External files for distribution of molecular diagnostic tests and determination of compatibility between tests

Information

  • Patent Grant
  • 10822644
  • Patent Number
    10,822,644
  • Date Filed
    Friday, February 1, 2013
    11 years ago
  • Date Issued
    Tuesday, November 3, 2020
    3 years ago
Abstract
Embodiments disclosed herein relate to methods and systems for performing an automated assay, and particularly to performing an assay on a plurality of samples on an automated instrument.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

Embodiments disclosed herein relate to methods and systems for performing an automated assay, and particularly to performing a plurality of assays on a plurality of samples on an automated instrument.


Description of the Related Art

The medical diagnostics industry is a critical element of today's healthcare infrastructure. In the last decade, the use of nucleic acid based assays for diagnostic testing has become increasingly more common. The automation of processing and testing samples in diagnostic testing is appealing, as it minimizes experimental variability and reduces the need for highly trained technicians. In addition to benefits in the field of diagnostics, automation of processing and testing samples has facilitated high throughput testing.


Understanding that processing samples for purposes such as diagnostic testing or high throughput testing may break down into several key steps, it is often desirable to automate one or more steps. For example, in the context of diagnostics, a biological sample, such as those obtained from a patient, can be used in nucleic acid amplification assays in order to amplify a target nucleic acid (e.g., DNA, RNA, or the like) of interest. Once amplified, the presence of a target nucleic acid, or amplification product of a target nucleic acid (e.g., a target amplicon) can be detected, wherein the presence of a target nucleic acid and/or target amplicon is used to identify and/or quantify the presence of a target (e.g., a target microorganism or the like). Often, nucleic acid amplification assays involve multiple steps, which can include nucleic acid extraction, nucleic acid amplification, and detection. It is desirable to automate certain steps of these processes.


There is a need for improved methods and devices for carrying out assays on multiple samples in parallel. The embodiments described herein address this need and can advantageously be used in clinical and research settings.


SUMMARY OF THE INVENTION

The present technology relates to methods and systems for performing an automated assay, and particularly to performing a plurality of assays on a plurality of samples on an automated instrument. In some embodiments of the present technology, such methods and systems can permit the concurrent performance of discrete assay workflows on an instrument when the assay workflows are compatible, and can prevent the concurrent performance of incompatible assays within the same workstation. Some embodiments relate to performing a plurality of user-defined protocols (UDP) on an automated instrument. Some embodiments relate to performing a plurality of assay definition files (ADF) developed by an assay manufacturer. Some embodiments relate to performing one or more UDPs, optionally in combination with one or more ADFs, concurrently on the same automated instrument.


In some embodiments of the technology presented herein, methods of performing an automated assay on a plurality of samples are provided that allow for improved reliability and ease of use when performing an assay on an automated instrument. The methods can include providing an automated instrument comprising a first workstation and a second workstation, each of the first and second workstations configured to receive and processes a plurality of samples according to a plurality of different automated assay workflows, wherein each different automated assay workflow has an associated unique assay definition or user-defined protocol file; determining whether two discrete assay workflows are compatible or incompatible with each other for concurrent processing on the automated instrument; and performing the discrete assay workflows concurrently on the instrument when the assays are compatible.


In some embodiments, the assay definition or user defined protocol file can comprise a first level compatibility index value, and wherein the determining step can comprise: (a) selecting a first assay from among a first list of available assays; and (b) evaluating which of a plurality of other available assays have an assay definition file comprising the same first level compatibility index value as the first assay, wherein the same first level compatibility index value is indicative of first-level compatibility.


In some embodiments, the evaluating step can comprise (b1) identifying any assays which have first level compatibility index values different from the first compatibility index value of the first assay; and (b2) providing a second list of second assays, wherein the second list excludes any assay having a first level compatibility index value different from the first compatibility index value of the first assay.


In some embodiments, each assay definition file can comprise a second level compatibility index value, and wherein the determining step further can comprise (c) evaluating which of a plurality of other available assays have an assay definition file comprising the same second level compatibility index value as the first assay, wherein the same second level compatibility index value is indicative of second-level compatibility.


In some embodiments, the evaluating step can comprise (c1) identifying any assays which have second level compatibility index values different from the second compatibility index value of the first assay; and (c2) providing a second list of second assays, wherein the second list excludes any assay having a second level compatibility index value different from the second compatibility index value of the first assay.


In some embodiments, the first level compatibility can comprise compatibility of performing two assays concurrently at a single workstation, the parameters selected from the group consisting of: incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature, workstation time demands, regulatory classification, business considerations, and a combination thereof.


In some embodiments, the second level compatibility can comprise compatibility of performing two assays concurrently on the automated instrument, the parameters selected from the group consisting of: regulatory classification, workflow incompatibility, business considerations, and a combination thereof.


In some embodiments, the instrument prevents the concurrent performance of incompatible assays within the same workstation when the first compatibility indexes are different. In some embodiments, the two discrete assay workflows are performed in the same workstation. In some embodiments, the instrument is prevented from concurrently performing assays with different second compatibility index values. In some embodiments, two assays have the same first level compatibility index value and have different second level compatibility index values. In some embodiments, the difference in the second level compatibility index values can comprise a business reason. In some embodiments, the difference in the second level compatibility index values can comprise a regulatory classification.


In some embodiments, if the assays are compatible, the method can further comprise one or more of the following (d) initiating an assay-specific sample preparation script on the instrument; (e) comparing identifying indicia on a consumable package to a set of assay-specific identifying data stored on the instrument; (f) initiating an assay-specific load cartridge script on the instrument; (g) comparing levels of detectable signals fluorescence ratios in a loaded cartridge to a set of assay-specific detectable signal data stored on the instrument to determine whether the cartridge was successfully loaded; (h) initiating an assay-specific reaction script on the instrument; (i) initiating an assay-specific data analysis algorithm on the instrument; or (j) deriving a final call for the assay, based on one or more assay-specific result algorithms or scripts.


In some embodiments, the assay protocol can comprise a reaction selected from the group selected from: Polymerase Chain Reaction (PCR), Transcription Mediated Amplification (TMA), Oligonucleotide Ligation Assay (OLA), Ligase Chain Reaction (LCR), Rolling Circle Amplification (RCA), Strand Displacement Amplification (SDA), and a hybridization reaction.


Also presented herein is a system for performing an automated assay, the system comprising an automated instrument comprising a first workstation and a second workstation, each of the first and second workstations configured to receive and processes a plurality of samples according to a plurality of different automated assay workflows, wherein each different automated assay workflow has an associated unique assay definition file or user-defined protocol file; a processor; a storage capacity; and a program for performing an automated assay, the program comprising instructions for determining whether two discrete assay workflows are compatible or incompatible with each other for concurrent processing on the automated instrument; and performing the discrete assay workflows concurrently on the instrument when the assays are compatible.


In some embodiments of the above system, the assay definition file or user defined protocol file can comprise a first level compatibility index value, and wherein the determining step can comprise: (a) selecting a first assay from among a first list of available assays; and (b) evaluating which of a plurality of other available assays have an assay definition file comprising the same first level compatibility index value as the first assay, wherein the same first level compatibility index value is indicative of first-level compatibility.


In some embodiments of the above system, the evaluating step can comprise (b1) identifying any assays which have first level compatibility index values different from the first compatibility index value of the first assay; and (b2) providing a second list of second assays, wherein the second list excludes any assay having a first level compatibility index value different from the first compatibility index value of the first assay.


In some embodiments of the above system, each assay definition file can comprise a second level compatibility index value, and wherein the determining step further can comprise (c) evaluating which of a plurality of other available assays have an assay definition file comprising the same second level compatibility index value as the first assay, wherein the same second level compatibility index value is indicative of second-level compatibility.


In some embodiments of the above system, the evaluating step can comprise (c1) identifying any assays which have second level compatibility index values different from the second compatibility index value of the first assay; and (c2) providing a second list of second assays, wherein the second list excludes any assay having a second level compatibility index value different from the second compatibility index value of the first assay.


In some embodiments of the above system, the first level compatibility can comprise compatibility of performing two assays concurrently at a single workstation, the parameters selected from the group consisting of: incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature, workstation time demands, regulatory classification, business considerations, and a combination thereof.


In some embodiments of the above system, the second level compatibility can comprise compatibility of performing two assays concurrently on the automated instrument, the parameters selected from the group consisting of: regulatory classification, workflow incompatibility, business considerations, and a combination thereof.


In some embodiments of the above system, the instrument prevents the concurrent performance of incompatible assays within the same workstation when the first compatibility indexes are different. In some embodiments, the two discrete assay workflows are performed in the same workstation. In some embodiments, the instrument is prevented from concurrently performing assays with different second compatibility index values. In some embodiments, two assays have the same first level compatibility index value and have different second level compatibility index values. In some embodiments, the difference in the second level compatibility index values can comprise a business reason. In some embodiments, the difference in the second level compatibility index values can comprise a regulatory classification.


In some embodiments of the above system, if the assays are compatible, the system can further comprise instructions for one or more of the following (d) initiating an assay-specific sample preparation script on the instrument; (e) comparing identifying indicia on a consumable package to a set of assay-specific identifying data stored on the instrument; (f) initiating an assay-specific load cartridge script on the instrument; (g) comparing levels of detectable signals in a loaded cartridge to a set of assay-specific detectable signal data stored on the instrument to determine whether the cartridge was successfully loaded; (h) initiating an assay-specific reaction script on the instrument; (i) initiating an assay-specific data analysis algorithm on the instrument; or (j) deriving a final call for the assay, based on one or more assay-specific result algorithms or scripts.


In some embodiments of the above system, the assay protocol can comprise a reaction selected from the group selected from: Polymerase Chain Reaction (PCR), Transcription Mediated Amplification (TMA), Oligonucleotide Ligation Assay (OLA), Ligase Chain Reaction (LCR), Rolling Circle Amplification (RCA), Strand Displacement Amplification (SDA), and a hybridization reaction.


In some embodiments of the above system, the system further can comprise a bar code reader. In some embodiments of the above system, the identifying indicia can comprise a bar code.


Also presented herein is a method of performing a plurality of compatible discrete assays concurrently on a single automated instrument, the method comprising, for each discrete assay: providing an automated instrument comprising a first workstation and a second workstation, each of the first and second workstations configured to receive and processes a plurality of samples according to a plurality of different automated assay workflows, wherein each different automated assay workflow has an associated unique assay definition file or user-defined protocol file comprising a first level compatibility index value and a second level compatibility index value; selecting a first assay from among a first list of available assays; evaluating which of a plurality of other available assays have an assay definition file or user-defined protocol file comprising the same first level compatibility index value as the first assay, wherein the same first level compatibility index value is indicative of compatibility for concurrent processing on the same workstation of the automated instrument; evaluating which of a plurality of other available assays have an assay definition file or user-defined protocol file comprising the same second level compatibility index value as the first assay, wherein the same second level compatibility index value is indicative of compatibility for concurrent processing on the automated instrument; and performing the discrete assay workflows concurrently on the instrument when the assays are compatible.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic drawing demonstrating a method of assigning first- and second-level compatibility index values to a particular assay workflow or user defined protocol (UDP).



FIG. 2 is a schematic drawing demonstrating a method of identifying first-level and second level compatibility between two assay protocols according to one embodiment.



FIG. 3 is a schematic drawing demonstrating a method of selecting and performing concurrent assay protocols according to one embodiment.



FIG. 4 is a schematic drawing that illustrates an automated instrument with independent workstations and a shared service according to one embodiment.



FIG. 5 is a look up table to show rack and run compatibility according to one embodiment.





DETAILED DESCRIPTION

Automated diagnostic instruments are now able to carry out processing and testing of multiple samples in parallel. These devices can advantageously be used in high throughput to facilitate the sample preparation and testing. By way of example, automated diagnostic instruments can prepare samples for nucleic acid amplification assays, and perform the amplification and detection. Depending on the type of samples and the type of assay, however, many times, assay protocols are not compatible with each other on the same instrument, either because of physical constraints on the instrument, or for business reasons. For example, any two assay protocols may have different incubation times, lysis times, reagent volumes, reagent types, incubation temperatures, lysis temperatures, workstation time demands, or other parameters that render it impossible for the instrument to perform different assays in samples in a single workstation, or even on the same instrument. In addition to physical constraints, regulatory classifications and business considerations are each factors which may prevent the instrument from processing samples concurrently. In order to address this issue, users had to manually compare assay protocols on a chart or table to determine whether they can be performed concurrently on the same rack, or even on different racks of the same instrument. Such manual approaches can be error prone, as well as inefficient and labor intensive. Thus, there exists a great need for improved methods to identify compatible assay protocols and prevent incompatible assay protocols from being performed concurrently.


In accordance with the above, provided herein are methods and systems for performing an assay protocol on an automated instrument. In some embodiments of the present technology, such methods and systems can permit the concurrent performance of discrete assay workflows on an instrument when the assay workflows are compatible, and can prevent the concurrent performance of incompatible assay protocols within the same instrument. The methods provided herein allow for improved reliability and ease of use when performing an assay on an automated instrument.


Accordingly, provided herein is a method of providing an automated instrument comprising a first workstation and a second workstation and a common service that is shared by both workstations, each of the first and second workstations configured to receive and processes a plurality of samples according to a plurality of different automated assay workflows, wherein each different automated assay workflow has an associated unique assay definition or user-defined protocol file; determining whether two discrete assay workflows are compatible or incompatible with each other for concurrent processing on the automated instrument; and performing the discrete assay workflows concurrently on the instrument when the assay protocols are compatible.


As used herein, the terms “workstation,” “rack” and like terms refer to an assembly that can hold a plurality of samples within an instrument designed to process those samples together. Thus, two workflows which can be performed concurrently on the same rack are designated herein as “rack-compatible.”


Two workflows which can be performed concurrently on the same instrument are designated herein as “run-compatible.” In certain embodiments, two run-compatible workflows are not compatible on the same rack, but can be performed on separate racks in the instrument. In certain embodiments, two run-compatible workflows are compatible on the same rack. In certain other embodiments, two run-incompatible workflows are compatible on the same rack, but cannot, for any one of a variety of reasons, be performed concurrently on the same instrument.


As used herein, the terms “workflow,” “assay workflow,” “assay,” “assay protocol,” “test,” and like terms refer to a procedure for processing a sample. In typical embodiments, a workflow can include sample preparation steps, such as cell lysis, nucleic acid extraction, nucleic acid purification, nucleic acid digestion, nucleic acid modification, protein extraction, protein purification, and the like. Several methods of nucleic acid extraction useful in the embodiments disclosed herein are known in the art. Exemplary discussions of nucleic acid extraction can be found, for example, in U.S. patent application Ser. No. 12/172,214, filed Jul. 11, 2008, U.S. patent application Ser. No. 12/172,208, filed Jul. 11, 2008, and U.S. patent application Ser. No. 11/281,247, filed Nov. 16, 2005, all of which are incorporated herein by reference in their entirety. Likewise, exemplary discussions of protein extraction can be found, for example, in U.S. Pat. Nos. 8,053,239 and 6,864,100, both of which are incorporated herein by reference in their entirety.


In some typical embodiments, a workflow can also include nucleic acid amplification reactions. In some typical embodiments, a workflow can further include data analysis procedures.


Accordingly, in certain embodiments, workflows are not directly compatible with each other due to physical differences, such as incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature, workstation time demands, and the like. Each of these parameters place unique physical restraints on the motion and capacity of either the workstation itself or on a shared service resource within an automated instrument. For example, an RNA extraction protocol, a DNA extraction protocol, and a protein extraction protocol may each require different motions for a pipetting head on an instrument, and therefore cannot be processed at the same time on the same workstation. By way of another example, a PCR assay and an assay based solely upon hybridization of detectable probes to a target may require different temperature cycling and timing requirements, and therefore cannot be processed at the same time. It will be appreciated that any physical, temporal or other limitation can present a reason for which two workflows are not directly compatible with each other.


In certain embodiments, incompatibility is driven by physical restraints on motion and capacity of a shared service resource within an automated instrument that is shared by two or more workstations. As illustrated in FIG. 4, two or more independent workstations can utilize a shared resource. The shared resource can be, for example, a pipettor, a robotic arm, a single detector unit, or any other resource that is shared by two or more workstations.


The physical, temporal or other parameters need not be identical between assays in order to indicate compatibility. Rather, parameters can fall within a range which confers compatibility of, for example, a shared resource. Table 2 in Example 1 below provides an example for assays with parameters that vary within a range, yet still maintain compatibility, whereas assays with parameters outside any one range are no longer compatible.


In addition, workflows that are otherwise physically compatible on an instrument can nonetheless be incompatible for other reasons. In certain embodiments, two workflows cannot be performed concurrently in order to comply with regulatory restraints. For example, if one assay protocol has been approved by a regulatory agency such as the United Stated Food and Drug Administration (FDA), that agency may stipulate that the assay protocol cannot be performed concurrently with an unapproved assay protocol. Likewise, in certain embodiments, a manufacturer or user of instruments, consumable materials, or reagents may be under contractual restrictions or other business limitations, under which two workflows cannot be performed concurrently on the same instrument. It will be appreciated that incompatibility can be determined for any reason for which a manufacturer or user determines that two workflows should be incompatible. The methods and systems provided herein make it possible to identify compatible workflows and perform a plurality of compatible workflows on the same instrument at the same time.


As illustrated in FIG. 3, rack and run compatibility can be determined by any of a number of workflow parameters. For example, parameters which may determine rack or run compatibility include, but are not limited to, reagent strip design, number and type of consumable reagents and the specific processes performed during the workflow, such as nucleic acid extraction or full analysis of a nucleic acid sample after extraction.


Assay Definition Files


In embodiments of the methods and systems provided herein, each different automated assay workflow has an associated unique assay definition or user-defined protocol file. As used herein, the term assay definition file (ADF) refers to a file that provides at least some, and typically all of the assay specific parameters for that workflow. In addition, an ADF can provide compatibility index values for a particular workflow. In typical embodiments, the ADF can contain all of the information needed to run the assay on an automated instrument. One function of the ADF is to provide a layer of independence between the instrument and the assay. This independence provides the mechanism by which an instrument manufacturer or assay reagent manufacturer can release new assay protocols for an instrument without producing major revisions to the instrument software.


An ADF can comprise one or more of the components set forth in Table 1 below. In particular, the ADF can include the two-level index values for rack and run compatibility.









TABLE 1





ADF parameters and settings















Level-1 compatibility index value


Level-2 compatibility index value


Sample prep parameters


Scripts used for sample prep, load cartridge, and PCR.


Required consumable barcodes


Fill check thresholds


PCR Protocol


Script used to generate results


Thresholds used to generate results


Parameters used to drive the data analysis engine within the instrument









Thus, in some embodiments of the methods and systems provided herein, if the assay protocols are compatible, the ADF can include instructions for performing one or more of the following: initiating an assay-specific sample preparation script on the instrument; comparing identifying indicia on a consumable package to a set of assay-specific identifying data stored on the instrument; initiating an assay-specific load cartridge script on the instrument; comparing levels of detectable signals in a loaded cartridge to a set of assay-specific detectable signal data stored on the instrument to determine whether the cartridge was successfully loaded; initiating an assay-specific reaction script on the instrument; initiating an assay-specific data analysis algorithm on the instrument; or deriving a final call for the assay, based on one or more assay-specific result algorithms or scripts. The detectable signals that are compared during a load cartridge script can be any suitable detectable signal that indicates proper loading. In typical embodiments, the detectable signal is fluorescence, and the ratio of fluorescence at various wavelengths in a sample or reagent can be compared to set of pre-determined fluorescence data in order to determine whether the cartridge was properly loaded.


In some embodiments, the ADF can also comprise a reaction including, but not limited to: Polymerase Chain Reaction (PCR), Transcription Mediated Amplification (TMA), Oligonucleotide Ligation Assay (OLA), Ligase Chain Reaction (LCR), Rolling Circle Amplification (RCA), Strand Displacement Amplification (SDA), and a hybridization reaction.


Example 5 below describes an exemplary use of an ADF file to run assay protocols on an instrument.


Typically, when a new assay is made available to a customer, the corresponding ADF is installed on the instrument. Once an ADF is installed on the instrument, that assay is then available for execution on the instrument. The instrument software can then use the index values to control addition of tests to a run worklist. If assay protocols share the same rack index value, then they are allowed to be in the worklist in contiguous positions in a single rack. If two assay protocols have a different run index, then they can not be in the same run worklist. When a user selects the first assay to be included in a run, the software checks the compatibility index values of all other assay protocols available on the instrument and modifies the list of assay protocols that the user can select according to the rules listed above, thereby ensuring that the customer does not choose incompatible assay protocols.


An ADF may be provided in any suitable format. For example, the ADF could be provided by a manufacturer on a storage medium such as CD-ROM or USB key, or downloaded from the manufacturer and then transferred to the terminal that controls the instrument. Multiple ADFs, each defining a distinct assay protocol, can thus be installed on the same instrument. Advantageously, the methods and systems provided herein make it possible for the system to identify assay protocols with the same compatibility index values, rather than force a user to consult a chart or table.


User Defined Protocols


In certain embodiments, assay parameters are determined by the user, rather than the manufacturer. These user defined protocols (UDP) can also be assigned first-level and second-level compatibility index values to ensure compatibility with other commercially-developed assay protocols. One of the benefits of the indexes and assay definition files is that it provides a firewall between user defined assay protocols and commercially-developed assay protocols that also covers compatibility. The index values can be used to set up unique controls for user defined protocols which are different from the index values for commercially-developed assay protocols. In the embodiment illustrated in FIG. 1, User Defined Protocols are represented by the boxes labeled as UDP and Extraction Only.


Thus, as illustrated in FIG. 1, first-level and second-level compatibility index values for a UDP can be assigned according to similar factors that determine compatibility for ADFs. Such factors include, for example, the extraction kit and PCR type selected by the user, reagent strip design, the number of MM (master mixes), and the specific process (extraction versus full process). The UDP can thus include compatibility index values as part of the full code, since there is no ADF provided by a manufacturer. An illustration of this process is set forth in Example 6 below.


It will be appreciated that new extraction kits, PCR assay types, and other reagents can be provided by a manufacturer with a file similar to an ADF. Thus, when such files are installed on an instrument, and a new UDP is created, the index values for one or more UDPs may be updated accordingly.


First Level Compatibility Index Value


In some embodiments, the assay definition or user defined protocol file can comprise a first level compatibility index value. Typically, the first level compatibility index value refers to rack compatibility. However, in certain other embodiments, the first level compatibility index value refers to run compatibility and the second level index value refers to rack compatibility. Thus, the method can comprise (a) selecting a first assay protocol from among a first list of available assay protocols; and (b) evaluating which of a plurality of other available assay protocols have an assay definition file comprising the same first level compatibility index value as the first assay. In typical embodiments, two assay protocols having the same first level compatibility index value is indicative of first-level compatibility. It will be appreciated, however, that any suitable mechanism that can assign and identify compatibility values to individual assays can serve in the methods and systems provided herein. Thus, in some embodiments, two assay protocols that are rack compatible may have different first level index values. However, for convenience in this disclosure, two assay protocols with first level compatibility are considered as having the same first level compatibility index value.


The list of available assay protocols can change as the user selects one or more assay protocols to perform, and first level compatibility is evaluated. As such, the evaluating step (b) can comprise the steps of (b1) identifying any assay protocols which have first level compatibility index values different from the first compatibility index value of the first assay; and (b2) providing a second list of second assay protocols, wherein the second list excludes any assay having a first level compatibility index value different from the first compatibility index value of the first assay.


In some embodiments, the first level compatibility can take into consideration any parameter that could prevent performance of two assay protocols concurrently at a single workstation. Such parameters are known to those of skill in the art, and can include, for example, physical parameters such as incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature, workstation time demands, and the like. Further, other parameters can include considerations such as regulatory classification, business considerations, and the like.


Second Level Compatibility Index Value


In some embodiments, the assay definition or user defined protocol file can comprise a second level compatibility index value. Typically, the second level compatibility index value refers to run compatibility. However, in certain other embodiments, the second level compatibility index value refers to rack compatibility and the second level index value refers to run compatibility. Thus, the method can comprise (c) evaluating which of a plurality of other available assay protocols have an assay definition file comprising the same second level compatibility index value as the first assay, wherein the same second level compatibility index value is indicative of second-level compatibility. In typical embodiments, two assay protocols having the same second level compatibility index value is indicative of second level compatibility. It will be appreciated, however, that any suitable mechanism that can assign and identify compatibility values to individual assays can serve in the methods and systems provided herein. Thus, in some embodiments, two assay protocols that are run compatible may have different second level index values. However, for convenience in this disclosure, two assay protocols with second level compatibility are considered as having the same second level compatibility index value.


The list of available assay protocols can change as the user selects one or more assay protocols to perform, and second level compatibility is evaluated. As such, the evaluating step (c) can comprise the steps of (c1) identifying any assay protocols which have second level compatibility index values different from the second compatibility index value of the first assay; and (c2) providing a second list of second assay protocols, wherein the second list excludes any assay having a second level compatibility index value different from the second compatibility index value of the first assay.


In some embodiments, the second level compatibility can take into consideration any parameter that could prevent performance of two assay protocols concurrently at a single workstation. Such parameters are known to those of skill in the art, and can include, for example, physical parameters such as incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature, workstation time demands, and the like. Further, other parameters can include considerations such as regulatory classification, business considerations, and the like.


In some embodiments, the instrument prevents the concurrent performance of incompatible assay protocols within the same workstation when the first compatibility indexes are different. In some embodiments, the two discrete assay workflows are performed in the same workstation. In some embodiments, the instrument is prevented from concurrently performing assay protocols with different second compatibility index values. In some embodiments, two assay protocols have the same first level compatibility index value and have different second level compatibility index values. In some embodiments, the difference in the second level compatibility index values can comprise a business reason. In some embodiments, the difference in the second level compatibility index values can comprise a regulatory classification.


It will be appreciated that the two-level index described above is expandable from a two workflow system to larger numbers of workflows that are desired to run concurrently on an instrument, but may have constraints to run concurrently based on physical or business constraints. Thus, as illustrated in FIG. 3, additional workflows may be added to a rack or multiple racks as needed, and the methods described herein will ensure that compatibility among all assays is maintained.


Instruments and Systems


Also presented herein is a system for performing an automated assay, the system comprising an automated instrument comprising a first workstation and a second workstation, each of the first and second workstations configured to receive and processes a plurality of samples according to a plurality of different automated assay workflows, and supported by a single service resource. Each different automated assay workflow typically comprises an associated unique assay definition file or user-defined protocol file. The system also comprises a processor; a storage capacity; and a program for performing an automated assay, the program comprising instructions for determining whether two discrete assay workflows are compatible or incompatible with each other for concurrent processing on the automated instrument; and performing the discrete assay workflows concurrently on the instrument when the assays are compatible.


Automated instruments which can perform multiple assay protocols concurrently are known to those of skill in the art. Exemplary discussions of typical automated instruments for use with the methods provided herein can be found, for example, in U.S. patent application Ser. No. 12/173,023, filed Jul. 14, 2008, which is incorporated herein by reference in its entirety.


It will be appreciated that the methods and systems described herein can apply to instruments that comprise 2, 3, 4 or more workstations wherein at least 2 of the workstations are supported by a common service resource. For example, an instrument with 4 workstations and a single pipette head could still be compatibility controlled by the 2 index concept described herein.


As used herein, the terms storage capacity, storage device, storage and the like can refer to any medium, device or means of storage of information. Storage can include, but is not limited to, a disk drive device such as a hard drive, floppy disk, optical or magneto-optical disk, memory such as RAM or ROM chips, and any other medium used to record or store data. In some embodiments, a storage capacity is connected to a processor which sends information to be recorded on the storage capacity after it is acquired. In specific embodiments, data is acquired by a system and is recorded on a storage capacity. In other embodiments, data is acquired by a system and information is first processed and the processed information is recorded on a storage capacity.


The files and programs provided herein can be in any suitable programming language. In certain embodiments, the ADF utilizes XML as a mechanism for formatting files. Further, in certain embodiments, ADF utilizes Python as a scripting language to provide a mechanism for executing result logic using common technologies available on the instrument. It will be appreciated that any suitable file format and programming language can be utilized in the methods and systems provided herein. In certain embodiments, files can be encrypted to protect against the use of counterfeit reagents and to control specific parameter details on assay runs.


As used herein, an “input” can be, for example, data received from a keyboard, rollerball, mouse, voice recognition system or other device capable of transmitting information from a user to a computer. The input device can also be a touch screen associated with the display, in which case the user responds to prompts on the display by touching the screen. The user may enter textual information through the input device such as the keyboard or the touch-screen.


The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, microcontrollers, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices.


As used herein, “instructions” refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware and include any type of programmed step undertaken by components of the system.


A “microprocessor” or “processor” may be any conventional general purpose single- or multi-core microprocessor such as a Pentium® processor, Intel® Core™, a 8051 processor, a MIPS® processor, or an ALPHA® processor. In addition, the microprocessor may be any conventional special purpose microprocessor such as a digital signal processor or a graphics processor. A “processor” may also refer to, but is not limited to, microcontrollers, field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), complex programmable logic devices (CPLDs), programmable logic arrays (PLAs), microprocessors, or other similar processing devices.


The system is comprised of various modules as discussed in detail herein. As can be appreciated by one of ordinary skill in the art, each of the modules comprises various sub-routines, procedures, definitional statements and macros. Each of the modules are typically separately compiled and linked into a single executable program. Therefore, the following description of each of the modules is used for convenience to describe the functionality of the preferred system. Thus, the processes that are undergone by each of the modules may be arbitrarily redistributed to one of the other modules, combined together in a single module, or made available in, for example, a shareable dynamic link library.


Certain embodiments of the system may be used in connection with various operating systems such as SNOW LEOPARD®, iOS®, LINUX, UNIX or MICROSOFT WINDOWS®.


Certain embodiments of the system may be written in any conventional programming language such as assembly, C, C++, C#, BASIC, Pascal, or Java, and run under a conventional operating system.


In addition, the modules or instructions may be stored onto one or more programmable storage devices, such as FLASH drives, CD-ROMs, hard disks, and DVDs. One embodiment includes a programmable storage device having instructions stored thereon.


In some embodiments of the above system, the system further can comprise a device for reading identifying indicia on reagent packaging. It will be appreciated that any suitable device for reading identifying indicia can be used in the systems provided herein. Likewise, any suitable identifying indicia may be used that is compatible with the device on the instrument. Examples include bar codes, QR codes, RFID tags, color codes and the like. In typical embodiments, the device can be a bar code reader, and the identifying indicia can comprise a bar code. Example 4 below describes use of barcode labels to properly identify consumable reagents.


Advantages and Improvements

The methods and systems presented herein provide numerous advantages over existing approaches. For example, the use of an ADF by a manufacturer for the distribution of an assay protocols provides a mechanism for release of new or modified assay protocols on the instrument platform without requiring a coordinated instrument software update. By eliminating the need for instrument software revisions, this approach provides a more direct path towards release for the assay. Additionally, as needed, the manufacturer can modify compatibility between assay protocols to meet business or other needs without having to revise the instrument software.


Compatibility has traditionally been controlled using a table or other means that is maintained within the system and requires an update to expand menu. Using a two-level index does not require updating a table or any other means in the software to expand menu. Further, users do not need to have any specific knowledge about assay compatibility since the instrument software controls which assay protocols are available to mix in a single run.


An additional advantage of using an ADF is that barcode information in the ADF can be used to confirm that reagents are appropriately loaded onto the instrument, thereby preventing user error and the resulting loss of time and resources.


Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only, and are not intended to be limiting.


Example 1
Assigning First-Level and Second-Level Compatibility Index Values for User Defined Protocols and Commercially-Supplied Assay Protocols

This example demonstrates the process of assigning first- and second-level compatibility index values to a particular assay workflow or user defined protocol (UDP).


An automated sample processor and analysis instrument has the ability to run two discrete sample processing workflows, or racks, concurrently (run compatible). However, there are certain actions within a sample processing workflow that modified and still maintain compatibility (rack-compatible) as well as certain actions that render workflows incompatible on the instrument in the same run (incompatible). In addition to physical limitations, there may be business requirements to keep assay protocols from running together on an instrument.


To manage this range of performance demands, a two-level index was generated that identifies rack-compatible and run-compatible assay protocols. The index is assigned and maintained by the instrument manufacturer. The first level index implicates rack-compatibility, that is, assay protocols with the same index value can run in the same rack. The second level index implicates run-compatibility, that is, assay protocols which can be practiced in the second rack on an instrument relative to the assay in the first rack; by definition, rack-compatible assay protocols are also run-compatible. If assay protocols do not share a rack or run compatible index level, then the instrument is prevented from performing assay protocols on the instrument concurrently.



FIG. 1 illustrates an exemplary embodiment of this process. In the process shown in FIG. 1, run compatibility (second level compatibility) is indicated by protocols on the same vertical level. Rack compatibility (first level compatibility) is indicated by protocols on the same horizontal level. Thus, for example, two samples must be in the same box in the diagram to be in the same rack in a worklist. Boxes on the same horizontal level share the same Level 2 compatibility index, that is, assay protocols from different boxes can be on separate racks inside the same run, but not in the same rack.


As shown in FIG. 1, factors that determine compatibility are reagent strip design, the number of MM (master mixes), the use of a UDP or ADF (user defined protocol versus assay definition file), and the specific process (extraction versus full process).


Table 2 below illustrates several parameters that can influence compatibility. For example, in Table 2, cells with text in double-brackets highlight the parameters in Assays 4 and 5 that break compatibility with Guardrail Family A. Specifically, for Assay 4, aspiration height, lysis temperature, number of washes and magnet speed are outside of the limits for each parameter defined for Assays 1-3. Similarly, for Assay 5, aspiration height and lysis time are outside the limits for those parameters.









TABLE 2







Guardrail Family A











Incompatible



Compatible Assays
Assays















Assay
Assay
Assay
Assay
Assay


Assay Step
Limits
1
2
3
4
5





Aspiration
1200-
1600
1550
1200
[[1150]]
[[1700]]


Height
1600







Lysis Time
0 to
10 min
5 min
0 min
10 min
[[35 min]]



30 Min







Lysis Tem-
30 to
42° C.
30° C.
50° C.
[[27° C.]]
42° C.


perature
50° C.







Number of
1
  1
  1
  1
  [[2]]
  1


washes








Magnet
Slow
Slow
Slow
Slow
[[Fast]]
Slow


Speed









Table 2 thus illustrates that physical, temporal or other parameters need not be identical between assays in order to indicate compatibility. Rather, parameters can fall within a range which confers compatibility of, for example, a shared resource.


Table 3 below is an example of a table that assigns rack and run compatibility values for a set of assay protocols.












TABLE 3





Assay

Level 1
Level 2


Protocol
Workflow Type
Index
Index


















1
Extract DNA
1
1


2
UDP DNA
2
2


3
Family A
3
2


4
Family A
3
2


5
Family A
4
3


6
Extract RNA
5
1


7
Extract RNA
5
1


8
UDP RNA
6
2


9
Family B
7
2


10
Family C
8
4









In Table 3, Families A, B, and C represent workflows that are not directly compatible with each other due to physical differences, such as incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature or workstation time demands. In the diagram and the table, families A and B are run compatible, meaning that a first workstation could practice tests in Family A (not B), and that a second workstation could practice test in Family B (not A, if a B is selected for that workstation first). As shown in FIG. 1, Family C is neither rack-nor run-compatible with the other workflows.


In Table 3, three different Family A tests have a different compatibility index. While the workflows would indicate that they should be physically compatible, there could be other reasons that the manufacture chooses not to practice them on in the instrument at the same time. For example, when the manufacturer partners with a third party company, it may be desirable to prevent the user to run both manufacturer-supplied and third party-supplied tests on the instrument at the same time, even if the workflow of the test would allow it.


Example 2
Identification of Assay Compatibility

This example demonstrates identification of first-level and second-level compatibility between two assay protocols according to one embodiment. In the exemplary methods shown in FIG. 2, the compatibility between a first and second assay is determined by comparing two levels of compatibility index values. In order to avoid running incompatible assays concurrently, users had to manually compare assay protocols on a chart or table to determine whether they can be performed concurrently on the same rack, or even on different racks of the same instrument. An example of such a look up table is shown in FIG. 5. Such manual approaches can be error prone, as well as inefficient and labor intensive. This example provides an example of an automated method to identify compatible assay protocols and prevent incompatible assay protocols from being performed concurrently.


Assay Protocols on the Same Rack.


As described in the schematic shown in FIG. 2, a first assay is selected by the user from a list of all available assay protocols. Based on user input, the first-level (rack) compatibility index value for the selected first assay is obtained from the assay definition file (ADF) for the first assay, or from the UDP if the selected assay is user-defined. That compatibility index value is then compared to the first-level compatibility index value (obtained from the ADF or UDP for each respective assay) of each of the other available assay protocols. All assay protocols are identified which share a first-level compatibility index value with the selected assay, and any non-compatible assay protocols are excluded from further consideration.


Next, the system obtains the second-level (nm) compatibility index value for the selected first assay and compares the value to the second-level compatibility index value of all other remaining assay protocols. All assay protocols are identified which share a second-level compatibility index value with the selected assay, and any non-compatible assay protocols are excluded from further consideration. A list is then displayed which contains only first- and second-level compatible assay protocols. The user selects a second assay from that list, and when selection is complete, the system begins to perform the two assay protocols concurrently on the same rack, or on separate racks if desired.


Assay Protocols on Separate Racks.


Alternatively, the system can identify and run assay protocols on separate racks when they are not compatible to run together on the same rack. As described in the schematic shown in FIG. 2, a first assay is selected by the user from a list of all available assay protocols. Based on user input, the first-level (rack) compatibility index value for the selected first assay is obtained from the assay definition file (ADF) for the first assay, or from the UDP if the selected assay is user-defined. That compatibility index value is then compared to the first-level compatibility index value (obtained from the ADF or UDP for each respective assay) of each of the other available assay protocols. If no assay protocols are identified which share a first-level compatibility index value with the selected assay, the system then obtains the second-level (nm) compatibility index value for the selected first assay and compares the value to the second-level compatibility index value of all other available assay protocols. All assay protocols are identified which share a second-level compatibility index value with the selected assay, and any non-compatible assay protocols are excluded from further consideration. A list is then displayed which contains only assay protocols which are compatible to run concurrently on separate racks. The user selects a second assay from that list, and when selection is complete, the system begins to perform the two assay protocols concurrently on separate racks.


No Other Compatible Assay Protocols.


In the event that the system does not identify other assay protocols which are either rack-compatible or run-compatible, the user can choose to perform a single assay protocol, using one or multiple samples, on the same or separate racks.


Example 3
Addition of Tests to a Run Worklist

This example demonstrates the process of preparing a run worklist, including identification of assay protocols which can run concurrently in the same worklist, either on the same or on separate racks.


A user has a predetermined number of samples, each of which must be assigned an assay protocol. As shown in FIG. 3, a blank worklist is provided, setting forth a complete list of available assay protocols. The user selects a first test from the test list. Upon entry of the user selection, the system auto-excludes all protocols with a different first-level compatibility index value, and displays a list of only those assay protocols that are not excluded. From the list of remaining protocols, the user selects another protocol from the list. This process repeats until all samples have been assigned an assay protocol, or until the first rack is full.


If the first rack is full, the system allows the user to begin selecting assay protocols for the second rack. The system displays all protocols with the same level 2 (run compatible) index values as those in the first rack. The user then selects a protocol from that list of run compatible protocols. Once a first selection has been made for the second rack, the system auto-excludes all protocols with a different first-level compatibility index value, and displays a list of only those assay protocols that are not excluded. From the list of remaining protocols, the user selects another protocol from the list. This process repeats until all samples have been assigned an assay protocol, or until the second rack is full.


Example 4
Use of Barcodes

This example demonstrates the use of barcodes as identifying indicia for consumable packaging.


Consumable reagents provided by a supplier include a barcode label that the instrument can read. When an assay is created, the expected barcodes are identified in the ADF. When an instrument run commences, the instrument executes a catalog process, which confirms that the user loaded the proper consumables on the instrument deck. The barcode data stored in the ADF is used to provide this verification. If the barcode is not read, the instrument alerts the user and waits for assistance in acquiring the barcode. If the barcode is read, but does not match that expected for the assay test that was requested by the user, then the instrument alerts the user and waits for assistance in correcting the difference by, for example, swapping reagents. The use of barcodes on the reagents and barcode information in the ADF provides process assurance that the user has run the assay appropriately.


Example 5
Use of ADF to Run Assay Protocol on Instrument

This example demonstrates the use of an ADF to accurately run assay protocols on an instrument.


The instrument first checks the ADF to determine the sample prep script needed to complete the run. The script data is then combined with the sample prep parameters defined in the ADF and the sample preparation process is initiated.


Upon completion of sample prep, the instrument again checks the ADF and executes the loadcartridge script identified in the ADF.


When loadcartridge completes, the instrument looks in the ADF to find out the fluorescence ratios needed to determine if the cartridge successfully loaded and compares those ratios with readings taken. If the instrument determines that the cartridge was successfully loaded, it then looks in the ADF to determine the PCR scripts to be used and PCR protocol necessary. Once these values are retrieved, the instrument begins the PCR process.


Upon completion of PCR, the instrument retrieves the parameters needed to run the data analysis algorithms from the ADF and executes the data analysis.


When data analysis completes the instrument combines the values returned from the data analysis engine with the result logic and result script identified in the ADF to derive a final call for that particular test.


Example 6

Generation of UDP and Assignment of First-Level and Second-Level Compatibility Index Values


This example demonstrates the creation of a UDP and assignment of compatibility index values to the UDP to accurately run assay protocols on an instrument.


A user generates a new UDP by responding to prompts on a touch-screen display, selecting the assay type, assay parameters and reagents for the protocol. Factors that are selected include, for example, type of extraction kit and PCR parameters. Specifically, selecting from several available options, the user selects a particular reagent strip design, a particular of MM, and the specific process (extraction versus full process). The user elects to program a full process, and as such, the user can further define cycle times, temperatures and other parameters for PCR.


Following a process set forth in FIG. 1, the system assigns first-level and second-level compatibility index values for the UDP according to similar factors that determine compatibility for ADFs. Based upon parameters including aspiration height, lysis temperature, lysis time, number of washes and magnet speed, the new UDP is assigned a first-level index value of ‘2’ and a second-level index value of ‘2.’


Thus, going forward, when the user adds protocols to a run worklist, the user will be able to perform the new UDP concurrently with other ADFs or UDPs that have first and second level index values of 2 and 2, respectively.


It is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the embodiments belong. Although any methods and materials similar or equivalent to those described herein may also be used in the practice or testing of the embodiments, the preferred methods and materials are now described.


The term “comprising” as used herein is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.


It must be noted that as used herein and in the appended claims, the singular forms “a,” “and,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a method” includes a plurality of such methods and equivalents thereof known to those skilled in the art, and so forth.


All references cited herein including, but not limited to, published and unpublished applications, patents, and literature references, are incorporated herein by reference in their entirety and are hereby made a part of this specification. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.


The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium may be coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.

Claims
  • 1. A method of performing an automated assay on a plurality of samples, said method comprising: providing an automated instrument comprising: a housing,a first area for performing automated assays, the first area located within the housing,a second area for performing automated assays, the second area located within the housing, anda space separating the first area from the second area, wherein each of said first and second areas have a rack configured to hold a plurality of samples to be processed concurrently by the automated instrument according to a plurality of different automated assay workflows using at least one resource of the automated instrument that is shared among the plurality of different automated assay workflows, wherein each different automated assay workflow has an associated unique assay definition file or user-defined protocol file, wherein said assay definition file or user-defined protocol file comprises a first-level compatibility index value and provides one or more parameters for a resource of the automated instrument used to perform the associated automated assay workflow;determining that the first assay workflow for a first sample using a set of resources of the automated instrument is compatible with the second assay workflow for a second sample using the set of resources of the automated instrument based at least in part on a first first-level compatibility index value included in a first assay definition file or user-defined protocol file for the first assay workflow being equal to a second first-level compatibility index value included in a second assay definition file or user-defined protocol file for the second assay workflow, wherein said first-level compatibility index value indicates that first values for parameters associated with respective resources in the set of resources included in the first assay definition file or user-defined protocol file and second values for the parameters associated with corresponding resources in the set of resources included in the second assay definition file or user-defined protocol file are each within a resource compatibility range for the respective resource:initiating the first assay workflow and the second assay workflow, each according to its own one or more parameters, concurrently at one of: (i) the first area, or (ii) the second area.
  • 2. The method of claim 1, wherein said evaluating comprises: (b1) identifying any assay workflows which have first level compatibility index values different from the first compatibility index value of said first assay workflow; and(b2) providing a second list of second assay workflows, wherein said second list excludes any assay workflow having a first level compatibility index value different from the first compatibility index value of said first assay workflow.
  • 3. The method of claim 1, wherein the first assay definition file or user-defined protocol file comprises a first second-level compatibility index value and the second assay definition file or user-defined protocol file comprises a second second-level compatibility index value, and wherein the method comprises: prior to initiating the first assay workflow and the second assay workflow, determining that the first second-level compatibility index value included in the first assay definition file or user-defined protocol file for the first assay workflow matches the second second-level compatibility index value included in the second assay definition file or user-defined protocol file for the second assay workflow.
  • 4. The method of claim 3, further comprising: identifying a set of assay workflows which have second level compatibility index values different from the first second-level compatibility index value included in the first assay definition file or user-defined protocol file and the second second-level compatibility index value included in the second assay definition file or user-defined protocol file; andcausing display of a second list of second assay workflows, wherein said second list excludes any assay workflow included in the set of assay workflows.
  • 5. The method of claim 1, wherein the parameter is selected from the group consisting of: incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature, workstation time demands, regulatory classification, or a combination thereof.
  • 6. The method of claim 3, wherein said second-level compatibility comprises compatibility of performing two assays concurrently on different areas of said automated instrument, and wherein said second-level compatibility is determined based on parameters selected from the group consisting of: regulatory classification, workflow incompatibility, or a combination thereof.
  • 7. The method of claim 5, wherein said instrument prevents the concurrent performance of incompatible assay workflows within the one of the first area or the second area when the first compatibility indexes are different.
  • 8. The method of claim 6, further comprising: receiving a third sample associated with a third assay workflow, the third assay workflow associated with a third assay definition file or user-defined protocol file including a third second-level compatibility index value that differs from the first second-level compatibility index value and the second second-level compatibility index value, wherein said initiating excludes concurrent processing of the third sample with the first sample and the second sample.
  • 9. The method of claim 1, further comprising one or more of the following: initiating an assay-specific sample preparation script on the instrument;comparing identifying indicia on a consumable package to a set of assay-specific identifying data stored on the instrument;initiating an assay-specific load cartridge script on the instrument;comparing fluorescence ratios in a loaded cartridge to a set of assay-specific fluorescence ratio data stored on the instrument to determine whether said cartridge was successfully loaded;initiating an assay-specific reaction script on the instrument;initiating an assay-specific data analysis algorithm on the instrument; orderiving a final call for the assay, based on one or more assay-specific result algorithms or scripts.
  • 10. The method of claim 9, wherein an assay workflow of said plurality of assay workflows comprises a reaction selected from the group selected from: Polymerase Chain Reaction (PCR), Transcription Mediated Amplification (TMA), Oligonucleotide Ligation Assay (OLA), Ligase Chain Reaction (LCR), Rolling Circle Amplification (RCA), Strand Displacement Amplification (SDA), and a hybridization reaction.
  • 11. A system for performing an automated assay comprising: an automated instrument comprising: a housing;a first area for performing automated assay, the first area located within the housing;a second area for performing automated assays, the second area located within the housing; anda space separating the first area from the second area, wherein each of said first area and said second area have a rack configured to hold a plurality of samples to be processed concurrently by the automated instrument according to a plurality of different automated assay workflows utilizing at least one resource of the automated instrument that is shared between automated assay workflows, wherein each different automated assay workflow has an associated unique assay definition file or user-defined protocol file, wherein said assay definition file or user-defined protocol file comprises a first level compatibility index value and provides one or more parameters for performing the automated assay workflow;a processor; anda storage capacity storing instructions executable by the processor to cause the automated instrument to: request selection of a first assay workflow from among a first list of all available assay workflows;receive a selection of a first assay workflow selected from the first list and an identified area for performing the first assay workflow for a first sample using a set of resources of the automated instrument, wherein the identified area is one of the first area or the second area;display a second list of second assay workflows for the identified area, wherein said second list excludes any assay workflows having first-level compatibility index values different from a first-level compatibility index value of the first selected assay workflow, wherein said first-level compatibility index value indicates that first values for parameters associated with respective resources in the set of resources used by the first selected assay workflow and second values for the parameters associated with corresponding resources in the set of resources included assays workflows included in the second list are each within a resource compatibility range for the respective resource;request a selection from said second list of second workflow assays;receive the selection of a second assay workflow selected from the second list, the second assay workflow for a second sample; andinitiate the selected first assay workflow and the selected second assay workflow, each according to one or more parameters specified in respective assay definition file or user-defined protocol files, concurrently at the identified area.
  • 12. The system of claim 11, wherein each assay definition file or user-defined protocol file comprises a second-level compatibility index value, wherein the instructions executable by the processor further cause the automated instrument to: display a third list of third assay workflows, wherein said third list excludes any assay workflows having second-level compatibility index values different from a first second-level compatibility index value of the selected first assay workflow and a second second-level compatibility index value of the selected second assay workflow;request a selection from said third list of third assay workflows;receive the selection of a third assay workflow selected from the third list and a second identified area for performing the third assay workflow, wherein the second identified area is one of the first area or the second area, and wherein the second identified area is different from the identified area; andinitiate the third assay workflow concurrently with the first assay workflow and the second assay workflow.
  • 13. The system of claim 11, wherein said first level compatibility is determined based on parameters selected from the group consisting of: incubation time, lysis time, reagent volume, reagent type, incubation temperature, lysis temperature, workstation time demands, regulatory classification, or a combination thereof.
  • 14. The system of claim 11, further comprising instructions executable by the processor to cause the automated instrument to perform, if said assays are compatible, at least one of: initiating an assay-specific sample preparation script on the automated instrument;comparing identifying indicia on a consumable package to a set of assay-specific identifying data stored on the automated instrument;initiating an assay-specific load cartridge script on the automated instrument;comparing fluorescence ratios in a loaded cartridge to a set of assay-specific fluorescence ratio data stored on the automated instrument to determine whether said cartridge was successfully loaded;initiating an assay-specific reaction script on the automated instrument;initiating an assay-specific data analysis algorithm on the automated instrument; orderiving a final call for the assay, based on one or more assay-specific result algorithms or scripts.
  • 15. The system of claim 14, wherein an assay workflow of said plurality of assay workflows comprises a reaction selected from the group selected from: Polymerase Chain Reaction (PCR), Transcription Mediated Amplification (TMA), Oligonucleotide Ligation Assay (OLA), Ligase Chain Reaction (LCR), Rolling Circle Amplification (RCA), Strand Displacement Amplification (SDA), and a hybridization reaction.
  • 16. The system of claim 11, wherein said system further comprises a bar code reader.
  • 17. The system of claim 16, further comprising instructions executable by the processor to cause the automated instrument to: scan, via the bar code reader, an identifier within the identified area for the selected first assay workflow; anddetermine that the identifier is associated with a reagent used by the first assay workflow, wherein the selected first assay workflow is initiated upon said determining.
  • 18. The method of claim 1, wherein the at least one resource comprises a pipettor, a robotic arm, or a detector unit.
  • 19. The method of claim 1, further comprising: scanning, via a barcode reader included in the automated instrument, an identifier on a rack within the one of the first area or the second area including the first sample; andinitiating the first assay workflow based at least in part on a determination that the identifier corresponds to barcode data included in the first assay definition file or user-defined protocol file.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Application Ser. No. 61/594,867, entitled “EXTERNAL FILES FOR DISTRIBUTION OF MOLECULAR DIAGNOSTIC TESTS AND DETERMINATION OF COMPATIBILITY BETWEEN TESTS,” filed Feb. 3, 2012, the entire disclosure of which is herein incorporated by reference in its entirety

US Referenced Citations (1082)
Number Name Date Kind
1434314 Raich Oct 1922 A
1616419 Wilson Feb 1927 A
1733401 Lovekin Aug 1930 A
D189404 Nicolle Dec 1960 S
3050239 Williams Aug 1962 A
3528449 Witte et al. Sep 1970 A
3813316 Chakrabarty et al. May 1974 A
3905772 Hartnett et al. Sep 1975 A
3985649 Eddelman Oct 1976 A
4018089 Dzula et al. Apr 1977 A
4018652 Lanham et al. Apr 1977 A
4038192 Serur Jul 1977 A
4055395 Honkawa et al. Oct 1977 A
D249706 Adamski Sep 1978 S
4139005 Dickey Feb 1979 A
D252157 Kronish et al. Jun 1979 S
D252341 Thomas Jul 1979 S
D254687 Fadler et al. Apr 1980 S
4212744 Oota Jul 1980 A
D261033 Armbruster Sep 1981 S
D261173 Armbruster Oct 1981 S
4301412 Hill et al. Nov 1981 A
4439526 Columbus Mar 1984 A
4457329 Werley et al. Jul 1984 A
4466740 Kano et al. Aug 1984 A
4472357 Levy et al. Sep 1984 A
4504582 Swann Mar 1985 A
4522786 Ebersole Jun 1985 A
D279817 Chen et al. Jul 1985 S
D282208 Lowry Jan 1986 S
4599315 Teraski et al. Jul 1986 A
4612873 Eberle Sep 1986 A
4612959 Costello Sep 1986 A
D288478 Carlson et al. Feb 1987 S
4647432 Wakatake Mar 1987 A
4654127 Baker et al. Mar 1987 A
4673657 Christian Jun 1987 A
4678752 Thorne et al. Jul 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4698302 Whitehead et al. Oct 1987 A
D292735 Lovborg Nov 1987 S
4720374 Ramachandran Jan 1988 A
4724207 Hou et al. Feb 1988 A
4798693 Mase et al. Jan 1989 A
4800022 Leonard Jan 1989 A
4827944 Nugent May 1989 A
4841786 Schulz Jun 1989 A
D302294 Hillman Jul 1989 S
4855110 Marker et al. Aug 1989 A
4871779 Killat et al. Oct 1989 A
4895650 Wang Jan 1990 A
4919829 Gates et al. Apr 1990 A
4921809 Shiff et al. May 1990 A
4935342 Seligson et al. Jun 1990 A
4946562 Guruswamy Aug 1990 A
4949742 Rando et al. Aug 1990 A
D310413 Bigler et al. Sep 1990 S
4963498 Hillman Oct 1990 A
4967950 Legg et al. Nov 1990 A
D312692 Bradley Dec 1990 S
4978502 Dole et al. Dec 1990 A
4978622 Mishell et al. Dec 1990 A
4989626 Takagi et al. Feb 1991 A
5001417 Pumphrey et al. Mar 1991 A
5004583 Guruswamy et al. Apr 1991 A
5048554 Kremer Sep 1991 A
5053199 Keiser et al. Oct 1991 A
5060823 Perlman Oct 1991 A
5061336 Soane Oct 1991 A
5064618 Baker et al. Nov 1991 A
5071531 Soane Dec 1991 A
5091328 Miller Feb 1992 A
D324426 Fan et al. Mar 1992 S
5096669 Lauks et al. Mar 1992 A
D325638 Sloat et al. Apr 1992 S
5126002 Iwata et al. Jun 1992 A
5126022 Soane et al. Jun 1992 A
D328135 Fan et al. Jul 1992 S
D328794 Frenkel et al. Aug 1992 S
5135627 Soane Aug 1992 A
5135872 Pouletty et al. Aug 1992 A
5147606 Charlton et al. Sep 1992 A
5169512 Wiedenmann et al. Dec 1992 A
D333522 Gianino Feb 1993 S
5186339 Heissler Feb 1993 A
5192507 Taylor et al. Mar 1993 A
5208163 Charlton et al. May 1993 A
5217694 Gibler et al. Jun 1993 A
5223226 Whittmer et al. Jun 1993 A
5229297 Schnipelsky Jul 1993 A
D338275 Fischer et al. Aug 1993 S
5250263 Manz Oct 1993 A
5252743 Barrett et al. Oct 1993 A
5256376 Callan et al. Oct 1993 A
5273716 Northrup et al. Dec 1993 A
5275787 Yuguchi et al. Jan 1994 A
5282950 Dietze et al. Feb 1994 A
5296375 Kricka et al. Mar 1994 A
5304477 Nagoh et al. Apr 1994 A
5304487 Wilding et al. Apr 1994 A
D347478 Pinkney May 1994 S
5311896 Kaartinen et al. May 1994 A
5311996 Duffy et al. May 1994 A
5316727 Suzuki et al. May 1994 A
5327038 Culp Jul 1994 A
5339486 Persic, Jr. Aug 1994 A
D351475 Gerber Oct 1994 S
D351913 Hieb et al. Oct 1994 S
5364591 Green et al. Nov 1994 A
5372946 Cusak et al. Dec 1994 A
5374395 Robinson Dec 1994 A
5389339 Petschek et al. Feb 1995 A
D356232 Armstrong et al. Mar 1995 S
5397709 Berndt Mar 1995 A
5401465 Smethers et al. Mar 1995 A
5411708 Moscetta et al. May 1995 A
5414245 Hackleman May 1995 A
5415839 Zaun et al. May 1995 A
5416000 Allen et al. May 1995 A
5422271 Chen et al. Jun 1995 A
5422284 Lau Jun 1995 A
5427946 Kricka et al. Jun 1995 A
5443791 Cathcart et al. Aug 1995 A
5474796 Brennan Dec 1995 A
5475487 Mariella, Jr. et al. Dec 1995 A
D366116 Biskupski Jan 1996 S
5486335 Wilding et al. Jan 1996 A
5494639 Grzegorzewski Feb 1996 A
5498392 Wilding et al. Mar 1996 A
5503803 Brown Apr 1996 A
5516410 Schneider et al. May 1996 A
5519635 Miyake et al. May 1996 A
5529677 Schneider et al. Jun 1996 A
5559432 Logue Sep 1996 A
5565171 Dovichi et al. Oct 1996 A
5569364 Hooper et al. Oct 1996 A
5578270 Reichler et al. Nov 1996 A
5578818 Kain et al. Nov 1996 A
5579928 Anukwuem Dec 1996 A
5580523 Bard Dec 1996 A
5582884 Ball et al. Dec 1996 A
5582988 Backus et al. Dec 1996 A
5585069 Zanucchi et al. Dec 1996 A
5585089 Queen et al. Dec 1996 A
5585242 Bouma et al. Dec 1996 A
5587128 Wilding et al. Dec 1996 A
5589136 Northrup et al. Dec 1996 A
5593838 Zanzucchi et al. Jan 1997 A
5595708 Berndt Jan 1997 A
5599432 Manz et al. Feb 1997 A
5599503 Manz et al. Feb 1997 A
5599667 Arnold, Jr. et al. Feb 1997 A
5601727 Bormann et al. Feb 1997 A
5603351 Cherukuri et al. Feb 1997 A
5605662 Heller et al. Feb 1997 A
5609910 Hackleman Mar 1997 A
D378782 LaBarbera et al. Apr 1997 S
5628890 Carter et al. May 1997 A
5630920 Friese et al. May 1997 A
5631337 Sassi et al. May 1997 A
5632876 Zanzucchi et al. May 1997 A
5632957 Heller et al. May 1997 A
5635358 Wilding et al. Jun 1997 A
5637469 Wilding et al. Jun 1997 A
5639423 Northrup et al. Jun 1997 A
5639428 Cottingham Jun 1997 A
5643738 Zanzucchi et al. Jul 1997 A
5645801 Bouma et al. Jul 1997 A
5646039 Northrup et al. Jul 1997 A
5646049 Tayi Jul 1997 A
5647994 Tuunanen et al. Jul 1997 A
5651839 Rauf Jul 1997 A
5652141 Henco et al. Jul 1997 A
5652149 Mileaf et al. Jul 1997 A
D382346 Buhler et al. Aug 1997 S
D382647 Staples et al. Aug 1997 S
5654141 Mariani et al. Aug 1997 A
5658515 Lee et al. Aug 1997 A
5667976 Van Ness et al. Sep 1997 A
5671303 Shieh et al. Sep 1997 A
5674394 Whitmore Oct 1997 A
5674742 Northrup et al. Oct 1997 A
5681484 Zanzucchi et al. Oct 1997 A
5681529 Taguchi et al. Oct 1997 A
5683657 Mian Nov 1997 A
5683659 Hovatter Nov 1997 A
5699157 Parce Dec 1997 A
5700637 Southern Dec 1997 A
5705813 Apffel et al. Jan 1998 A
5721136 Finney et al. Feb 1998 A
5725831 Reichler et al. Mar 1998 A
5726026 Wilding et al. Mar 1998 A
5726404 Brody Mar 1998 A
5726944 Pelley et al. Mar 1998 A
5731212 Gavin et al. Mar 1998 A
5744366 Kricka et al. Apr 1998 A
5746978 Bienhaus et al. May 1998 A
5747666 Willis May 1998 A
5750015 Soane et al. May 1998 A
5755942 Zanzucchi et al. May 1998 A
5762874 Seaton et al. Jun 1998 A
5763262 Wong et al. Jun 1998 A
5770029 Nelson et al. Jun 1998 A
5770388 Vorpahl Jun 1998 A
5772966 Maracas et al. Jun 1998 A
5779868 Parce et al. Jul 1998 A
5783148 Cottingham et al. Jul 1998 A
5787032 Heller et al. Jul 1998 A
5788814 Sun et al. Aug 1998 A
5800600 Lima-Marques et al. Sep 1998 A
5800690 Chow et al. Sep 1998 A
5804436 Okun et al. Sep 1998 A
D399959 Prokop et al. Oct 1998 S
5819749 Lee et al. Oct 1998 A
5827481 Bente et al. Oct 1998 A
5842106 Thaler et al. Nov 1998 A
5842787 Kopf-Sill et al. Dec 1998 A
5846396 Zanzucchi et al. Dec 1998 A
5846493 Bankier et al. Dec 1998 A
5849208 Hayes et al. Dec 1998 A
5849486 Heller et al. Dec 1998 A
5849489 Heller Dec 1998 A
5849598 Wilson et al. Dec 1998 A
5852495 Parce Dec 1998 A
5856174 Lipshutz et al. Jan 1999 A
5858187 Ramsey et al. Jan 1999 A
5858188 Soane et al. Jan 1999 A
5863502 Southgate et al. Jan 1999 A
5863708 Zanzucchi et al. Jan 1999 A
5863801 Southgate et al. Jan 1999 A
5866345 Wilding et al. Feb 1999 A
5869004 Parce et al. Feb 1999 A
5869244 Martin et al. Feb 1999 A
5872010 Karger et al. Feb 1999 A
5872623 Stabile et al. Feb 1999 A
5874046 Megerle Feb 1999 A
5876675 Kennedy Mar 1999 A
5880071 Parce et al. Mar 1999 A
5882465 McReynolds Mar 1999 A
5883211 Sassi et al. Mar 1999 A
5885432 Hooper et al. Mar 1999 A
5885470 Parce et al. Mar 1999 A
5895762 Greenfield et al. Apr 1999 A
5900130 Benregnu et al. May 1999 A
5911737 Lee et al. Jun 1999 A
5912124 Kumar Jun 1999 A
5912134 Shartle Jun 1999 A
5914229 Loewy Jun 1999 A
5916522 Boyd et al. Jun 1999 A
5916776 Kumar Jun 1999 A
5919646 Okun et al. Jul 1999 A
5919711 Boyd et al. Jul 1999 A
5922591 Anderson et al. Jul 1999 A
5927547 Papen et al. Jul 1999 A
5928161 Krulevitch et al. Jul 1999 A
5928880 Wilding et al. Jul 1999 A
5929208 Heller et al. Jul 1999 A
D413391 Lapeus et al. Aug 1999 S
5932799 Moles Aug 1999 A
5935401 Amigo Aug 1999 A
5939291 Loewy et al. Aug 1999 A
5939312 Baier et al. Aug 1999 A
5942443 Parce et al. Aug 1999 A
5944717 Lee et al. Aug 1999 A
D413677 Dumitrescu et al. Sep 1999 S
D414271 Mendoza Sep 1999 S
5948227 Dubrow Sep 1999 A
5948363 Gaillard Sep 1999 A
5948673 Cottingham Sep 1999 A
5955028 Chow Sep 1999 A
5955029 Wilding et al. Sep 1999 A
5957579 Kopf-Sill et al. Sep 1999 A
5958203 Parce et al. Sep 1999 A
5958349 Petersen et al. Sep 1999 A
5958694 Nikiforov Sep 1999 A
5959221 Boyd et al. Sep 1999 A
5959291 Jensen Sep 1999 A
5935522 Swerdlow et al. Oct 1999 A
5964995 Nikiforov et al. Oct 1999 A
5964997 McBride Oct 1999 A
5965001 Chow et al. Oct 1999 A
5965410 Chow et al. Oct 1999 A
5965886 Sauer et al. Oct 1999 A
5968745 Thorp et al. Oct 1999 A
5972187 Parce et al. Oct 1999 A
5973138 Collis Oct 1999 A
D417009 Boyd Nov 1999 S
5976336 Dubrow et al. Nov 1999 A
5980704 Cherukuri et al. Nov 1999 A
5980719 Cherukuri et al. Nov 1999 A
5981735 Thatcher et al. Nov 1999 A
5985651 Hunicke-Smith Nov 1999 A
5989402 Chow et al. Nov 1999 A
5992820 Fare et al. Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5993750 Ghosh et al. Nov 1999 A
5997708 Craig Dec 1999 A
6001229 Ramsey Dec 1999 A
6001231 Kopf-Sill Dec 1999 A
6001307 Naka et al. Dec 1999 A
6004450 Northrup et al. Dec 1999 A
6004515 Parce et al. Dec 1999 A
6007690 Nelson et al. Dec 1999 A
6010607 Ramsey Jan 2000 A
6010608 Ramsey Jan 2000 A
6010627 Hood, III Jan 2000 A
6012902 Parce Jan 2000 A
D420747 Dumitrescu et al. Feb 2000 S
D421130 Cohen et al. Feb 2000 S
6024920 Cunanan Feb 2000 A
D421653 Purcell Mar 2000 S
6033546 Ramsey Mar 2000 A
6033880 Haff et al. Mar 2000 A
6043080 Lipshutz et al. Mar 2000 A
6046056 Parce et al. Apr 2000 A
6048734 Burns et al. Apr 2000 A
6054034 Soane et al. Apr 2000 A
6054277 Furcht et al. Apr 2000 A
6056860 Amigo et al. May 2000 A
6057149 Burns et al. May 2000 A
6062261 Jacobson et al. May 2000 A
6063341 Fassbind et al. May 2000 A
6063589 Kellogg et al. May 2000 A
6068751 Neukermans May 2000 A
6068752 Dubrow et al. May 2000 A
6071478 Chow Jun 2000 A
6074725 Kennedy Jun 2000 A
6074827 Nelson et al. Jun 2000 A
D428497 Lapeus et al. Jul 2000 S
6086740 Kennedy Jul 2000 A
6096509 Okun et al. Aug 2000 A
6100541 Nagle et al. Aug 2000 A
6102897 Lang Aug 2000 A
6103537 Ullman et al. Aug 2000 A
6106685 McBride et al. Aug 2000 A
6110343 Ramsey et al. Aug 2000 A
6117398 Bienhaus et al. Sep 2000 A
6123205 Dumitrescu et al. Sep 2000 A
6123798 Gandhi et al. Sep 2000 A
6130098 Handique et al. Oct 2000 A
6132580 Mathies et al. Oct 2000 A
6132684 Marino Oct 2000 A
6133436 Koster et al. Oct 2000 A
D433759 Mathis et al. Nov 2000 S
6143250 Tajima Nov 2000 A
6143547 Hsu Nov 2000 A
6149787 Chow et al. Nov 2000 A
6149872 Mack et al. Nov 2000 A
6156199 Zuk, Jr. Dec 2000 A
6158269 Dorenkott et al. Dec 2000 A
6167910 Chow Jan 2001 B1
6168948 Anderson et al. Jan 2001 B1
6171850 Nagle et al. Jan 2001 B1
6174675 Chow et al. Jan 2001 B1
6180950 Olsen Jan 2001 B1
D438311 Yamanishi et al. Feb 2001 S
6190619 Kilcoin et al. Feb 2001 B1
6194563 Cruickshank Feb 2001 B1
D438632 Miller Mar 2001 S
D438633 Miller Mar 2001 S
D439673 Brophy et al. Mar 2001 S
6197595 Anderson et al. Mar 2001 B1
6211989 Wulf et al. Apr 2001 B1
6213151 Jacobson et al. Apr 2001 B1
6221600 MacLeod et al. Apr 2001 B1
6228635 Armstrong et al. May 2001 B1
6232072 Fisher May 2001 B1
6235175 Dubrow et al. May 2001 B1
6235313 Mathiowitz et al. May 2001 B1
6235471 Knapp et al. May 2001 B1
6236456 Giebeler et al. May 2001 B1
6236581 Foss et al. May 2001 B1
6238626 Higuchi et al. May 2001 B1
6251343 Dubrow et al. Jun 2001 B1
6254826 Acosta et al. Jul 2001 B1
6259635 Khouri et al. Jul 2001 B1
6261431 Mathies et al. Jul 2001 B1
6267858 Parce et al. Jul 2001 B1
D446306 Ochi et al. Aug 2001 S
6271021 Burns et al. Aug 2001 B1
6274089 Chow et al. Aug 2001 B1
6280967 Ransom et al. Aug 2001 B1
6281008 Komai et al. Aug 2001 B1
6284113 Bjornson et al. Sep 2001 B1
6284470 Bitner et al. Sep 2001 B1
6287254 Dodds Sep 2001 B1
6287774 Kikiforov Sep 2001 B1
6291248 Haj-Ahmad Sep 2001 B1
6294063 Becker et al. Sep 2001 B1
6300124 Blumenfeld et al. Oct 2001 B1
6302134 Kellogg et al. Oct 2001 B1
6302304 Spencer Oct 2001 B1
6303343 Kopf-sill Oct 2001 B1
6306273 Wainright et al. Oct 2001 B1
6306590 Mehta et al. Oct 2001 B1
6310199 Smith et al. Oct 2001 B1
6316774 Giebeler et al. Nov 2001 B1
6319469 Mien et al. Nov 2001 B1
6319474 Krulevitch et al. Nov 2001 B1
6322683 Wolk et al. Nov 2001 B1
6326083 Yang et al. Dec 2001 B1
6326147 Oldham et al. Dec 2001 B1
6326211 Anderson et al. Dec 2001 B1
6334980 Hayes et al. Jan 2002 B1
6337435 Chu et al. Jan 2002 B1
6353475 Jensen et al. Mar 2002 B1
6358387 Kopf-sill et al. Mar 2002 B1
6366924 Parce Apr 2002 B1
6368561 Rutishauser et al. Apr 2002 B1
6368871 Christel et al. Apr 2002 B1
6370206 Schenk Apr 2002 B1
6375185 Lin Apr 2002 B1
6375901 Robotti et al. Apr 2002 B1
6379884 Wada et al. Apr 2002 B2
6379929 Burns et al. Apr 2002 B1
6379974 Parce et al. Apr 2002 B1
6382254 Yang et al. May 2002 B1
6391541 Petersen et al. May 2002 B1
6391623 Besemer et al. May 2002 B1
6395161 Schneider et al. May 2002 B1
6398956 Coville et al. Jun 2002 B1
6399025 Chow Jun 2002 B1
6399389 Parce et al. Jun 2002 B1
6399952 Maher et al. Jun 2002 B1
6401552 Elkins Jun 2002 B1
6403338 Knapp et al. Jun 2002 B1
6408878 Unger et al. Jun 2002 B2
6413401 Chow et al. Jul 2002 B1
6416642 Alajoki et al. Jul 2002 B1
6420143 Kopf-sill Jul 2002 B1
6425972 McReynolds Jul 2002 B1
D461906 Pham Aug 2002 S
6428987 Franzen Aug 2002 B2
6430512 Gallagher Aug 2002 B1
6432366 Ruediger et al. Aug 2002 B2
6440725 Pourahmadi et al. Aug 2002 B1
D463031 Slomski et al. Sep 2002 S
6444461 Knapp et al. Sep 2002 B1
6447661 Chow et al. Sep 2002 B1
6447727 Parce et al. Sep 2002 B1
6448064 Vo-Dinh et al. Sep 2002 B1
6453928 Kaplan et al. Sep 2002 B1
6458259 Parce et al. Oct 2002 B1
6465257 Parce et al. Oct 2002 B1
6468761 Yang et al. Oct 2002 B2
6472141 Nikiforov Oct 2002 B2
D466219 Wynschenk et al. Nov 2002 S
6475364 Dubrow et al. Nov 2002 B1
D467348 McMichael et al. Dec 2002 S
D467349 Niedbala et al. Dec 2002 S
6488897 Dubrow et al. Dec 2002 B2
6495104 Unno et al. Dec 2002 B1
6498497 Chow et al. Dec 2002 B1
6500323 Chow et al. Dec 2002 B1
6500390 Boulton et al. Dec 2002 B1
D468437 McMenamy et al. Jan 2003 S
6506609 Wada et al. Jan 2003 B1
6509186 Zou et al. Jan 2003 B1
6509193 Tajima Jan 2003 B1
6511853 Kopf-sill et al. Jan 2003 B1
D470595 Crisanti et al. Feb 2003 S
6515753 Maher Feb 2003 B2
6517783 Horner et al. Feb 2003 B2
6520197 Deshmukh et al. Feb 2003 B2
6521181 Northrup et al. Feb 2003 B1
6521188 Webster Feb 2003 B1
6524456 Ramsey et al. Feb 2003 B1
6524532 Northrup Feb 2003 B1
6524790 Kopf-sill et al. Feb 2003 B1
D472324 Rumore et al. Mar 2003 S
6534295 Tai et al. Mar 2003 B2
6537432 Schneider et al. Mar 2003 B1
6537771 Farinas et al. Mar 2003 B1
6540896 Manz et al. Apr 2003 B1
6544734 Briscoe et al. Apr 2003 B1
6547942 Parce et al. Apr 2003 B1
6555389 Ullman et al. Apr 2003 B1
6556923 Gallagher et al. Apr 2003 B2
D474279 Mayer et al. May 2003 S
D474280 Niedbala et al. May 2003 S
6558916 Veerapandian et al. May 2003 B2
6558945 Kao May 2003 B1
6565815 Chang et al. May 2003 B1
6569607 McReynolds May 2003 B2
6572830 Burdon et al. Jun 2003 B1
6575188 Parunak Jun 2003 B2
6576459 Miles et al. Jun 2003 B2
6579453 Bächler et al. Jun 2003 B1
6589729 Chan et al. Jul 2003 B2
6592821 Wada et al. Jul 2003 B1
6597450 Andrews et al. Jul 2003 B1
6602474 Tajima Aug 2003 B1
6613211 Mccormick et al. Sep 2003 B1
6613512 Kopf-sill et al. Sep 2003 B1
6613580 Chow et al. Sep 2003 B1
6613581 Wada et al. Sep 2003 B1
6614030 Maher et al. Sep 2003 B2
6620625 Wolk et al. Sep 2003 B2
6623860 Hu et al. Sep 2003 B2
6627406 Singh et al. Sep 2003 B1
D480814 Lafferty et al. Oct 2003 S
6632655 Mehta et al. Oct 2003 B1
6633785 Kasahara et al. Oct 2003 B1
D482796 Oyama et al. Nov 2003 S
6640981 Lafond et al. Nov 2003 B2
6649358 Parce et al. Nov 2003 B1
6664104 Pourahmadi et al. Dec 2003 B2
6669831 Chow et al. Dec 2003 B2
6670153 Stern Dec 2003 B2
D484989 Gebrian Jan 2004 S
6672458 Hansen et al. Jan 2004 B2
6681616 Spaid et al. Jan 2004 B2
6681788 Parce et al. Jan 2004 B2
6685813 Williams et al. Feb 2004 B2
6692700 Handique Feb 2004 B2
6695009 Chien et al. Feb 2004 B2
6699713 Benett et al. Mar 2004 B2
6706519 Kellogg et al. Mar 2004 B1
6720148 Nikiforov Apr 2004 B1
6730206 Ricco et al. May 2004 B2
6733645 Chow May 2004 B1
6734401 Bedingham et al. May 2004 B2
6737026 Bergh et al. May 2004 B1
6740518 Duong et al. May 2004 B1
D491272 Alden et al. Jun 2004 S
D491273 Biegler et al. Jun 2004 S
D491276 Langille Jun 2004 S
6750661 Brooks et al. Jun 2004 B2
6752966 Chazan Jun 2004 B1
6756019 Dubrow et al. Jun 2004 B1
6762049 Zou et al. Jul 2004 B2
6764859 Kreuwel et al. Jul 2004 B1
6766817 Dias da Silva Jul 2004 B2
6773567 Wolk Aug 2004 B1
6777184 Nikiforov et al. Aug 2004 B2
6783962 Olander et al. Aug 2004 B1
D495805 Lea et al. Sep 2004 S
6787015 Lackritz et al. Sep 2004 B2
6787016 Tan et al. Sep 2004 B2
6787111 Roach et al. Sep 2004 B2
6790328 Jacobson et al. Sep 2004 B2
6790330 Gascoyne et al. Sep 2004 B2
6811668 Berndt et al. Nov 2004 B1
6818113 Williams et al. Nov 2004 B2
6819027 Saraf Nov 2004 B2
6824663 Boone Nov 2004 B1
D499813 Wu Dec 2004 S
D500142 Crisanti et al. Dec 2004 S
D500363 Fanning et al. Dec 2004 S
6827831 Chow et al. Dec 2004 B1
6827906 Bjornson et al. Dec 2004 B1
6838156 Neyer et al. Jan 2005 B1
6838680 Maher et al. Jan 2005 B2
6852287 Ganesan Feb 2005 B2
6858185 Kopf-sill et al. Feb 2005 B1
6859698 Schmeisser Feb 2005 B2
6861035 Pham et al. Mar 2005 B2
6878540 Pourahmadi et al. Apr 2005 B2
6878755 Singh et al. Apr 2005 B2
6884628 Hubbell et al. Apr 2005 B2
6887693 McMillan et al. May 2005 B2
6893879 Petersen et al. May 2005 B2
6900889 Bjornson et al. May 2005 B2
6905583 Wainright et al. Jun 2005 B2
6905612 Dorian et al. Jun 2005 B2
6906797 Kao et al. Jun 2005 B1
6908594 Schaevitz et al. Jun 2005 B1
6911183 Handique et al. Jun 2005 B1
6914137 Baker Jul 2005 B2
6915679 Chien et al. Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
D508999 Fanning et al. Aug 2005 S
6939451 Zhao et al. Sep 2005 B2
6940598 Christel et al. Sep 2005 B2
6942771 Kayyem Sep 2005 B1
6951632 Unger et al. Oct 2005 B2
6958392 Fomovskaia et al. Oct 2005 B2
D512155 Matsumoto Nov 2005 S
6964747 Banerjee et al. Nov 2005 B2
6977163 Mehta Dec 2005 B1
6979424 Northrup et al. Dec 2005 B2
6984516 Briscoe et al. Jan 2006 B2
D515707 Sinohara et al. Feb 2006 S
D516221 Wohlstadter et al. Feb 2006 S
7001853 Brown et al. Feb 2006 B1
7004184 Handique et al. Feb 2006 B2
D517554 Yanagisawa et al. Mar 2006 S
7010391 Handique et al. Mar 2006 B2
7023007 Gallagher Apr 2006 B2
7024281 Unno Apr 2006 B1
7036667 Greenstein et al. May 2006 B2
7037416 Parce et al. May 2006 B2
7038472 Chien May 2006 B1
7039527 Tripathi et al. May 2006 B2
7040144 Spaid et al. May 2006 B2
7049558 Baer et al. May 2006 B2
D523153 Akashi et al. Jun 2006 S
7055695 Greenstein et al. Jun 2006 B2
7060171 Nikiforov et al. Jun 2006 B1
7066586 Dias da Silva Jun 2006 B2
7069952 McReynolds et al. Jul 2006 B1
7072036 Jones et al. Jul 2006 B2
7099778 Chien Aug 2006 B2
D528215 Malmsater Sep 2006 S
7101467 Spaid Sep 2006 B2
7105304 Nikiforov et al. Sep 2006 B1
D531321 Godfrey et al. Oct 2006 S
7118910 Unger et al. Oct 2006 B2
7122799 Hsieh et al. Oct 2006 B2
7135144 Christel et al. Nov 2006 B2
7138032 Gandhi et al. Nov 2006 B2
D534280 Gomm et al. Dec 2006 S
7148043 Kordunsky et al. Dec 2006 B2
7150814 Parce et al. Dec 2006 B1
7150999 Shuck Dec 2006 B1
D535403 Isozaki et al. Jan 2007 S
7160423 Chien et al. Jan 2007 B2
7161356 Chien Jan 2007 B1
7169277 Ausserer et al. Jan 2007 B2
7169601 Northrup et al. Jan 2007 B1
7169618 Skould Jan 2007 B2
D537951 Okamoto et al. Mar 2007 S
D538436 Patadia et al. Mar 2007 S
7188001 Young et al. Mar 2007 B2
7192557 Wu et al. Mar 2007 B2
7195986 Bousse et al. Mar 2007 B1
7205154 Corson Apr 2007 B2
7208125 Dong Apr 2007 B1
7235406 Woudenberg et al. Jun 2007 B1
7247274 Chow Jul 2007 B1
D548841 Brownell et al. Aug 2007 S
D549827 Maeno et al. Aug 2007 S
7252928 Hafeman et al. Aug 2007 B1
7255833 Chang et al. Aug 2007 B2
7270786 Parunak et al. Sep 2007 B2
D554069 Bolotin et al. Oct 2007 S
D554070 Bolotin et al. Oct 2007 S
7276208 Sevigny et al. Oct 2007 B2
7276330 Chow et al. Oct 2007 B2
7288228 Lefebvre Oct 2007 B2
7297313 Northrup et al. Nov 2007 B1
D556914 Okamoto et al. Dec 2007 S
7303727 Dubrow et al. Dec 2007 B1
D559995 Handique et al. Jan 2008 S
7315376 Bickmore et al. Jan 2008 B2
7323140 Handique et al. Jan 2008 B2
7332130 Handique Feb 2008 B2
7338760 Gong et al. Mar 2008 B2
D566291 Parunak et al. Apr 2008 S
7351377 Chazan et al. Apr 2008 B2
D569526 Duffy et al. May 2008 S
7374949 Kuriger May 2008 B2
7390460 Osawa et al. Jun 2008 B2
7419784 Dubrow et al. Sep 2008 B2
7422669 Jacobson et al. Sep 2008 B2
7440684 Spaid et al. Oct 2008 B2
7476313 Siddiqi Jan 2009 B2
7480042 Phillips et al. Jan 2009 B1
7494577 Williams et al. Feb 2009 B2
7494770 Wilding et al. Feb 2009 B2
7514046 Kechagia et al. Apr 2009 B2
7518726 Rulison et al. Apr 2009 B2
7521186 Burd Mehta Apr 2009 B2
7527769 Bunch et al. May 2009 B2
D595423 Johansson et al. Jun 2009 S
7553671 Sinclair et al. Jun 2009 B2
D596312 Giraud et al. Jul 2009 S
D598566 Allaer Aug 2009 S
7578976 Northrup et al. Aug 2009 B1
D599234 Ito Sep 2009 S
7595197 Brasseur Sep 2009 B2
7604938 Takahashi et al. Oct 2009 B2
7622296 Joseph et al. Nov 2009 B2
7628902 Knowlton et al. Dec 2009 B2
7633606 Northrup et al. Dec 2009 B2
7635588 King et al. Dec 2009 B2
7645581 Knapp et al. Jan 2010 B2
7670559 Chien et al. Mar 2010 B2
7674431 Ganesan Mar 2010 B2
7689022 Weiner et al. Mar 2010 B2
7704735 Facer et al. Apr 2010 B2
7705739 Northrup et al. Apr 2010 B2
7723123 Murphy et al. May 2010 B1
D618820 Wilson et al. Jun 2010 S
7727371 Kennedy et al. Jun 2010 B2
7727477 Boronkay et al. Jun 2010 B2
7744817 Bui Jun 2010 B2
D621060 Handique Aug 2010 S
7785868 Yuan et al. Aug 2010 B2
D628305 Gorrec et al. Nov 2010 S
7829025 Ganesan et al. Nov 2010 B2
7858366 Northrup et al. Dec 2010 B2
7867776 Kennedy et al. Jan 2011 B2
D632799 Canner et al. Feb 2011 S
7892819 Wilding et al. Feb 2011 B2
D637737 Wilson et al. May 2011 S
7955864 Cox et al. Jun 2011 B2
7987022 Handique et al. Jul 2011 B2
7998708 Handique et al. Aug 2011 B2
8053214 Northrup Nov 2011 B2
8071056 Burns et al. Dec 2011 B2
8088616 Handique Jan 2012 B2
8105783 Handique Jan 2012 B2
8110158 Handique Feb 2012 B2
8133671 Williams et al. Mar 2012 B2
8182763 Duffy et al. May 2012 B2
8246919 Herchenbach et al. Aug 2012 B2
8273308 Handique et al. Sep 2012 B2
D669597 Cavada et al. Oct 2012 S
8287820 Williams et al. Oct 2012 B2
8323584 Ganesan Dec 2012 B2
8323900 Handique et al. Dec 2012 B2
8324372 Brahmasandra et al. Dec 2012 B2
8415103 Handique Apr 2013 B2
8420015 Ganesan et al. Apr 2013 B2
8440149 Handique May 2013 B2
8470586 Wu et al. Jun 2013 B2
8473104 Handique et al. Jun 2013 B2
D686749 Trump Jul 2013 S
D687567 Jungheim et al. Aug 2013 S
D692162 Lentz et al. Oct 2013 S
8592157 Petersen et al. Nov 2013 B2
8679831 Handique et al. Mar 2014 B2
D702854 Nakahana et al. Apr 2014 S
8685341 Ganesan Apr 2014 B2
8703069 Handique et al. Apr 2014 B2
8709787 Handique Apr 2014 B2
8710211 Brahmasandra et al. Apr 2014 B2
8734733 Handique May 2014 B2
D710024 Guo Jul 2014 S
8765076 Handique et al. Jul 2014 B2
8765454 Zhou et al. Jul 2014 B2
8768517 Handique et al. Jul 2014 B2
8852862 Wu et al. Oct 2014 B2
8883490 Handique et al. Nov 2014 B2
8894947 Ganesan et al. Nov 2014 B2
8895311 Handique et al. Nov 2014 B1
D729404 Teich et al. May 2015 S
9028773 Ganesan May 2015 B2
9040288 Handique et al. May 2015 B2
9051604 Handique Jun 2015 B2
9080207 Handique et al. Jul 2015 B2
D742027 Lentz et al. Oct 2015 S
9186677 Williams et al. Nov 2015 B2
9217143 Brahmasandra et al. Dec 2015 B2
9222954 Lentz et al. Dec 2015 B2
9234236 Thomas et al. Jan 2016 B2
9238223 Handique Jan 2016 B2
9259734 Williams et al. Feb 2016 B2
9259735 Handique et al. Feb 2016 B2
9347586 Williams et al. May 2016 B2
9480983 Lentz et al. Nov 2016 B2
9528142 Handique Dec 2016 B2
9618139 Handique Apr 2017 B2
D787008 Duffy et al. Jun 2017 S
9670528 Handique et al. Jun 2017 B2
9677121 Ganesan et al. Jun 2017 B2
9701957 Wilson et al. Jul 2017 B2
9745623 Steel Aug 2017 B2
9765389 Gubatayao et al. Sep 2017 B2
9789481 Petersen et al. Oct 2017 B2
9802199 Handique et al. Oct 2017 B2
9815057 Handique Nov 2017 B2
9958466 Dalbert et al. May 2018 B2
10065185 Handique Sep 2018 B2
10071376 Williams et al. Sep 2018 B2
10076754 Lentz et al. Sep 2018 B2
10100302 Brahmasandra et al. Oct 2018 B2
10139012 Handique Nov 2018 B2
10179910 Duffy et al. Jan 2019 B2
10234474 Williams et al. Mar 2019 B2
10351901 Ganesan et al. Jul 2019 B2
10364456 Wu et al. Jul 2019 B2
10443088 Wu et al. Oct 2019 B1
10494663 Wu et al. Dec 2019 B1
10571935 Handique et al. Feb 2020 B2
10590410 Brahmasandra et al. Mar 2020 B2
10604788 Wu et al. Mar 2020 B2
20010005489 Roach et al. Jun 2001 A1
20010012492 Acosta et al. Aug 2001 A1
20010016358 Osawa et al. Aug 2001 A1
20010021355 Baugh et al. Sep 2001 A1
20010023848 Gjerde et al. Sep 2001 A1
20010038450 McCaffrey et al. Nov 2001 A1
20010045358 Kopf-Sill et al. Nov 2001 A1
20010046702 Schmebri Nov 2001 A1
20010048899 Marouiss et al. Dec 2001 A1
20010055765 O'Keefe et al. Dec 2001 A1
20020001848 Bedingham et al. Jan 2002 A1
20020008053 Hansen et al. Jan 2002 A1
20020009015 Laugharn, Jr. et al. Jan 2002 A1
20020014443 Hansen et al. Feb 2002 A1
20020015667 Chow Feb 2002 A1
20020021983 Comte et al. Feb 2002 A1
20020022261 Anderson et al. Feb 2002 A1
20020037499 Quake et al. Mar 2002 A1
20020039783 McMillan et al. Apr 2002 A1
20020047003 Bedingham et al. Apr 2002 A1
20020053399 Soane et al. May 2002 A1
20020054835 Robotti et al. May 2002 A1
20020055167 Pourahmadi et al. May 2002 A1
20020058332 Quake et al. May 2002 A1
20020060156 Mathies et al. May 2002 A1
20020068357 Mathies et al. Jun 2002 A1
20020068821 Gundling Jun 2002 A1
20020090320 Burow et al. Jul 2002 A1
20020092767 Bjornson et al. Jul 2002 A1
20020094303 Yamamoto et al. Jul 2002 A1
20020131903 Ingenhoven et al. Sep 2002 A1
20020141903 Parunak et al. Oct 2002 A1
20020142471 Handique et al. Oct 2002 A1
20020143297 Francavilla et al. Oct 2002 A1
20020143437 Handique et al. Oct 2002 A1
20020155010 Karp et al. Oct 2002 A1
20020155477 Ito Oct 2002 A1
20020169518 Luoma et al. Nov 2002 A1
20020173032 Zou et al. Nov 2002 A1
20020176804 Strand et al. Nov 2002 A1
20020187557 Hobbs et al. Dec 2002 A1
20020192808 Gambini et al. Dec 2002 A1
20030008308 Enzelberger et al. Jan 2003 A1
20030019522 Parunak Jan 2003 A1
20030022392 Hudak Jan 2003 A1
20030049174 Ganesan Mar 2003 A1
20030049833 Chen et al. Mar 2003 A1
20030059823 Matsunaga et al. Mar 2003 A1
20030064507 Gallagher et al. Apr 2003 A1
20030070677 Handique et al. Apr 2003 A1
20030072683 Stewart et al. Apr 2003 A1
20030073106 Johansen et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030087300 Knapp et al. May 2003 A1
20030096310 Hansen et al. May 2003 A1
20030099954 Miltenyi et al. May 2003 A1
20030127327 Kurnik Jul 2003 A1
20030136679 Bohn et al. Jul 2003 A1
20030156991 Halas et al. Aug 2003 A1
20030180192 Seippel Sep 2003 A1
20030186295 Colin et al. Oct 2003 A1
20030190608 Blackburn et al. Oct 2003 A1
20030199081 Wilding et al. Oct 2003 A1
20030211517 Carulli et al. Nov 2003 A1
20040014202 King et al. Jan 2004 A1
20040014238 Krug et al. Jan 2004 A1
20040018116 Desmond et al. Jan 2004 A1
20040018119 Massaro Jan 2004 A1
20040022689 Wulf et al. Feb 2004 A1
20040029258 Heaney et al. Feb 2004 A1
20040029260 Hansen et al. Feb 2004 A1
20040037739 McNeely et al. Feb 2004 A1
20040043479 Briscoe et al. Mar 2004 A1
20040053290 Terbrueggen et al. Mar 2004 A1
20040063217 Webster et al. Apr 2004 A1
20040065655 Brown Apr 2004 A1
20040072278 Chou et al. Apr 2004 A1
20040072375 Gjerde et al. Apr 2004 A1
20040076996 Kondo et al. Apr 2004 A1
20040086427 Childers et al. May 2004 A1
20040086956 Bachur May 2004 A1
20040132059 Scurati et al. Jul 2004 A1
20040141887 Mainquist et al. Jul 2004 A1
20040151629 Pease et al. Aug 2004 A1
20040157220 Kurnool et al. Aug 2004 A1
20040161788 Chen et al. Aug 2004 A1
20040189311 Glezer et al. Sep 2004 A1
20040197810 Takenaka et al. Oct 2004 A1
20040200909 McMillan et al. Oct 2004 A1
20040209331 Ririe Oct 2004 A1
20040209354 Mathies et al. Oct 2004 A1
20040219070 Handique Nov 2004 A1
20040224317 Kordunsky et al. Nov 2004 A1
20040235154 Oh et al. Nov 2004 A1
20040240097 Evans Dec 2004 A1
20050009174 Nikiforov et al. Jan 2005 A1
20050013737 Chow et al. Jan 2005 A1
20050019902 Mathies et al. Jan 2005 A1
20050037471 Liu et al. Feb 2005 A1
20050041525 Pugia et al. Feb 2005 A1
20050042639 Knapp et al. Feb 2005 A1
20050048540 Inami et al. Mar 2005 A1
20050058574 Bysouth et al. Mar 2005 A1
20050058577 Micklash et al. Mar 2005 A1
20050064535 Favuzzi et al. Mar 2005 A1
20050069898 Moon et al. Mar 2005 A1
20050084424 Ganesan et al. Apr 2005 A1
20050106066 Saltsman et al. May 2005 A1
20050112754 Yoon et al. May 2005 A1
20050121324 Park et al. Jun 2005 A1
20050129580 Swinehart et al. Jun 2005 A1
20050133370 Park et al. Jun 2005 A1
20050135655 Kopf-sill et al. Jun 2005 A1
20050142036 Kim et al. Jun 2005 A1
20050152808 Ganesan Jul 2005 A1
20050158781 Woudenberg et al. Jul 2005 A1
20050170362 Wada et al. Aug 2005 A1
20050186585 Juncosa et al. Aug 2005 A1
20050196321 Huang Sep 2005 A1
20050202470 Sundberg et al. Sep 2005 A1
20050202489 Cho et al. Sep 2005 A1
20050202504 Anderson et al. Sep 2005 A1
20050208676 Kahatt Sep 2005 A1
20050214172 Burgisser Sep 2005 A1
20050220675 Reed et al. Oct 2005 A1
20050227269 Lloyd et al. Oct 2005 A1
20050233370 Ammann et al. Oct 2005 A1
20050238545 Parce et al. Oct 2005 A1
20050272079 Burns et al. Dec 2005 A1
20050276728 Muller-Cohn et al. Dec 2005 A1
20060002817 Bohm et al. Jan 2006 A1
20060041058 Yin et al. Feb 2006 A1
20060057039 Morse et al. Mar 2006 A1
20060057629 Kim Mar 2006 A1
20060062696 Chow et al. Mar 2006 A1
20060094004 Nakajima et al. May 2006 A1
20060094108 Yoder et al. May 2006 A1
20060113190 Kurnik Jun 2006 A1
20060133965 Tajima et al. Jun 2006 A1
20060134790 Tanaka et al. Jun 2006 A1
20060148063 Fauzzi et al. Jul 2006 A1
20060165558 Witty et al. Jul 2006 A1
20060165559 Greenstein et al. Jul 2006 A1
20060166233 Wu et al. Jul 2006 A1
20060177376 Tomalia et al. Aug 2006 A1
20060177855 Utermohlen et al. Aug 2006 A1
20060183216 Handique Aug 2006 A1
20060201887 Siddiqi Sep 2006 A1
20060205085 Handique Sep 2006 A1
20060207944 Siddiqi Sep 2006 A1
20060210435 Alavie et al. Sep 2006 A1
20060223169 Bedingham et al. Oct 2006 A1
20060228734 Vann et al. Oct 2006 A1
20060246493 Jensen et al. Nov 2006 A1
20060246533 Fathollahi et al. Nov 2006 A1
20060269641 Atwood et al. Nov 2006 A1
20060269961 Fukushima et al. Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070009386 Padmanabhan et al. Jan 2007 A1
20070020699 Carpenter et al. Jan 2007 A1
20070020764 Miller Jan 2007 A1
20070026421 Sundberg et al. Feb 2007 A1
20070042441 Masters et al. Feb 2007 A1
20070048188 Bigus Mar 2007 A1
20070054413 Aviles et al. Mar 2007 A1
20070077648 Okamoto et al. Apr 2007 A1
20070092901 Ligler et al. Apr 2007 A1
20070098600 Kayyem et al. May 2007 A1
20070099200 Chow et al. May 2007 A1
20070104617 Coulling et al. May 2007 A1
20070116613 Elsener May 2007 A1
20070154895 Spaid et al. Jul 2007 A1
20070177147 Parce Aug 2007 A1
20070178607 Prober et al. Aug 2007 A1
20070184463 Molho et al. Aug 2007 A1
20070184547 Handique et al. Aug 2007 A1
20070196237 Neuzil et al. Aug 2007 A1
20070196238 Kennedy et al. Aug 2007 A1
20070199821 Chow Aug 2007 A1
20070215554 Kreuwel et al. Sep 2007 A1
20070218459 Miller et al. Sep 2007 A1
20070231213 Prabhu et al. Oct 2007 A1
20070243626 Windeyer et al. Oct 2007 A1
20070248958 Jovanovich et al. Oct 2007 A1
20070261479 Spaid et al. Nov 2007 A1
20070269861 Williams et al. Nov 2007 A1
20070292941 Handique et al. Dec 2007 A1
20080000774 Park et al. Jan 2008 A1
20080003649 Maltezos et al. Jan 2008 A1
20080017306 Liu et al. Jan 2008 A1
20080050804 Handique et al. Feb 2008 A1
20080056948 Dale et al. Mar 2008 A1
20080069729 McNeely Mar 2008 A1
20080075634 Herchenbach et al. Mar 2008 A1
20080090244 Knapp et al. Apr 2008 A1
20080095673 Xu Apr 2008 A1
20080118987 Eastwood et al. May 2008 A1
20080124723 Dale et al. May 2008 A1
20080149840 Handique et al. Jun 2008 A1
20080160601 Handique Jul 2008 A1
20080176230 Owen et al. Jul 2008 A1
20080182301 Handique et al. Jul 2008 A1
20080192254 Kim et al. Aug 2008 A1
20080226502 Jonsmann et al. Sep 2008 A1
20080240898 Manz et al. Oct 2008 A1
20080247914 Edens et al. Oct 2008 A1
20080257882 Turner Oct 2008 A1
20080262213 Wu et al. Oct 2008 A1
20080280285 Chen et al. Nov 2008 A1
20080308500 Brassard Dec 2008 A1
20090047180 Kawahara Feb 2009 A1
20090047713 Handique Feb 2009 A1
20090066339 Glezer et al. Mar 2009 A1
20090129978 Wilson et al. May 2009 A1
20090130719 Handique May 2009 A1
20090130745 Williams et al. May 2009 A1
20090131650 Brahmasandra et al. May 2009 A1
20090134069 Handique May 2009 A1
20090136385 Handique et al. May 2009 A1
20090136386 Duffy et al. May 2009 A1
20090148933 Battrell et al. Jun 2009 A1
20090155123 Williams et al. Jun 2009 A1
20090189089 Bedingham et al. Jul 2009 A1
20090221059 Williams et al. Sep 2009 A1
20090223925 Morse et al. Sep 2009 A1
20090325164 Vossenaar et al. Dec 2009 A1
20090325276 Battrell et al. Dec 2009 A1
20100009351 Brahmasandra et al. Jan 2010 A1
20100120129 Amshey et al. May 2010 A1
20100173393 Handique et al. Jul 2010 A1
20100284864 Holenstein et al. Nov 2010 A1
20110008825 Ingber et al. Jan 2011 A1
20110027151 Handique et al. Feb 2011 A1
20110097493 Kerr et al. Apr 2011 A1
20110127292 Sarofim et al. Jun 2011 A1
20110158865 Miller et al. Jun 2011 A1
20110207140 Handique et al. Aug 2011 A1
20110210257 Handique et al. Sep 2011 A9
20110287447 Norderhaug Nov 2011 A1
20110300033 Battisti Dec 2011 A1
20120022695 Handique et al. Jan 2012 A1
20120085416 Ganesan Apr 2012 A1
20120122108 Handique May 2012 A1
20120122231 Tajima May 2012 A1
20120160826 Handique Jun 2012 A1
20120171678 Maltezos et al. Jul 2012 A1
20120171759 Williams et al. Jul 2012 A1
20120183454 Handique Jul 2012 A1
20120258463 Duffy et al. Oct 2012 A1
20130037564 Williams et al. Feb 2013 A1
20130071851 Handique et al. Mar 2013 A1
20130096292 Brahmasandra et al. Apr 2013 A1
20130101990 Handique et al. May 2013 A1
20130164832 Ganesan et al. Jun 2013 A1
20130183769 Tajima Jul 2013 A1
20130217102 Ganesan et al. Aug 2013 A1
20130280131 Handique et al. Oct 2013 A1
20130288358 Handique et al. Oct 2013 A1
20130315800 Yin et al. Nov 2013 A1
20140030798 Wu et al. Jan 2014 A1
20140045186 Gubatayao et al. Feb 2014 A1
20140206088 Lentz et al. Jul 2014 A1
20140212882 Handique et al. Jul 2014 A1
20140227710 Handique et al. Aug 2014 A1
20140297047 Ganesan et al. Oct 2014 A1
20140323357 Handique et al. Oct 2014 A1
20140323711 Brahmasandra et al. Oct 2014 A1
20140329301 Handique et al. Nov 2014 A1
20140342352 Handique et al. Nov 2014 A1
20140377850 Handique et al. Dec 2014 A1
20150045234 Stone et al. Feb 2015 A1
20150064702 Handique et al. Mar 2015 A1
20150118684 Wu et al. Apr 2015 A1
20150133345 Handique et al. May 2015 A1
20150142186 Handique et al. May 2015 A1
20150152477 Ganesan et al. Jun 2015 A1
20150174579 Iten et al. Jun 2015 A1
20150315631 Handique et al. Nov 2015 A1
20150328638 Handique et al. Nov 2015 A1
20150376682 Handique Dec 2015 A1
20160038942 Roberts Feb 2016 A1
20160102305 Brahmasandra et al. Apr 2016 A1
20160107161 Lentz et al. Apr 2016 A1
20160250635 Handique Sep 2016 A1
20160250640 Williams et al. Sep 2016 A1
20160333337 Duffy et al. Nov 2016 A1
20170097373 Williams et al. Apr 2017 A1
20170275702 Dahiya et al. Sep 2017 A1
20180112252 Handique Apr 2018 A1
20180135102 Gubatayao et al. May 2018 A1
20180154364 Handique et al. Jun 2018 A1
20180333722 Handique Nov 2018 A1
20190054467 Handique Feb 2019 A1
20190054471 Williams et al. Feb 2019 A1
20190106692 Brahmasandra et al. Apr 2019 A1
20190144849 Duffy et al. May 2019 A1
20190145546 Handique May 2019 A1
20190151854 Baum et al. May 2019 A1
20190154719 LaChance et al. May 2019 A1
20190284606 Wu et al. Sep 2019 A1
20190324050 Williams et al. Oct 2019 A1
20190390255 Wu et al. Dec 2019 A1
20200010872 Ganesan et al. Jan 2020 A1
Foreign Referenced Citations (209)
Number Date Country
1357102 Mar 2002 AU
3557502 Jul 2002 AU
4437602 Jul 2002 AU
4437702 Jul 2002 AU
764319 Aug 2003 AU
2574107 Sep 1998 CA
2294819 Jan 1999 CA
1312287 Apr 2007 CN
1942590 Apr 2007 CN
1968754 May 2007 CN
101466848 Jun 2009 CN
101522909 Sep 2009 CN
103540518 Jan 2014 CN
19929734 Dec 1999 DE
19833293 Jan 2000 DE
0365828 May 1990 EP
0483620 May 1992 EP
0688602 Dec 1995 EP
0766256 Apr 1997 EP
0772494 May 1997 EP
0810030 Dec 1997 EP
1059458 Dec 2000 EP
1064090 Jan 2001 EP
1077086 Feb 2001 EP
1346772 Sep 2003 EP
1541237 Jun 2005 EP
1574586 Sep 2005 EP
1745153 Jan 2007 EP
1780290 May 2007 EP
1792656 Jun 2007 EP
2372367 Oct 2011 EP
2672301 Aug 1992 FR
2795426 Dec 2000 FR
2453432 Apr 2009 GB
S50-100881 Aug 1975 JP
58212921 Dec 1983 JP
S62-119460 May 1987 JP
H01-502319 Aug 1989 JP
03-054470 Mar 1991 JP
H 03181853 Aug 1991 JP
04-053555 May 1992 JP
06-064156 Sep 1994 JP
07-020010 Jan 1995 JP
H07-290706 Nov 1995 JP
H08-122336 May 1996 JP
H08-173194 Jul 1996 JP
H08-211071 Aug 1996 JP
H08-285859 Nov 1996 JP
H08-337116 Dec 1996 JP
H09-325151 Dec 1997 JP
2001-502790 Jan 1998 JP
H01-219669 Sep 1998 JP
H10-327515 Dec 1998 JP
H 11501504 Feb 1999 JP
H 11503315 Mar 1999 JP
2000-514928 Apr 1999 JP
H 11316226 Nov 1999 JP
H11-515106 Dec 1999 JP
2000-180455 Jun 2000 JP
2000-266760 Sep 2000 JP
2000-275255 Oct 2000 JP
2001-502319 Feb 2001 JP
2001-204462 Jul 2001 JP
2001-509437 Jul 2001 JP
3191150 Jul 2001 JP
2001-515216 Sep 2001 JP
2001-523812 Nov 2001 JP
2001-527220 Dec 2001 JP
2002-503331 Jan 2002 JP
2002-085961 Mar 2002 JP
2002-517735 Jun 2002 JP
2002-215241 Jul 2002 JP
2002-540382 Nov 2002 JP
2002-544476 Dec 2002 JP
2003-500674 Jan 2003 JP
2003-047839 Feb 2003 JP
2003-047840 Feb 2003 JP
2003-516125 May 2003 JP
2003-164279 Jun 2003 JP
2003-185584 Jul 2003 JP
2003-299485 Oct 2003 JP
2003-329693 Nov 2003 JP
2003-329696 Nov 2003 JP
2003-532382 Nov 2003 JP
2004-003989 Jan 2004 JP
2004-506179 Feb 2004 JP
2004-150797 May 2004 JP
2004-531360 Oct 2004 JP
2004-533838 Nov 2004 JP
2004-361421 Dec 2004 JP
2004-536291 Dec 2004 JP
2005-009870 Jan 2005 JP
2005-010179 Jan 2005 JP
2005-511264 Apr 2005 JP
2005-514718 May 2005 JP
2005-518825 Jun 2005 JP
2005-176613 Jul 2005 JP
2005-192439 Jul 2005 JP
2005-192554 Jul 2005 JP
2005-519751 Jul 2005 JP
2005-204661 Aug 2005 JP
2005-525816 Sep 2005 JP
2005-291954 Oct 2005 JP
2005-323519 Nov 2005 JP
2005-533652 Nov 2005 JP
2005-535904 Nov 2005 JP
2006-021156 Jan 2006 JP
2006-055837 Mar 2006 JP
2006-094866 Apr 2006 JP
2006-145458 Jun 2006 JP
2006-167569 Jun 2006 JP
2006-284409 Oct 2006 JP
2007-024742 Feb 2007 JP
2007-074960 Mar 2007 JP
2007-097477 Apr 2007 JP
2007-101364 Apr 2007 JP
2007-510518 Apr 2007 JP
2007-514405 Jun 2007 JP
2007-178328 Jul 2007 JP
2009-542207 Dec 2009 JP
3193848 Oct 2014 JP
2418633 May 2011 RU
WO 8806633 Sep 1988 WO
WO 9012350 Oct 1990 WO
WO 9205443 Apr 1992 WO
WO 9411103 May 1994 WO
WO 9604547 Feb 1996 WO
WO 1996018731 Jun 1996 WO
WO 1996039547 Dec 1996 WO
WO 9705492 Feb 1997 WO
WO 9721090 Jun 1997 WO
WO 9800231 Jan 1998 WO
WO 9822625 May 1998 WO
WO 199835013 Aug 1998 WO
WO 9849548 Nov 1998 WO
WO 9853311 Nov 1998 WO
WO 1998050147 Nov 1998 WO
WO 9901688 Jan 1999 WO
WO 9909042 Feb 1999 WO
WO 9912016 Mar 1999 WO
WO 1999017093 Apr 1999 WO
WO 1999029703 Jun 1999 WO
WO 9933559 Jul 1999 WO
WO 2000022436 Apr 2000 WO
WO 01005510 Jan 2001 WO
WO 01014931 Mar 2001 WO
WO 01027614 Apr 2001 WO
WO 01028684 Apr 2001 WO
WO 2001030995 May 2001 WO
WO 01041931 Jun 2001 WO
WO 2001046474 Jun 2001 WO
WO 01054813 Aug 2001 WO
WO 01089681 Nov 2001 WO
WO 2002048164 Jun 2002 WO
WO 02072264 Sep 2002 WO
WO 02078845 Oct 2002 WO
WO 2002086454 Oct 2002 WO
WO 2003007677 Jan 2003 WO
WO 03012325 Feb 2003 WO
WO 03012406 Feb 2003 WO
WO 03048295 Jun 2003 WO
WO 03055605 Jul 2003 WO
WO 03076661 Sep 2003 WO
WO 2003078065 Sep 2003 WO
WO 03087410 Oct 2003 WO
WO 04007081 Jan 2004 WO
WO 2004010760 Feb 2004 WO
WO 2004048545 Jun 2004 WO
WO 04055522 Jul 2004 WO
WO 2004056485 Jul 2004 WO
WO 04074848 Sep 2004 WO
WO 2004094986 Nov 2004 WO
WO 2005008255 Jan 2005 WO
WO 05011867 Feb 2005 WO
WO 2005030984 Apr 2005 WO
WO 2005072353 Aug 2005 WO
WO 2005094981 Oct 2005 WO
WO 05108620 Nov 2005 WO
WO 2005107947 Nov 2005 WO
WO 2005108571 Nov 2005 WO
WO 2005116202 Dec 2005 WO
WO 2005118867 Dec 2005 WO
WO 2005120710 Dec 2005 WO
WO 06010584 Feb 2006 WO
WO 2006032044 Mar 2006 WO
WO 2006035800 Apr 2006 WO
WO 2006043642 Apr 2006 WO
WO 06066001 Jun 2006 WO
WO 06079082 Jul 2006 WO
WO 2006081995 Aug 2006 WO
WO 2006113198 Oct 2006 WO
WO 06119280 Nov 2006 WO
WO 07044917 Apr 2007 WO
WO 07050327 May 2007 WO
WO 07064117 Jun 2007 WO
WO 2007075919 Jul 2007 WO
WO 2007091530 Aug 2007 WO
WO 2007112114 Oct 2007 WO
WO 2008005321 Jan 2008 WO
WO 08030914 Mar 2008 WO
WO 08060604 May 2008 WO
WO 2008149282 Dec 2008 WO
WO 09012185 Jan 2009 WO
WO 2009054870 Apr 2009 WO
WO 10118541 Oct 2010 WO
WO 2010130310 Nov 2010 WO
WO 2010140680 Dec 2010 WO
WO 2011009073 Jan 2011 WO
WO 2011101467 Aug 2011 WO
Non-Patent Literature Citations (344)
Entry
Bollet, C. et al., “A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria”, Nucleic Acids Research, vol. 19, No. 8 (1991), p. 1955.
Brahmasandra et al., On-chip DNA detection in microfabricated separation systems, SPIE Conference on Microfluidic Devices and Systems, 1998, vol. 3515, pp. 242-251, Santa Clara, CA.
Breadmore, M.C. et al., “Microchip-Based Purification of DNA from Biological Samples”, Anal. Chem., vol. 75 (2003), pp. 1880-1886.
Brody, et al., Diffusion-Based Extraction in a Microfabricated Device, Sensors and Actuators Elsevier, 1997, vol. A58, No. 1, pp. 13-18.
Broyles et al., “Sample Filtration, Concentration, and Separation Integrated on Microfluidic Devices” Analytical Chemistry (American Chemical Society), (2003) 75(11): 2761-2767.
Burns et al., “An Integrated Nanoliter DNA Analysis Device”, Science 282:484-487 (1998).
Chung, Y. et al., “Microfluidic chip for high efficiency DNA extraction”, Miniaturisation for Chemistry, Biology & Bioengineering, vol. 4, No. 2 (Apr. 2004), pp. 141-147.
Handique et al, “Microfluidic flow control using selective hydrophobic patterning”, SPIE, (1997) 3224: 185-194.
Handique et al., On-Chip Thermopneumatic Pressure for Discrete Drop Pumping, Analytical Chemistry, American Chemical Society, Apr. 15, 2001, vol. 73, No. 8, 1831-1838.
Handique, K. et al., “Nanoliter-volume discrete drop injection and pumping in microfabricated chemical analysis systems”, Solid-State Sensor and Actuator Workshop (Hilton Head, South Carolina, Jun. 8-11, 1998) pp. 346-349.
Handique, K. et al., “Mathematical Modeling of Drop Mixing in a Slit-Type Microchannel”, J. Micromech. Microeng., 11:548-554 (2001).
Handique, K. et al., “Nanoliter Liquid Metering in Microchannels Using Hydrophobic Patterns”, Anal. Chem., 72:4100-4109 (2000).
He, et al., Microfabricated Filters for Microfluidic Analytical Systems, Analytical Chemistry, American Chemical Society, 1999, vol. 71, No. 7, pp. 1464-1468.
Ibrahim, et al., Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA, Analytical Chemistry, American Chemical Society, 1998, 70(9): 2013-2017.
Khandurina et al., Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Analytical Chemistry American Chemical Society, 1999, 71(9): 1815-1819.
Kopp et al., Chemical Amplification: Continuous-Flow PCR on a Chip, www.sciencemag.org, 1998, vol. 280, pp. 1046-1048.
Kutter et al., Solid Phase Extraction on Microfluidic Devices, J. Microcolumn Separations, John Wiley & Sons, Inc., 2000, 12(2): 93-97.
Lagally et al., Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device, Analytical Chemistry, American Chemical Society, 2001, 73(3): 565-570.
Livache et al., “Polypyrrole DNA chip on a Silicon Device: Example of Hepatitis C Virus Genotyping”, Analytical Biochemistry, (1998) 255: 188-194.
Mascini et al., “DNA electrochemical biosensors”, Fresenius J. Anal. Chem., 369: 15-22, (2001).
Nakagawa et al., Fabrication of amino silane-coated microchip for DNA extraction from whole blood, J of Biotechnology, Mar. 2, 2005, vol. 116, pp. 105-111.
Northrup et al., A Miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers, Analytical Chemistry, American Chemical Society, 1998, 70(5): 918-922.
Oleschuk et al., Trapping of Bead-Based Reagents within Microfluidic Systems,: On-Chip Solid-Phase Extraction and Electrochromatography, Analytical Chemistry, American Chemical Society, 2000, 72(3): 585-590.
Plambeck et al., “Electrochemical Studies of Antitumor Antibiotics”, J. Electrochem Soc.: Electrochemical Science and Technology (1984), 131(11): 2556-2563.
Roche et al. “Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells” Faseb J (2005) 19: 1341-1343.
Ross et al., Analysis of DNA Fragments from Conventional and Microfabricated Pcr Devices Using Delayed Extraction MALDI-TOF Mass Spectrometry, Analytical Chemistry, American Chemical Society, 1998, 70(10): 2067-2073.
Shoffner et al., Chip PCR.I. Surface Passivation of Microfabricated Silicon-Glass Chips for PCR, Nucleic Acids Research, Oxford University Press, (1996) 24(2): 375-379.
Smith, K. et al., “Comparison of Commercial DNA Extraction Kits for Extraction of Bacterial Genomic DNA from Whole-Blood Samples”, Journal of Clinical Microbiology, vol. 41, No. 6 (Jun. 2003), pp. 2440-2443.
Wang, “Survey and Summary, from DNA Biosensors to Gene Chips”, Nucleic Acids Research, 28(16):3011-3016, (2000).
Waters et al., Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Analytical Chemistry, American Chemical Society, 1998, 70(1): 158-162.
Weigl, et al., Microfluidic Diffusion-Based Separation and Detection, www.sciencemag.org, 1999, vol. 283, pp. 346-347.
Yoza et al., “Fully Automated DNA Extraction from Blood Using Magnetic Particles Modified with a Hyperbranched Polyamidomine Dendrimer”, Journal of Bioscience and Bioengineering, 2003, 95(1): 21-26.
Yoza et al., DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer, Mar. 20, 2003, 101(3): 219-228.
International Search Report and Written Opinion dated Jun. 13, 2013 in Application No. PCT/US2013/024494, filed Feb. 1, 2013.
Kuo et al., “Remnant cationic dendrimers block RNA migration in electrophoresis after monophasic lysis”, J Biotech. (2007) 129: 383-390.
Tanaka et al., “Modification of DNA extraction from maize using polyamidoamine-dendrimer modified magnetic particles”, Proceedings of the 74th Annual Meeting of the Electrochemical Society of Japan, Mar. 29, 2007; Faculty of Engineering, Science University of Tokyo; 2 pages.
Wu et al., “Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes”, Chem Commun. (2005) 3: 313-315.
Zhou et al., “Cooperative binding and self-assembling behavior of cationic low molecular-weight dendrons with RNA molecules”, Org Biomol Chem. (2006) 4(3): 581-585.
Zhou et al., “PANAM dendrimers for efficient siRNA delivery and potent gene silencing”, Chem Comm.(Camb.) (2006) 22: 2362-2364.
Goldmeyer et al., “Identification of Staphylococcus aureus and Determination of Methicillin Resistance Directly from Positive Blood Cultures by Isothermal Amplification and a Disposable Detection Device”, J Clin Microbiol. (Apr. 2008) 46(4): 1534-1536.
Meyers, R.A., Molecular Biology and Biotechnology: A Comprehensive Desk Reference; VCH Publishers, Inc. New York, NY; (1995) pp. 418-419.
Allemand et al., “pH-Dependent Specific Binding and Combing of DNA”, Biophys J. (Oct. 1997) 73(4): 2064-2070.
Harding et al., “DNA isolation using Methidium-Spermine-Sepharose”, Meth Enzymol. (Feb. 1992) 216: 29-39.
Harding et al., “Rapid isolation of DNA from complex biological samples using a novel capture reagent—methidium-spermine-sepharose”, Nucl Acids Res. (Sep. 1989) 17(17): 6947-6958.
Labchem; “Sodium Hydroxide, 0.5N (0.5M)”; Safety Data Sheet, 2015; 8 pages.
Oh K.W. et al., “A Review of Microvalves”, J Micromech Microeng. (2006) 16:R13-R39.
Altet et al., [Eds.] “Thermal Transfer and Thermal Coupling in IC's”, Thermal Testing of Integrated Circuits; Chapter 2 (2002) Springer Science pp. 23-51.
Ateya et al., “The good, the bad, and the tiny: a review of microflow cytometry”, Anal Bioanal Chem. (2008) 391(5):1485-1498.
Auroux et al., “Miniaturised nucleic acid analysis”, Lab Chip. (2004) 4(6):534-546.
Baechi et al., “High-density microvalve arrays for sample processing in PCR chips”, Biomed Microdevices. (2001) 3(3):183-190.
Baker M., “Clever PCR: more genotyping, smaller volumes.” Nature Methods (May 2010) 70(5):351-356.
Becker H. “Fabrication of Polymer Microfluidic Devices”, in Biochip Technology (2001), Chapter 4, pp. 63-96.
Becker H., “Microfluidic Devices Fabricated by Polymer Hot Embossing,” in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002), Chapter 13, 32 pages.
Becker H., “Microfluidics: A Technology Coming of Age”, Med Device Technol. (2008) 19(3):21-24.
Becker et al., “Portable CE system with contactless conductivity detection in an injection molded polymer chip for on-site food analysis”, SPIE Proceedings MOEMS-MEMS 2008 Micro and Nanofabrication (2008) vol. 6886 in 8 pages.
Becker H., “Hype, hope and hubris: the quest for the killer application in microfluidics”, Lab on a Chip, The Royal Society of Chemistry (2009) 9:2119-2122.
Becker H., “Collective Wisdom”, Lab on a Chip, The Royal Society of Chemistry (2010) 10:1351-1354.
Belgrader et al., “Rapid PCR for Identity Testing Using a Battery-Powered Miniature Thermal Cycler”, J Forensic Sci. (1998) 43(2):315-319.
Belgrader et al., “A minisonicator to rapidly disrupt bacterial spores for DNA analysis.”, Anal Chem. (1999) 71(19):4232-4236.
Belgrader et al., “Real-time PCR Analysis on Nucleic Acids Purified from Plasma Using a Silicon Chip”, Micro Total Analysis Systems 2000 (pp. 525-528). Springer, Dordrecht.
Belgrader et al., “A microfluidic cartridge to prepare spores for PCR analysis”, Biosens Bioelectron. (2000) 14(10-11):849-852.
Belgrader et al., “A Battery-Powered Notebook Thermal Cycler for Rapid Multiplex Real-Time PCR Analysis”, Anal Chem. (2001) 73(2):286-289.
Belgrader et al., “Rapid and Automated Cartridge-based Extraction of Leukocytes from Whole Blood for Microsatellite DNA Analysis by Capillary Electrophoresis”, Clin Chem. (2001) 47(10):1917-1933.
Belgrader et al., “A Rapid, Flow-through, DNA Extraction Module for Integration into Microfluidic Systems”, Micro Total Analysis Systems (2002) pp. 697-699). Springer, Dordrecht.
Belgrader et al., “Development of a Battery-Powered Portable Instrumentation for Rapid PCR Analysis”, in Integrated Microfabicated Devices, (2002) Ch. 8, pp. 183-206, CRC Press.
Bell M., “Integrated Microsystems in Clinical Chemistry”, in Integrated Microfabicated Devices, (2002) Ch. 16, pp. 415-435, CRC Press.
Berthier et al., “Managing evaporation for more robust microscale assays Part 1. Volume loss in high throughput assays”, Lab Chip (2008) 8(6):852-859.
Berthier et al., “Managing evaporation for more robust microscale assays Part 2. Characterization of convection and diffusion for cell biology”, Lab Chip (2008) 8(6):860-864.
Berthier et al., “Microdrops,” in Microfluidics for Biotechnology (2006), Chapter 2, pp. 51-88.
Biomerieux Press Release: “bioMérieux—2018 Financial Results,” dated Feb. 27, 2019, accessed at www.biomerieux.com, pp. 13.
Blanchard et al., “Micro structure mechanical failure characterization using rotating Couette flow in a small gap”, J Micromech Microengin. (2005) 15(4):792-801.
Blanchard et al., “Single-disk and double-disk viscous micropumps”, Sensors and Actuators A (2005) 122:149-158.
Blanchard et al., “Performance and Development of a Miniature Rotary Shaft Pump”, J Fluids Eng. (2005) 127(4):752-760.
Blanchard et al., “Single-disk and double-disk viscous micropump”, ASME 2004 Inter'l Mechanical Engineering Congress & Exposition, Nov. 13-20, 2004, Anaheim, CA, IMECE2004-61705:411-417.
Blanchard et al., “Miniature Single-Disk Viscous Pump (Single-DVP), Performance Characterization”, J Fluids Eng. (2006) 128(3):602-610.
Brahmasandra et al., “Microfabricated Devices for Integrated DNA Analysis”, in Biochip Technology by Cheng et al., [Eds.] (2001) pp. 229-250.
Bu et al., “Design and theoretical evaluation of a novel microfluidic device to be used for PCR”, J Micromech Microengin. (2003) 13(4):S125-S130.
Cady et al., “Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform”, Sensors Actuat B. (2005) 107:332-341.
Carlen et al., “Paraffin Actuated Surface Micromachined Valve,” in IEEE MEMS 2000 Conference, Miyazaki, Japan, (Jan. 2000) pp. 381-385.
Carles et al., “Polymerase Chain Reaction on Microchips” in Methods in Molecular Biology—Microfluidic Techniques, Reviews & Protocols by Minteer S.D. [Ed.] Humana Press (2006), vol. 321; Chapter 11, pp. 131-140.
Chang-Yen et al., “A novel integrated optical dissolved oxygen sensor for cell culture and micro total analysis systems”, IEEE Technical Digest MEMS International Conference Jan. 24, 2002, 4 pages.
Chang-Yen et al., “A PDMS microfluidic spotter for fabrication of lipid microarrays”, IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.
Chang-Yen et al., “Design and fabrication of a multianalyte-capable optical biosensor using a multiphysics approach”, IEEE 3rd EMBS Special Topic Conference May 12-15, 2005; 2 pages.
Chang-Yen et al., “A Novel PDMS Microfluidic Spotter for Fabrication of Protein Chips and Microarrays”, IEEE J of Microelectromech Sys. (2006) 15(5): 1145-1151.
Chang-Yen et al., “Design, fabrication, and packaging of a practical multianalyte-capable optical biosensor,” J Microlith Microfab Microsyst. (2006) 5(2):021105 in 8 pages.
Chang-Yen et al., “Spin-assembled nanofilms for gaseous oxygen sensing.” Sens Actuators B: Chemical (2007), 120(2):426-433.
Chaudhari et al., “Transient Liquid Crystal Thermometry of Microfabricated PCR Vessel Arrays”, J Microelectro Sys., (1998) 7(4):345-355.
Chen P-C., “Accelerating micro-scale PCR (polymerase chain reactor) for modular lab-on-a-chip system”, LSU Master's Theses—Digital Commons, (2006) 111 pages.
Chen et al., “Total nucleic acid analysis integrated on microfluidic devices,” Lab on a Chip. (2007) 7:1413-1423.
Cheng et al., “Biochip-Based Portable Laboratory”, Biochip Tech. (2001):296-289.
Cho et al., “A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches”, Rev Sci Instrum. (2008) 79(3):034901-1 to -8.
Chong et al., “Disposable Polydimethylsioxane Package for ‘Bio-Microfluidic System’”, IEEE Proceedings Electronic Components and Technology (2005); 5 pages.
Chou et al., “A miniaturized cyclic PCR device—modeling and experiments”, Microelec Eng. (2002) 61-62:921-925.
Christel et al., “Nucleic Acid Concentration and PCR for Diagnostic Applications”, in Micro Total Analysis Systems. (1998) D.J. Harrison et al. [Eds.] pp. 277-280.
Christel et al., “Rapid, Automated Nucleic Acid Probe Assays Using Silicon Microstructures for Nucleic Acid Concentration”, J Biomech Eng. (1999) 121(1):22-27.
Christensen et al., “Characterization of interconnects used in PDMS microfluidic systems”, J Micromech Microeng. (2005) 15:928 in 8 pages.
Crews et al, “Rapid Prototyping of a Continuous-Flow PCR Microchip”, Proceedings of the AiChE Annual Meeting(Nov. 15, 2006) (335a) 3 pages.
Crews et al., Thermal gradient PCR in a continuous-flow microchip. In Microfluidics, BioMEMS, and Medical Microsystems V; Jan. 2007; vol. 6465, p. 646504; 12 pages.
Crews et al., “Continuous-flow thermal gradient PCR”, Biomed Microdevices. (2008) 10(2):187-195.
Cui et al., “Electrothermal modeling of silicon PCR chips”, In MEMS Design, Fabrication, Characterization, and Packaging, (Apr. 2001) (vol. 4407, pp. 275-280.
Cui et al., “Design and Experiment of Silicon PCR Chips,” Proc. SPIE 4755, Design, Test, Integration, and Packaging of MEMS/MOEMS 2002, (Apr. 19, 2002) pp. 71-76.
Danaher Press Release: “Danaher to Acquire Cepheid for $53.00 per share, or approximately $4 Billion,” dated Sep. 6, 2016, accessed at www.danaher.com, pp. 3.
Demchenko A.P., “The problem of self-calibration of fluorescence signal in microscale sensor systems”, Lab Chip. (2005) 5(11):1210-1223.
Dineva et al., “Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings”, Analyst. (2007) 132(12):1193-1199.
Dishinger et al., “Multiplexed Detection and Applications for Separations on Parallel Microchips”, Electophoresis. (2008) 29(16):3296-3305.
Dittrich et al., “Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in muTAS?”, Anal Bioanal Chem. (2005) 382(8):1771-1782.
Dittrich et al., “Lab-on-a-chip: microfluidics in drug discovery”, Nat Rev Drug Discov. (2006) 5(3):210-208.
Dunnington et al., “Approaches to Miniaturized High-Throughput Screening of Chemical Libraries”, in Integrated Microfabicated Devices, (2002) Ch. 15, pp. 371-414, CRC Press.
Eddings et al., “A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices”, J Micromech Microengin. (2006) 16(11):2396-2402.
Edwards et al., “Micro Scale Purification Systems for Biological Sample Preparation”, Biomed Microdevices (2001) 3(3):211-218.
Edwards et al., “A microfabricated thermal field-flow fractionation system”, Anal Chem. (2002) 74(6):1211-1216.
Ehrlich et al., “Microfluidic devices for DNA analysis”, Trends Biotechnol. (1999) 17(8):315-319.
El-Ali et al., “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor”, Sens Actuators A: Physical (2004) 110(1-3):3-10.
Erickson et al., “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems”, Lab Chip (2003) 3(3):141-149.
Erickson et al., “Integrated Microfluidic Devices”, Analytica Chim Acta. (2004) 507:11-26.
Erill et al., “Development of a CMOS-compatible PCR chip: comparison of design and system strategies”, J Micromech Microengin. (2004) 14(11):1-11.
Fair R.B., Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics Nanofluid. (2007) 3:245-281.
Fan et al., “Integrated Plastic Microfluidic Devices for Bacterial Detection”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 6, pp. 78-89.
Fiorini et al., “Disposable microfluidic devices: fabrication, function, and application”, Biotechniques (2005) 38(3):429-446.
Frazier et al., “Integrated micromachined components for biological analysis systems”, J Micromech. (2000) 1(1):67-83.
Gale et al., “Micromachined electrical field-flow fractionation (mu-EFFF) system”, IEEE Trans Biomed Eng. (1998) 45(12):1459-1469.
Gale et al., “Geometric scaling effects in electrical field flow fractionation. 1. Theoretical analysis”, Anal Chem. (2001) 73(10):2345-2352.
Gale et al., “BioMEMS Education at Louisiana Tech University”, Biomed Microdevices, (2002) 4:223-230.
Gale et al., “Geometric scaling effects in electrical field flow fractionation. 2. Experimental results”, Anal Chem. (2002) 74(5):1024-1030.
Gale et al., “Cyclical electrical field flow fractionation”, Electrophoresis. (2005) 26(9):1623-1632.
Gale et al., “Low-Cost MEMS Technologies”, Elsevier B.V. (2008), Chapter 1.12; pp. 342-372.
Garst et al., “Fabrication of Multilayered Microfluidic 3D Polymer Packages”, IEEE Proceedings Electronic Components & Tech, Conference May/Jun. 2005, pp. 603-610.
Gärtner et al., “Methods and instruments for continuous-flow PCR on a chip”, Proc. SPIE 6465, Microfluidics, BioMEMS, and Medical Microsystems V, (2007) 646502; 8 pages.
Giordano et al., “Toward an Integrated Electrophoretic Microdevice for Clinical Diagnostics”, in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 1; pp. 1-34.
Graff et al., “Nanoparticle Separations Using Miniaturized Field-flow Fractionation Systems”, Proc. Nanotechnology Conference and Trade Show (NSTI) (2005); pp. 8-12.
Greer et al., “Comparison of glass etching to xurography prototyping of microfluidic channels for DNA melting analysis”, J Micromech Microengin. (2007) 17(12):2407-2413.
Grunenwald H., “Optimization of Polymerase Chain Reactions,” in Methods in Molecular Biology, PCR Protocols., Second Edition by Bartlett et al. [Eds.] Humana Press (2003) vol. 226, pp. 89-99.
Guijt et al., “Chemical and physical processes for integrated temperature control in microfluidic devices”, Lab Chip. (2003) 3(1):1-4.
Gulliksen A., “Microchips for Isothermal Amplification of RNA”, Doctoral Thesis (2007); Department of Mol. Biosciences—University of Oslo; 94 pages.
Guttenberg et al., “Planar chip device for PCR and hybridization with surface acoustic wave pump”, Lab Chip. (2005) 5(3):308-317.
Haeberle et al., “Microfluidic platforms for lab-on-a-chip applications”, Lab Chip. (2007) 7(9):1094-1110.
Handal et al., “DNA mutation detection and analysis using miniaturized microfluidic systems”, Expert Rev Mol Diagn. (2006) 6(1):29-38.
Hansen et al., “Microfluidics in structural biology: smaller, faster . . . better”, Curr Opin Struct Biol. (2003) 13(5):538-544.
Heid et al., “Genome Methods—Real Time Quantitative PCR”, Genome Res. (1996) 6(10):986-994.
Henry C.S. [Ed], “Microchip Capillary electrophoresis”, Methods in Molecular Biology, Humana Press 339 (2006) Parts I-IV in 250 pages.
Herr et al., “Investigation of a miniaturized capillary isoelectric focusing (cIEF) system using a full-field detection approach”, Solid State Sensor and Actuator Workshop, Hilton Head Island (2000), pp. 4-8.
Herr et al., “Miniaturized Isoelectric Focusing (μIEF) As a Component of a Multi-Dimensional Microfluidic System”, Micro Total Analysis Systems (2001) pp. 51-53.
Herr et al., Miniaturized Capillary Isoelectric Focusing (cIEF): Towards a Portable High-Speed Separation Method. In Micro Total Analysis Systems (2000) Springer, Dordrecht; pp. 367-370.
Holland et al., “Point-of-care molecular diagnostic systems—past, present and future”, Curr Opin Microbiol. (2005) 8(5):504-509.
Hong et al., “Integrated nanoliter systems”, Nat Biotechnol. (2003) 21(10):1179-1183.
Hong et al., “Molecular biology on a microfluidic chip”, J Phys.: Condens Matter (2006) 18(18):S691-S701.
Hong et al., “Integrated Nucleic Acid Analysis in Parallel Matrix Architecture”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds], (2007) Chapter 8, pp. 107-116.
Horsman et al., “Forensic DNA Analysis on Microfluidic Devices: A Review”, J Forensic Sci. (2007) 52(4):784-799.
Hsieh et al., “Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction”, Sens Actuators B: Chemical. (2008) 130(2):848-856.
Huang et al., “Temperature Uniformity and DNA Amplification Efficiency in Micromachined Glass PCR Chip”, TechConnect Briefs; Tech Proc. of the 2005 NSTI Nanotechnology Conference and Trade Show. (2005) vol. 1:452-455.
Huebner et al., “Microdroplets: A sea of applications?”, Lab Chip. (2008) 8(8):1244-1254.
Iordanov et al., “PCT Array on Chip—Thermal Characterization”, IEEE Sensors (2003) Conference Oct. 22-24, 2003; pp. 1045-1048.
Irawan et al., “Cross-Talk Problem on a Fluorescence Multi-Channel Microfluidic Chip System,” Biomed Micro. (2005) 7(3):205-211.
Ji et al., “DNA Purification Silicon Chip”, Sensors and Actuators A: Physical (2007) 139(1-2):139-144.
Jia et al., “A low-cost, disposable card for rapid polymerase chain reaction”, Colloids Surfaces B: Biointerfaces (2007) 58:52-60.
Kaigala et al., “An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electophoresis”, The Analyst (2008) 133(3):331-338.
Kajiyama et al., “Genotyping on a Thermal Gradient DNA Chip”, Genome Res. (2003) 13(3):467-475.
Kang et al., “Simulation and Optimization of a Flow-Through Micro PCR Chip”, NSTI-Nanotech (2006) vol. 2, pp. 585-588.
Kantak et al.,“Microfluidic platelet function analyzer for shear-induced platelet activation studies”, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. (May 2002) 5 pages.
Kantak et al., “Microfabricated cyclical electrical field flow fractionation”, 7th International Conference on Miniaturized Chomical and Biochem Analysis Sys. (2003) pp. 1199-1202.
Kantak et al., “Platelet function analyzer: Shear activation of platelets in microchannels”, Biomedical Microdevices (2003) 5(3):207-215.
Kantak et al., “Characterization of a microscale cyclical electrical field flow fractionation system”, Lab Chip. (2006) 6(5):645-654.
Kantak et al., “Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation”, Anal Chem. (2006) 78(8):2557-2564.
Kantak et al., “Improved theory of cyclical electrical field flow fractions”, Electrophoresis (2006) 27(14):2833-2843.
Karunasiri et al.,“Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement”, SPIE's Inter'l Symposium on Optical Science, Engineering, and Instrumentation; Proceedings (1998) vol. 3436, Infrared Technology and Applications XXIV; (1998) 8 pages.
Kelly et al., “Microfluidic Systems for Integrated, High-Throughput DNA Analysis,” Analytical Chemistry, (2005), 97A-102A, Mar. 1, 2005, in 7 pages.
Khandurina et al., “Bioanalysis in microfluidic devices,” J Chromatography A, (2002) 943:159-183.
Kim et al., “Reduction of Microfluidic End Effects in Micro-Field Flow Fractionation Channels”, Proc. MicroTAS 2003, pp. 5-9.
Kim et al., “Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure”, 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Med and Biol. (May 2005).
Kim et al., “Geometric optimization of a thin film ITO heater to generate a uniform temperature distribution”, (2006), Tokyo, Japan; pp. 293-295; Abstract.
Kim et al., “Micro-Raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip”, J Micromech Microeng. (2006) 16(3):526-530.
Kim et al., “Patterning of a Nanoporous Membrane for Multi-sample DNA Extraction”, J Micromech Microeng. (2006) 16:33-39.
Kim et al., “Performance evaluation of thermal cyclers for PCR in a rapid cycling condition”, Biotechniques. (2008) 44(4):495-505.
Kim et al., “Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AIO(x) membrane”, Lab Chip. (2008) 8(9):1516-1523.
Kogi et al., “Microinjection-microspectroscopy of single oil droplets in water: an application to liquid/liquid extraction under solution-flow conditions”, Anal Chim Acta. (2000) 418(2):129-135.
Kopf-Sill et al., “Creating a Lab-on-a-Chip with Microfluidic Technologies”, in Integrated Microfabricated Biodevices: Advanced Technologies for Genomics, Drug Discovery, Bioanalysis, and Clinical Diagnostics (2002) Chapter 2; pp. 35-54.
Kricka L.J., “Microchips, Bioelectronic Chips, and Gene Chips—Microanalyzers for the Next Century”, in Biochip Technology by Cheng et al. [Eds]; (2006) Chapter 1, pp. 1-16.
Krishnan et al., “Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures”, Anal Chem. (2004) 76(22):6588-6593.
Kuswandi et al., “Optical sensing systems for microfluidic devices: a review”, Anal Chim Acta. (2007) 601(2):141-155.
Lagally et al., “Genetic Analysis Using Portable PCR-CE Microsystem”, Proceedings 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (2003) pp. 1283-1286.
Lagally et al., “Integrated portable genetic analysis microsystem for pathogen/infectious disease detection”, Anal Chem. (2004) 76(11):3152-3170.
Lauerman L.H., “Advances in PCR technology”, Anim Health Res Rev. (2004) 5(2):247-248.
Lawyer et al., “High-level Expression, Purification, and Enzymatic Characterization of Full-length Thermus aquaticus DNA Polymerase and a Truncated Form Deficient in 5′to 3′Exonuclease Activity.” Genome research (1993) 2(4):275-287.
Lee et al., “Submicroliter-volume PCR chip with fast thermal response and very power consumption”, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, (2003) pp. 187-190.
Lee et al., “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption”, Lab Chip. (2004) 4(4):401-407.
Lewin et al., “Use of Real-Time PCR and Molecular Beacons to Detect Virus Replication in Human Immunodeficiency Virus Type 1-infected Individuals on Prolonged Effective Antiretroviral Therapy”. J Virol. (1999) 73(7), 6099-6103.
Li et al., “Effect of high-aspect-ratio microstructures on cell growth and attachment”, 1st Annual Inter'l IEEE-EMBS Special Topic Conference on Microtechnologies in Med and Biol. Proceedings Cat. No. 00EX451; (Oct. 2000) Poster 66, pp. 531-536.
Li PCH., “Micromachining Methods et al.” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 2-3 to 2-5; pp. 10-49.
Li PCH., “Microfluidic Flow” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 3, pp. 55-99.
Li PCH., “Detection Methods” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 7, pp. 187-249.
Li PCH., “Applications to Nucleic Acids Analysis” in Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, CRC Press (2005), Chapter 9; pp. 293-325.
Li et al., “A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control”, J Microelectromech Syst. (2006) 15(1):223-236.
Liao et al., “Miniature RT-PCR system for diagnosis of RNA-based viruses,” Nucl Acids Res. (2005) 33(18):e156 in 7 pages.
Lien et al., “Integrated reverse transcription polymerase chain reaction systems for virus detection”, Biosens Bioelectron. (2007) 22(8):1739-1748.
Lien et al., “Microfluidic Systems Integrated with a Sample Pretreatment Device for Fast Nucleic-Acid Amplification”, J Microelectro Sys. (2008) 17(2):288-301.
Lifesciences et al., “Microfluidics in commercial applications; an industry perspective.” Lab Chip (2006) 6:1118-1121.
Lin et al., “Thermal Uniformity of 12-in Silicon Wafer During Rapid Thermal Processing by Inverse Heat Transfer Method,” IEEE Transactions on Semiconductor Manufacturing, (2000) 13(4):448-456.
Lin et al., “Simulation and experimental validation of micro polymerase chain reaction chips”, Sens Actuators B: Chemical. (2000) 71(1-2):127-133.
Linder et al., “Microfluidics at the Crossroad with Point-of-care Diagnostics”, Analyst (2007) 132:1186-1192.
Liu et al., “Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing”, Anal Chem. (2007) 79(5):1881-1889.
Liu et al. [Eds], Integrated Biochips for DNA Analysis—Biotechnology Intelligence Unit; Springer/Landes Bioscience (2007) ISBN:978-0-387-76758-1; 216 pages.
Locascio et al., “ANYL 67 Award Address—Microfluidics as a tool to enable research and discovery in the life sciences”, Abstract; The 236th ACS National Meeting (Aug. 2008); 2 pages.
Mahjoob et al., “Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification”, Inter'l J Heat Mass Transfer. (2008) 51(9-10):2109-2122.
Manz et al., “Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing,” Sensors and Actuators B1, (1990) 244-248.
Marcus et al., “Parallel picoliter rt-PCR assays using microfluidics”, Anal Chem. (2006) 78(3):956-958.
Mariella R.P. Jr., “Microtechnology”, Thrust Area Report FY 96 UCRL-ID-125472; Lawrence Livermore National Lab., CA (Feb. 1997) Chapter 3 in 44 pages.
Mariella R., “Sample preparation: the weak link in microfluidics-based biodetection”, Biomed Microdevices. (2008) 10(6):777-784.
McMillan et al., “Application of advanced microfluidics and rapid PCR to analysis of microbial targets”, In Proceedings of the 8th international symposium on microbial ecology (1999), in 13 pages.
Melin et al., “Microfluidic large-scale integration: the evolution of design rules for biological automation”, Annu Rev Biophys Biomol Struct. (2007) 36:213-231.
Merugu et al., “High Throughput Separations Using a Microfabricated Serial Electric Split Ssystem” (2003), Proceedings of μTAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; 1191-1194, in 3 pages.
Miao et al., “Low cost micro-PCR array and micro-fluidic integration on single silicon chip”, Int'l J Comput Eng Science (2003) 4(2):231-234.
Miao et al., “Flip-Chip packaged micro-plate for low cost thermal multiplexing”, Int'l J Comput Eng Science. (2003) 4(2):235-238.
Micheletti et al., “Microscale Bioprocess Optimisation”, Curr Opin Biotech. (2006) 17:611-618.
MicroTAS 2005., “Micro Total Analysis Systems”, Proceedings 9th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Boston, MA in Oct. 10-12, 2005 in 1667 pages.
MicroTAS 2007., “Micro Total Analysis Systems”, Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 1948 pages.
MicroTAS 2007., “Micro Total Analysis Systems”, Advance Program for the Proceedings 11th Int. Conference on Miniaturized Systems for Chemistry and Life Sciences; Presentations/Posters/Articles for Conference; Paris, France in Oct. 7-11, 2007 in 42 pages.
Minco, “Conductive Heating Technologies for Medical Diagnostic Equipment,” (2006) in 13 pages.
Mitchell et al., “Modeling and validation of a molded polycarbonate continuous-flow polymerase chain reaction device,” Microfluidics, BioMEMS, and Medical Microsystems, Proc. SPIE (2003) 4982:83-98.
Myers et al., “Innovations in optical microfluidic technologies for point-of-care diagnostics”, Lab Chip (2008) 8:2015-2031.
Namasivayam et al., “Advances in on-chip photodetection for applications in miniaturized genetic analysis systems”, J Micromech Microeng. (2004) 14:81-90.
Narayanan et al., “A microfabricated electrical SPLITT system,” Lab Chip, (2006) 6:105-114.
Neuzil et al., “Disposable real-time microPCR device: lab-on-a-chip at a low cost, ” Mol. Biosyst., (2006) 2:292-298.
Neuzil et al., “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Research, (2006) 34(11)e77, in 9 pages.
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Microfluidics” in Fundamentals and Applications of Microfluidics; 2nd Edition (2006) Introduction Chapter 1, pp. 1-9.
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Microvalves” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 6, pp. 211-254.
Nguyen et al. [Eds], “Microfluidics for Internal Flow Control: Micropumps” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 7, pp. 255-309.
Nguyen et al. [Eds], “Microfluidics for Life Sciences and Chemistry: Microdispensers” in Fundamentals and Applications of Microfluidics; (2006) , Chapter 11, pp. 395-418.
Nguyen et al. [Eds], “Microfluidics for Life Sciences and Chemistry: Microreactors” in Fundamentals and Applications of Microfluidics; (2006) 2nd Edition, Chapter 13, pp. 443-477.
Ning et al., “Microfabrication Processes for Silicon and Glass Chips”, in Biochip Technology, CRC-Press (2006) Chapter 2, pp. 17-38.
Northrup et al., “A MEMs-based Miniature DNA Analysis System,” Lawrence Livermore National Laboratory, (1995), submitted to Transducers '95, Stockholm, Sweden, Jun. 25-29, 1995, in 7 pages.
Northrup et al., “Advantages Afforded by Miniaturization and Integration of DNA Analysis Instrumentation,” Microreaction Technology, (1998) 278-288.
Northrup et al., “A New Generation of PCR Instruments and Nucleic Acid Concentration Systems,” in PCR Applications: Protocols for Functional Genomics, (1999), Chapter 8, pp. 105-125.
Northrup, “Microfluidics, A few good tricks,” Nature materials (2004), 3:282-283.
Northrup et al.,“Microfluidics-based integrated airborne pathogen detection systems,” Abstract, Proceedings of the SPIE, (2006), vol. 6398, Abstract in 2 pages.
Oh et al., “World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays,” Lab Chip, (2005), 5:845-850.
Ohno et al., “Microfluidics: Applications for analytical purposes in chemistry and biochemistry,” Electrophoresis (2008), 29:4443-4453.
Pal et al., “Phase Change Microvalve for Integrated Devices,” Anal. Chem. (2004), 76(13):3740-3748, Jul. 1, 2004, in 9 pages.
Pal et al., “An integrated microfluidic for influenza and other genetic analyses,” Lab Chip, (2005), 5:1024-1032, in 9 pages.
Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip, (2007), 7:1644-1659.
Pang et al., “A novel single-chip fabrication technique for three-dimensional MEMS structures,” Institute of Microelectronics, Tsinghua University, Beijing, P.R. China, (1998), IEEE, 936-938.
Pang et al., “The Study of Single-Chip Integrated Microfluidic System,” Tsinghua University, Beijing, P.R. China, (1998), IEEE, 895-898.
Papautsky et al., “Effects of rectangular microchannel aspect ratio on laminar friction constant”, in Microfluidic Devices and Systems II (1999) 3877:147-158.
Petersen, Kurt E., “Silicon as a Mechanical Material.” Proceedings of the IEEE, (May 1982) 70(5):420-457.
Petersen et al., “Toward Next Generation Clinical Diagnostic Instruments: Scaling and New Processing Paradigms,” Biomedical Microdevices (1998) 1(1):71-79.
Picard et al., Laboratory Detection of Group B Streptococcus for Prevention of Perinatal Disease, Eur. J. Clin. Microbiol. Infect. Dis., Jul. 16, 2004, 23: 665-671.
Poser et al., “Chip elements for fast thermocycling,” Sensors and Actuators A, (1997), 62:672-675.
Pourahmadi et al., “Toward a Rapid, Integrated, and Fully Automated DNA Diagnostic Assay for Chlamydia trachomatis and Neisseria gonorrhea,” Clinical Chemistry, (2000), 46(9):1511-1513.
Pourahmadi et al., “Versatile, Adaptable and Programmable Microfluidic Platforms for DNA Diagnostics and Drug Discovery Assays,” Micro Total Analysis Systems, (2000), 243-248.
Raisi et al., “Microchip isoelectric focusing using a miniature scanning detection system,” Electrophoresis, (2001), 22:2291-2295.
Raja et al., “Technology for Automated, Rapid, and Quantitative PCR or Reverse Transcriptin—PCR Clinical Testing,” Clinical Chemistry, (2005), 51(5):882-890.
Reyes et al., “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology”, Anal Chem (2002) 74:2623-2636.
Rodriguez et al., “Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis,” Electrophoresis, (2003), 24:172-178.
Rohsenow et al. [Eds.], Handbook of Heat Transfer, 3rd Edition McGraw-Hill Publishers (1998) Chapters 1 & 3; pp. 108.
Roper et al., “Advances in Polymer Chain Reaction on Microfluidic Chips,” Anal. Chem., (2005), 77:3887-3894.
Ross et al., “Scanning Temperature Gradient Focusing for Simultaneous Concentration and Separation of Complex Samples,” Micro Total Analysis Systems 2005, vol. 2, (2005), Proceedings of μTAS 2005, Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct. 9-13, 2005, Boston, Massachusetts; 1022-1024.
Ross et al., “Simple Device for Multiplexed Electrophoretic Separations Using Gradient Elution Moving Boundary Electrophoresis with Channel Current Detection,” Anal. Chem., (2008), 80(24):9467-9474.
Sadler et al., “Thermal Management of BioMEMS: Temperature Control for Ceramic-Based PCR and DNA Detection Devices,” IEEE Transactions on Components and Packaging Technologies, (2003) 26(2):309-316.
Sant et al., “An Integrated Optical Detector for Microfabricated Electrical Field Flow Fractionation System,” Proceedings of μTAS 2003, 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Oct. 5-9, 2003, Squaw Valley, California; pp. 1259-1262.
Sant et al., “Geometric scaling effects on instrumental plate height in field flow fractionation”, J Chromatography A (2006) 1104:282-290.
Sant H.J., “Reduction of End Effect-Induced Zone Broadening in Field-Flow Fractionation Channels”, Anl Chem. (2006) 78:7978-7985.
Sant et al., “Microscale Field-Flow Fractionation: Theory and Practice”, in Microfluidic Technologies for Miniaturized Analysis Systems. (2007) Chapter 12, pp. 4710521,.
Schäferling et al., “Optical technologies for the read out and quality control of DNA and protein microarrays,” Anal Bioanal Chem, (2006), 385: 500-517.
Serpengüzel et al., “Microdroplet identification and size measurement in sprays with lasing images”, Optics express (2002) 10(20):1118-1132.
Shackman et al., “Gradient Elution Moving Boundary Electrophoresis for High-Throughput Multiplexed Microfluidic Devices,” Anal. Chem. (2007), 79(2), 565-571.
Shackman et al., “Temperature gradient focusing for microchannel separations,” Anal Bioanal Chem, (2007), 387:155-158.
Shadpour et al., “Multichannel Microchip Electrophoresis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array,” Anal Chem., (2007), 79(3), 870-878.
Shen et al., “A microchip-based PCR device using flexible printed circuit technology,” Sensors and Actuators B (2005), 105:251-258.
Sia et al., “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, (2003), 24:3563-3576.
Sigurdson M., “AC Electrokinetic Enhancement for Assay Enhancement”, ProQuest LLC (2008) Doctoral Thesis UMI Microform 3319791 in 24 pages.
Singh et al., “PCR thermal management in an integrated Lab on Chip,” Journal of Physics: Conference Series, (2006), 34:222-227.
Situma et al., “Merging microfluidics with microarray-based bioassays”, Biomol Engin. (2006) 23:213-231.
Smith et al., “(576d) Micropatterned fluid lipid bilayers created using a continuous flow microspotter for multi-analyte assays,” (2007), Biosensors II, 2007 AlChE Annual Meeting, Nov. 8, 2007, Abstract in 2 pages.
Sommer et al., “Introduction to Microfluidics”, in Microfluidics for Biological Applications by Tian et al. [Eds] (2008) Chapter 1, pp. 1-34.
Spitzack et al., “Polymerase Chain Reaction in Miniaturized Systems: Big Progress in Little Devices”, in Methods in Molecular Biology—Microfluidic Techniques, Minteer S.D. [Ed.] Humana Press (2006), Chapter 10, pp. 97-129.
Squires et al., “Microfluidics: Fluid physics at the nanoliter scale”, Rev Modern Phys. (2005) 77(3):977-1026.
Sundberg et al., “Solution-phase DNA mutation scanning and SNP genotyping by nanoliter melting analysis,” Biomed Microdevices, (2007), 9:159-166, in 8 pages.
Tabeling, P. [Ed.], “Physics at the micrometric scale,” in Introduction to Microfluidics (2005) Chapter 1, pp. 24-69.
Tabeling, P. [Ed.], “Hydrodynamics of Microfluidic Systems”, in Introduction to Microfluidics; (2005) Chapter 2, pp. 70-129.
Tabeling, P. [Ed.], Introduction to Microfluidics; (2005) Chapters 5-7, pp. 216-297.
Taylor et al., Fully Automated Sample Preparation for Pathogen Detection Performed in a Microfluidic Cassette, in Micro Total Analysis Systems, Springer (2001), pp. 670-672.
Taylor et al., “Lysing Bacterial Spores by Sonication through a Flexible Interface in a Microfluidic System,” Anal. Chem., (2001), 73(3):492-496.
Taylor et al., “Microfluidic Bioanalysis Cartridge with Interchangeable Microchannel Separation Components,” (2001), The 11th International Conference on Solid-State Sensors and Actuators, Jun. 10-14, 2001, Munich, Germany; 1214-1247.
Taylor et al., “Disrupting Bacterial Spores and Cells using Ultrasound Applied through a Solid Interface,” (2002), 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, Madison, Wisconsin; 551-555.
Thorsen et al., “Microfluidic Large-scale integration,” Science, (2002), 298:580-584.
Toriello et al., “Multichannel Reverse Transcription-Polymerase Chain Reaction Microdevice for Rapid Gene Expression and Biomarker Analysis,” Anal. Chem., (2006) 78(23):7997-8003.
Ugaz et al., “Microfabricated electrophoresis systems for DNA sequencing and genotyping applications,” Phil. Trans. R. Soc. Lond. A, (2004), 362:1105-1129.
Ugaz et al., “PCR in Integrated Microfluidic Systems”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 7, pp. 90-106.
Ullman et al., “Luminescent oxygen channeling assay (LOCI™): sensitive, broadly applicable homogeneous immunoassay method”. Clin Chem. (1996) 42(9), 1518-1526.
Velten et al., “Packaging of Bio-MEMS: Strategies, Technologies, and Applications,” IEEE Transactions on Advanced Packaging, (2005) 28(4):533-546.
Vinet et al., “Microarrays and microfluidic devices: miniaturized systems for biological analysis,” Microelectronic Engineering, (2002), 61-62:41-47.
Wang et al., “From biochips to laboratory-on-a-chip system”, in Genomic Signal Processing and Statistics by Dougherty et al. [Eds]; (2005) Chapter 5, pp. 163-200.
Wang et al., “A disposable microfluidic cassette for DNA amplification and detection”, Lab on a Chip (2006) 6(1):46-53.
Wang et al., “Micromachined Flow-through Polimerase Chain Reaction Chip Utilizing Multiple Membrane-activated Micropumps,” (2006), MEMS 2006, Jan. 22-26, 2006, Istanbul, Turkey; 374-377.
Woolley A.T., “Integrating Sample Processing and Detection with Microchip Capillary Electrophoresis of DNA”, in Integrated Biochips for DNA Analysis by Liu et al. [Eds]; (2007) Chapter 5, pp. 68-77.
Xiang et al., “Real Time PCR on Disposable PDMS Chip with a Miniaturized Thermal Cycler,” Biomedical Microdevices, (2005), 7(4):273-279.
Xuan, “Joule heating in electrokinetic flow,” Electrophoresis, (2008), 298:33-43.
Yang et al., “High sensitivity PCR assay in plastic micro reactors,” Lab Chip, (2002), 2:179-187.
Yang et al., “An independent, temperature controllable-microelectrode array,” Anal. Chem., (2004), 76(5):1537-1543.
Yang et al., “Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices,” J Micromech Microeng, (2005), 15:221-230.
Yobas et al., Microfluidic Chips for Viral RNA Extraction & Detection, (2005), 2005 IEEE, 49-52.
Yobas et al., “Nucleic Acid Extraction, Amplification, and Detection on Si-Based Microfluidic Platforms,” IEEE Journal of Solid-State Circuits, (2007), 42(8):1803-1813.
Yoon et al., “Precise temperature control and rapid thermal cycling in a micromachined DNA polymer chain reaction chip,” J. Micromech. Microeng., (2002), 12:813-823.
Zhang et al, “Temperature analysis of continuous-flow micro-PCR based on FEA,” Sensors and Actuators B, (2002), 82:75-81.
Zhang et al, “Continuous-Flow PCR Microfluidics for Rapid DNA Amplification Using Thin Film Heater with Low Thermal Mass,” Analytical Letters, (2007), 40:1672-1685, in 15 pages.
Zhang et al, “Direct Adsorption and Detection of Proteins, Including Ferritin, onto Microlens Array Patterned Bioarrays,” J Am Chem Soc., (2007), 129:9252-9253.
Zhang et al, “Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trens,” Biotechnology Advances, (2007), 25:483-514.
Zhang et al., “Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends,” Nucl Acids Res., (2007) 35(13):4223-4237.
Zhao et al, “Heat properties of an integrated micro PCR vessel,” Proceedings of SPIE, (2001), International Conference on Sensor Technology, 4414:31-34.
Zou et al., “Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing,” Sensors and Actuators A, (2002), 102:114-121.
Zou et al., “Miniaturized Independently Controllable Multichamber Thermal Cycler,” IEEE Sensors Journal, (2003), 3(6):774-780.
Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 25 in IPR2019-00490) dated Oct. 16, 2019 (80 pages).
Patent Owner's Response in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 25 in IPR 2019-00488) dated Oct. 16, 2019 (93 pages).
Transcript of Deposition of Bruce K. Gale, Ph.D., in Support of Patent Owner's Responses (Exhibit 2012 in IPR2019-00488 and IPR2019-00490), taken Sep. 24, 2019 (124 pages).
Declaration of M. Allen Northrup, Ph.D. in Support of Patent Owner's Responses (Exhibit 2036 in IPR2019-00488 and IPR2019-00490) dated Oct. 16, 2019 (365 pages).
Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Paper 32 in IPR 2019-00488) dated Jan. 31, 2020 (34 pages).
Petitioner's Reply to Patent Owner's Response to Petition in Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Paper 32 in IPR 2019-00490) dated Jan. 31, 2020 (35 pages).
Second Declaration of Bruce K. Gale, Ph.D. (Exhibit 1026 in IPR2019-00488 and IPR2019-00490) dated Jan. 31, 2020 (91 pages).
Transcript of Deposition of M. Allen Northrup, Ph.D., (Exhibit 1027 in IPR2019-00488 and IPR2019-00490), taken Dec. 19, 2019 (109 pages).
Patent Owner's Sur-Reply in Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 42 in IPR2019-00490) dated Mar. 12, 2020 (39 pages).
Patent Owner's Sur-Reply in Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 43 in IPR 2019-00488) dated Mar. 12, 2020 (41 pages).
Transcript of Second Deposition of Bruce K. Gale, Ph.D., (Exhibit 2068 in IPR2019-00488 and IPR2019-00490), taken Feb. 19, 2020 (352 pages).
Complaint filed by Becton, Dickinson et al., v. NeuModx Molecular, Inc. on Jun. 18, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS, Infringement Action involving U.S. Pat. Nos. 7,998,708; 8,273,308; 8,323,900; 8,415,103; 8,703,069; and 8,709,787 (29 pages).
Answer to Complaint filed by NeuModx Molecular, Inc. on Aug. 9, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (24 pages).
Amended Answer to Complaint filed by NeuModx Molecular, Inc. on Oct. 4, 2019 in U.S. District Court, Delaware, Case #1:19-cv-01126-LPS (31 pages).
Cooley et al., “Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems”, Proceedings, SPIE Conference on Microfluids and BioMEMS, (Oct. 2001), 12 pages.
Edwards, “Silicon (Si),” in “Handbook of Optical Constants of Solids” (Ghosh & Palik eds., 1997) in 24 pages.
Hale et al., “Optical constants of Water in the 200-nm to 200-μm Wavelength Region”, Applied Optics, 12(3): 555-563 (1973).
Kim et al., “Electrohydrodynamic Generation and Delivery of Monodisperse Picoliter Droplets Using a Poly(dimethylsiloxane) Microchip”, Anal Chem. (2006) 78: 8011-8019.
Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J Optical Society of America, 55:1205-1209 (1965).
Mastrangelo et al., Microfabricated Devices for Genetic Diagnostics. Proceedings of the IEEE (1998) 86(8):1769-1787.
Pal et al., “Phase Change Microvalve for Integrated Devices”, Anal Chem. (2004) 76: 3740-3748.
Palina et al., “Laser Assisted Boron Doping of Silicon Wafer Solar Cells Using Nanosecond and Picosecond Laser Pulses,” 2011 37th IEEE Photovoltaic Specialists Conference, pp. 002193-002197, IEEE (2011).
Paulson et al., “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Nature, Scientific Reports 8:9358 (2018) published at www.nature.com/scientificreports, Jun. 19, 2018.
Sanchez et al., “Linear-After-The-Exponential (LATE)-PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis”, PNAS (2004) 101(7): 1933-1938.
Zhang et al., “PCR Microfluidic Devices for DNA Amplification,” Biotechnology Advances, 24:243-284 (2006).
Zou et al., “A Micromachined Integratable Thermal Reactor,” technical digest from International Electron Devices Meeting, IEEE, Washington, D.C., Dec. 2-5, 2001 (6 pages).
Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 1 in IPR2019-00488) dated Dec. 20, 2018 (94 pages).
Declaration of Bruce K. Gale, Ph.D. (Exhibit 1001 in IPR2019-00488 and IPR2019-00490) dated Dec. 20, 2018 (235 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 7,998,708 and Exhibit List (Papers 5 and 6 in IPR2019-00488) dated Apr. 18, 2019 (79 pages).
Decision instituting Inter Partes Review of U.S. Pat. No. 7,998,708 (Paper 8 in IPR2019-00488) dated Jul. 16, 2019 (20 pages).
Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 1 in IPR2019□00490) dated Dec. 20, 2018 (85 pages).
Declaration of Michael G. Mauk, Ph.D. in Support of Patent Owner Preliminary Responses in IPR2019-00488 and IPR2019-00490 dated Apr. 18, 2019 (43 pages).
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,323,900 and Exhibit List (Papers 5 and 6 in IPR2019-00490) dated Apr. 18, 2019 (73 pages).
Decision instituting Inter Partes Review of U.S. Pat. No. 8,323,900 (Paper 8 in IPR2019-00490) dated Jul. 16, 2019 (23 pages).
Related Publications (1)
Number Date Country
20130217013 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61594867 Feb 2012 US