The present invention relates to an SOI-based external cavity laser (ECL) and, more particularly, to an SOI-based ECL that utilizes a grating structure offset from the waveguiding region to reduce its effect on the propagating optical mode.
The need for fast and efficient optical-based technologies is increasing as Internet data traffic growth rate is overtaking voice traffic, pushing the need for fiber optical communications. Transmission of multiple optical channels over the same fiber in the dense wavelength-division multiplexing (DWDM) system provides a simple way to use the unprecedented capacity (signal bandwidth) offered by fiber optics. Commonly-used optical components in the system include WDM transmitters and receivers, optical filters such as diffraction gratings, thin-film filters, fiber Bragg gratings, arrayed-waveguide gratings, optical add/drop multiplexers, and “tunable” lasers. In general, lasers are defined as tunable when their emission wavelength can be readily adjusted and set by the user to operate at any of the several prescribed available emission wavelengths associated with WDM systems.
One type of laser source for fiber optic communications systems is what is known as an external cavity laser diode (ECLD). An ECLD includes a laser diode chip in combination with an external waveguide formed with a grating. The grating acts as a filter and limits the output wavelengths to a band that is much narrower than the laser diode's inherent range of wavelengths. A particular type of ECLD uses a fiber Bragg Grating (FBG). It is known that the output wavelength of an ECLD depends on the optical pitch of the grating, which depends on the geometric pitch of the grating and the refractive index of the fiber in the grating region. The geometric pitch and refractive index vary with temperature in accordance with the thermal and material characteristics of the fiber.
The present invention is directed to an external cavity laser and, more particularly, to an SOI-based ECL that utilizes a grating structure offset from the waveguiding region within the SOI substrate to reduce the effects of the grating on the propagating optical mode.
In accordance with the present invention, an ECL laser structure utilizes an SOI-based grating structure that is coupled to the external gain medium to define a second cavity endface so as to provide lasing activity. In contrast to conventional Bragg grating structures, the grating utilized in the ECL of the present invention is laterally displaced (i.e., offset) from the waveguide (in most cases, a rib or strip waveguide). That is, the grating is formed in an area with higher contrast ratio between materials (silicon and oxide) and thus requires a lesser amount of optical mode overlap to provide the desired filtering operation. The pitch of the grating (i.e., the spacing between adjacent grating elements) and the refractive index values of the grating materials determine the filtered wavelength (also referred to as the “center wavelength”). A thermally conductive strip is disposed alongside the grating to adjust/tune the center wavelength of the grating, where the application of an electric current to the thermally conductive strip will heat the strip and transfer this heat to the grating. The change of temperature of the grating will modify the refractive indexes of the grating materials and as a result change its center wavelength.
In one embodiment, a single grating is formed to be longitudinally disposed along one side of the optical waveguiding structure. In an alternative embodiment, a pair of gratings is used, with one grating formed on each side of the waveguide. The grating(s) may also be apodized to reduce reflections at the input and other of the grating(s).
A multiple number of such offset gratings may be disposed adjacent to a like number of waveguides, where each grating may be separately “tuned” to reflect a different wavelength, thus forming a multiple number of propagating signals from a single ECL source.
It is an advantage of the arrangement of the present invention that the required grating structures comprise alternating sections of silicon and oxide, allowing for the inventive arrangement to easily be fabricated in an SOI substrate utilizing conventional CMOS processing technology.
Other and further embodiments of the present invention will become apparent during the course of the following discussion and by reference to the accompanying drawings.
Referring to the drawings,
In accordance with the present invention, a tunable wavelength selective element 30 is utilized in conjunction with Bragg grating 32 to select a particular wavelength, denoted λi, that will be defined as the “center wavelength” of the system and reflected back along waveguide 20 and into optical gain medium 14 to generate a lasing output at this selected wavelength. The amplified signal at wavelength λi is thereafter applied as an input to the optical communication device, shown in the arrangement of
In particular, tunable wavelength selective element 30 comprises tunable Bragg grating structure 32 disposed off-set from waveguide 20 so as to reduce the effect of the grating on the propagating optical mode. The off-set location is determined such that grating structure 32 is located to overlap an evanescent tail region of the propagating optical signal. As will be discussed in detail below, grating structure 32 comprises a plurality of oxide regions as grating elements, where the combination of silicon and oxide results in a grating with a strong contrast ratio (i.e., difference in refractive index values). The use of oxide as grating elements (in contrast to prior art arrangements that utilize polysilicon or another material) allows for conventional CMOS etching, deposition and chemical-mechanical planarization (CMP) processes to be used to form a grating with well-controlled parameters. The strong contrast ratio allows for the grating to be offset from the central portion of the waveguide (overlapping the evanescent tail region) and still encounter a sufficient amount of optical energy to perform the required reflecting of the center wavelength. As will be shown below, grating structure 32 may comprise a single offset grating, as shown in
Referring back to
It is important that the reflected signal be in phase with the signal propagating through optical gain medium 14 (i.e., constructive interference) so that the signals “add” and are amplified with the cavity portion of ECL 10. To this end, a tunable phase matching element 31 is disposed along waveguide 20 between optical coupling region 18 and wavelength selective element 30 to adjust the phase of the reflected signal until it matches the phase of the signal within the laser cavity. As with wavelength selective element 30, tunable phase matching element 31 can be controlled (either thermally or by free carriers) to modify the optical path length and provide phase tuning/matching.
Simulations have shown that a single mode rib waveguide 20 formed with a cross-section on the order of 0.1 μm2 can be thermally tuned in a very efficient manner, on the order of 0.015 mW/° C./μm. Depending on the required wavelength selectivity, grating 32 may comprise a length anywhere in the range of 2-500 μm, with a nominal value of approximately 20 μm. Presuming that the default center wavelength of filter element 30 is 1550 μm, and a tuning range Δλ of about 31 nm is desired, a change in refractive index (ΔN) for grating element 32 of about 2% is required. In silicon, ΔN is approximately 1.6×104/° C. In order to obtain a 2% change in the index of silicon, a localized temperature gradient of approximately 440° C. At 0.015 mW/° C./μm and a Bragg grating of length 20 μm, this results in a power dissipation of approximately 132 mW. Therefore, for a tunability of 31 nm, a power of 132 mW is required for the needed thermal control. A programmable current source 38 within control electronics 36 may be used to deliver a variable current to strip 34, where the generated heat is defined as the multiplicative product of the delivered current (I) and the resistance (R) of strip 34.
As shown, grating structure 32 comprises a series of grating elements 33 of an oxide (presumably the same type of oxide as used to form insulating layer 52 underneath topmost silicon layer 50) deposited along a portion of silicon layer 50. The spacing between adjacent grating elements 33, denoted A, is defined as the period of grating structure 32. The reflected wavelength within the Bragg grating is denoted by the formula λ=2*neff*Λ, where neff is the effective index of the waveguide within the Bragg grating structure. As mentioned above, the refractive index of silicon is approximately 3.5 and the refractive index of silicon dioxide is approximately 1.5, resulting in a large, strong refractive index contrast between these two regions. With this index contrast of approximately 2, if the grating structure is placed in the core of the waveguide, a significant amount of light scattering will occur, making the grating structure highly inefficient for this application. Grating structure 32 may therefore be offset from waveguide 20 so as to overlap only the “tail” portion of the optical mode, yet capture a sufficient amount of optical energy to provide the necessary filtering, due to the strong contrast. A fiber Bragg grating has a nearly 100% overlap with an index contrast of 0.01, whereas the silicon offset Bragg grating of the present invention can be configured for a 0.1-10.0% overlap with an index contrast of approximately 2.
As mentioned above, it is possible to dispose grating structure 32 of wavelength selective element 30 in an adiabatic configuration.
It is also possible to utilization the offset grating, tunable wavelength selective element of the present invention in a WDM arrangement, where a single ECL device is utilized to generate and provide a plurality of output signals operating at different, unique wavelengths.
As shown, WDM transmitter 100 includes optical couplers 18 and 24, as discussed above, as well as optical waveguide 20 and control electronics 36. In this embodiment, coupling waveguide 40 is again used to out-couple the optical signal created by the ECL device and, in this case, apply the input to a set of four separate variable optical attenuators (VOAs) 110-1, 110-2, 110-3 and 110-4. Each VOA 110 is coupled to a different tunable wavelength selective element 30. Tunable wavelength selective element 30-1, for example, comprises a reflective waveguide section 31, an offset grating structure 32-1 and a thermally conductive tuning strip 34-1. A current I-1, supplied by control electronics 36 is used to “tune” the center wavelength of element 30-1 so as to reflect a pre-defined wavelength λ1. Tunable wavelength selective elements 30-2, 30-3 and 30-4 function in a similar manner, each utilizing an offset grating configuration of the present invention, to reflect a slightly different transmission wavelength, all wavelengths within the bandwidth of that possible using a single ECL device.
As shown in
An alternative WDM transmitter 200 formed in accordance with the present invention is illustrated in
To select an individual lasing wavelength, for example, 1555 nm, grating 323 would be thermally tuned via element 343 until the “effective” period Λ3 provides this center wavelength value. Phase tuning element 2103 is then tuned to provide in-phase, constructive interference for this wavelength. Remaining phase tuning elements 2101, 2102, and 2104 would be tuned to provide destructive interference at their corresponding center wavelengths to prevent crosstalk, allowing only the signal at wavelength 1555 nm to propagate through the system. A tunable ring resonator structure 220, also formed within the same SOI structure 12 as WDM transmitter 200, may be used as a wavelength selective filter to measure the output signal and ensure proper operation. Ring resonator structure 220 is utilized as a feedback control element that is used to sweep through the complete wavelength range so that only the desired wavelength is present.
In the foregoing detailed description, the structure of the present invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present invention. The specification and figures are accordingly to be regarded as illustrative rather than restrictive.
The present application claims the benefit of US Provisional Application No. 60/750,948, filed Dec. 16, 2005.
Number | Date | Country | |
---|---|---|---|
60750948 | Dec 2005 | US |