but still configured to selectively attach the respective lateral or medial upright extension 20′ or 22′ directly to a corresponding structure associated with the ankle joint 32 or 34 and thus substantially prevent relative pivoting therebetween as desired. In this alternate situation, the second restraining bolt 1188 shown in
Regardless of how the restraining bolts 118 are configured and located on the various other components of the external ankle brace, it is contemplated that the restraining bolts 118 could be manipulated by any suitable party, at any desired time before, during, and/or after wear of the external ankle brace 50 and 50′, and for any desired reason. For example, the pivoting could be further restricted once an already tender ankle is further stressed, or the pivoting could be further permitted if a previously tender ankle responds well to light, restricted-pivoting duty. It is contemplated that one or more components of the external ankle brace 50 and 50′ could include a slot (e.g., a curved slot) within which a corresponding restraining bolt 118 can relatively travel or slide during use, in order to permit a limited amount of pivoting. It is also contemplated that one or more of the restraining bolt(s) could be a Chicago screw/bolt type, include a post and/or sleeve feature, or otherwise be configured to facilitate smooth rotation (and/or avoid wear) between two or more components of the external ankle brace 50 and 50′, whether or not they are permitted to selectively pivot relative to one another.
Via the aspects of the external ankle braces 50 and 50′ shown and described herein, a user can place the external ankle brace 50 and 50′ around an existing shoe (thus obviating the expense and inconvenience of special and/or mismatched shoes to accommodate an inside-the-shoe brace), tighten as desired, and accordingly selectively restrict movement of an ankle in a first direction and selectively permit movement of the ankle in a second direction (e.g., through selective use of the pivoting restriction schemes described above). The external ankle brace 50 also restricts rotation of the ankle (“windshield wiper” motion of the toes with a stationary heel, or vice versa). Accordingly, an ankle can receive a desired amount of support—capable of changing very quickly, even during a single wear session (e.g., an athletic or daily-activity event) via use of the restraining bolt(s) 118—and thus avoid initially or additionally injuring an ankle, foot, leg, or other portion of the wearer's body.
While aspects of this disclosure have been particularly shown and described with reference to the example aspects above, it will be understood by those of ordinary skill in the art that various additional aspects may be contemplated. For example, the specific methods described above for using the apparatus are merely illustrative; one of ordinary skill in the art could readily determine any number of tools, sequences of steps, or other means/options for placing the above-described apparatus, or components thereof, into positions substantively similar to those shown and described herein. In an effort to maintain clarity in the Figures, certain ones of duplicative components shown have not been specifically numbered, but one of ordinary skill in the art will realize, based upon the components that were numbered, the element numbers which should be associated with the unnumbered components; no differentiation between similar components is intended or implied solely by the presence or absence of an element number in the Figures. Any of the described structures and components could be integrally formed as a single unitary or monolithic piece or made up of separate sub-components, with either of these formations involving any suitable stock or bespoke components and/or any suitable material or combinations of materials. Padding or other cushioning material could be placed on any desired surface(s) of the components of the external ankle brace 50, 50′ to assist with force absorption, spacing, abrasion resistance, or for any other reason. A restraining bolt 118 could be selectively associated with only a chosen one of the lateral and medial upright extensions 20′ and 22′ to prevent with respect to the respective lateral and medial sidewall 18 and 16 at a desired “restrict second direction pivoting” time, with pivoting of the other of the lateral and medial upright extensions 20′ and 22′ being indirectly limited via the connection to the other of the lateral and medial upright extensions 20′ and 22′ through the upright connecting strap(s) 42. Any of the described structures and components could be disposable or reusable as desired for a particular use environment. Any component could be provided with a user-perceptible marking to indicate a material, configuration, at least one dimension, or the like pertaining to that component, the user-perceptible marking potentially aiding a user in selecting one component from an array of similar components for a particular use environment. A “predetermined” status may be determined at any time before the structures being manipulated actually reach that status, the “predetermination” being made as late as immediately before the structure achieves the predetermined status. The term “substantially” is used herein to indicate a quality that is largely, but not necessarily wholly, that which is specified—a “substantial” quality admits of the potential for some relatively minor inclusion of a non-quality item. Though certain components described herein are shown as having specific geometric shapes, all structures of this disclosure may have any suitable shapes, sizes, configurations, relative relationships, cross-sectional areas, or any other physical characteristics as desirable for a particular application. Any structures or features described with reference to one aspect or configuration could be provided, singly or in combination with other structures or features, to any other aspect or configuration, as it would be impractical to describe each of the aspects and configurations discussed herein as having all of the options discussed with respect to all of the other aspects and configurations. A device or method incorporating any of these features should be understood to fall under the scope of this disclosure as determined based upon the claims below and any equivalents thereof.
Other aspects, objects, and advantages can be obtained from a study of the drawings, the disclosure, and the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 15/074,339, filed 18 Mar. 2016, which claims priority from U.S. Provisional Patent Application Ser. No. 62/135,823, filed 20 Mar. 2015, the entirety of each of which is hereby incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
62135823 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15074339 | Mar 2016 | US |
Child | 16374865 | US |