The present disclosure relates to an external fixation frame for correcting a bone deformity. More particularly, the present disclosure relates to an external fixation frame having an arch or half-ring connected to a bottom fixation ring of the external fixation frame.
Many different types of bone deformities can be corrected using external fixation systems to perform the distraction osteogenesis process. For example, an Ilizarov device or similar external fixation system may be used. Such systems generally use rings also designated as fixation plates connected by threaded rods or struts with nuts for manipulation, angulation, and translation of the length discrepancies of bones. The nuts that are used to adjust the length of the struts are generally manually adjusted by a surgeon or by the patient with a wrench or by hand to change the positions of the rings and/or percutaneous fixation components.
As the position adjustments of the components are made where the nuts are secured, it can be difficult for the patient, for example, to make the required daily adjustments with consideration of maintaining stable fixation. Other devices use different techniques to adjust the effective length of the struts or rods but all must be adjusted somewhere between the ends thereof. The devices generally offer limited access for the patient. Because the adjustments are often a daily task for the patient, easier access to the frame adjustment points would be a significant advantage.
Fixation systems, especially foot fixation systems, have many areas of needed improvement. For example, existing foot fixation products on the market are static and do not allow for adjustment and pivoting. Certain foot fixation systems include a solid and stationary half-ring assembled to the foot ring. This lack of flexibility and motion restricts the motion of the foot and ankle and the external fixation frame during deformity correction, making the process more difficult for the physician and the patient and potentially preventing an optimal clinical outcome.
To allow for deformity correction of the foot and ankle, an adjustable and pivoting component that can be assembled onto the distal portion of a foot ring of an external fixation frame is needed.
In one embodiment, an external fixation frame for correcting a bone deformity includes a first and second fixation ring. A posterior adjustable length strut couples a posterior portion of the first fixation ring to a posterior portion of the second fixation ring, the posterior adjustable length strut including a universal joint at an end thereof. Medial and lateral adjustable length struts couple medial and lateral portions of the first fixation ring to medial and lateral portions of the second fixation ring, respectively. The medial and lateral adjustable length struts include a constrained hinge joint at ends thereof. A half ring is hingedly coupled to the second fixation ring and an anterior adjustable length strut couples an anterior portion of the first fixation ring to the half ring.
The half ring may include a lateral end potion, a medial end portion, and an arcuate body portion connecting the lateral end portion to the medial end portion. The medial end portion of the half ring includes a first constrained hinge joint and the lateral end portion of the half ring includes a second constrained hinge joint. The second fixation ring may be U-shaped and include a medial anterior projection, a lateral anterior projection, and a rounded posterior section connecting the medial anterior projection to the lateral anterior projection. The first constrained hinge joint may couple the medial end portion of the half ring to the medial anterior projection of the second fixation ring and the second constrained hinge joint may couple the lateral end portion of the half ring to the lateral anterior projection of the second fixation ring.
The anterior adjustable length strut may include a distal constrained hinge joint and a proximal universal hinge joint. The distal constrained hinge joint of the anterior adjustable length strut may be coupled to the arcuate body portion of the half ring and the proximal universal hinge joint of the anterior adjustable length strut may be coupled to the anterior portion of the first fixation ring. The medial adjustable length strut and lateral adjustable length strut may each include an aperture proximal of the constrained hinge joint, each aperture being configured to accept a wire fastener therethrough. The half ring may include an aperture with a diameter and the anterior adjustable length strut may include a connecting element at a distal end thereof. The connecting element may include internal threading on the distal end of the strut and an externally threaded bolt, a portion of the bolt having a diameter greater than the diameter of the half ring aperture.
The external fixation frame may also include a rocker member coupled to a bottom surface of the second fixation ring. The rocker member may include a curved body portion with at least one connecting element projecting proximally from the curved body portion and configured to mate with an aperture in the second fixation ring. The connecting element may include a main body portion extending through an aperture in the curved body portion of the rocker member and a distal flange. The distal flange may extend distally of the main portion and be configured to contact a corresponding shoulder portion of the aperture in the curved body portion. The rocker member may further include a ground-contacting rounded distal portion coupled to a distal portion of the curved body portion of the rocker member, the ground-contacting rounded distal portion having a textured ground-contacting surface.
In another embodiment, an external fixation frame for correcting a bone deformity may include a first and second fixation ring. The second fixation ring may have a first free end, a second free end, and an arcuate portion connecting the first free end to the second free end. At least four struts couple the first fixation ring to the second fixation ring. At least one bone fastener has a first end operably coupled to the first free end of the second fixation ring and a second end operably coupled to the second free end of the second fixation ring. A half ring has a first free end, a second free end, and an arcuate portion connecting the first free end to the second free end. The first free end of the half ring is coupled to the first free end of the second fixation ring and the second free end of the half ring is coupled to the second free end of the second fixation ring. The bone fastener may be a K-wire. The external fixation frame may also include a first compression module coupled to the first free end of the second fixation ring and a second compression module coupled to the second free end of the second fixation ring. The first end of the bone fastener may be coupled to the first compression module and the second end of the bone fastener may be coupled to the second compression module.
Preferred embodiments of the invention are described in the following with reference to the drawings, which are for the purpose of illustrating the present preferred embodiments of the invention and not for the purpose of limiting the same.
A more complete appreciation of the subject matter of the present invention and the various advantages thereof can be realized by reference to the following detailed description in which reference is made to the accompanying drawings in which:
As used herein, the term “proximal” means a direction closer to the heart of a patient and the term “distal” means a direction farther away from the heart of a patient. The term “anterior” means towards the front part of the body or the face and the term “posterior” means towards the back of the body. The term “medial” means toward the midline of the body and the term “lateral” means away from the midline of the body.
Referring to
In the present embodiment there is an upper fixation plate 1 in connection with the lower leg L and a lower fixation plate 2 in connection with the foot F. The lower fixation plate 2 comprises also a rolling structure 20 to enable a user to walk around.
Adjustable length struts 3 each include a length adjusting mechanism 32 having a threaded strut 33 and a non-rotating strut 34 having an internal thread along at least a portion of a length thereof in which the threaded strut 33 engages. Struts 3 include a first end region 30 and a second end region 31 in which the struts 3 are coupled to the respective fixation plates. In the present embodiment the struts 3 are connected to the upper fixation plate 1 by means of an actuation unit 4 and to the lower fixation plate 2 by means of a clamping element 4′. It is also possible to use an actuation unit 4 to connect the strut 3 to the upper fixation plate 1 as well as to the lower fixation plate 2. The actuation unit 4 is preferably provided to actuate the length-adjusting strut in order to adjust its length.
The actuation unit 4 is preferably in a fixed connection with fixation plates 1, 2 as shown in
The outer sleeve 5 extends along a middle axis M as shown in
In
When the outer sleeve 5 is inserted into the opening 10 the shoulder 11 is preferably in contact with flange 55. The shaft section 54 of the outer sleeve 5 extends through the first section 13 of the opening 10 and the bearing section 52 extends into the section 14. The outer sleeve 5 is fixed to the fixation plate 1, 2 by means of nut 56 which retracts the outer sleeve 55 relative to fixation plate 1, 2 such that flange 55 comes in contact with the shoulder 11.
From
The actuation element 6 of actuation unit 4 preferably extends along the middle axis M and comprises mainly a shaft section 60 which extends through the opening 50 of the outer sleeve and a connection section 61 which is in connection with strut 3. The actuation element 6 can be actuated, i.e. rotated, by means of a tool 67 shown in
The actuation element 6 is borne by means of a ball bearing 9 in the outer sleeve 5. In the present embodiment, the ball bearing 9 is provided by means of the shaft section 61 and the bearing section 52. A separate ball bearing is also possible, but a ball bearing which is provided according to the embodiment of
As shown in
Between the outer sleeve 5 and the actuation element 6 there is arranged a feedback unit 7 as shown in
There are a plurality of chambers 71 arranged which are preferably distributed evenly around the perimeter of the through opening 50 of the outer sleeve 5. In the present embodiment, eight chambers 71 are arranged such that each chamber is located approximately 45° from a neighboring chamber, but it is also possible to arrange more or less than eight chambers. The number of chambers preferably depends on the application. Preferably, each time the actuation element is rotated such that the spring-loaded ball moves from one chamber 71 and into a neighboring chamber 71, adjustable length strut is lengthened 1 mm Each time the actuation element is rotated such that the spring-loaded ball moves from one chamber 71 and into a neighboring chamber 71, adjustable length strut may be lengthened between 0.1 mm to 1 mm.
It is important for the adjustable length strut to not be lengthened so easily or inadvertently such that accidental injury may be caused. Osteogenesis generally occurs over a considerable length of time and lengthening and/or angulation adjustment between adjacent bone fragments should only be done in a prescribed manner Therefore, chambers 71 are preferably deep enough to securedly house at least a portion of the spring loaded ball 70 and a spring constant k of the spring is sufficient enough to force the ball against side walls in the respective chambers such that preferably only intended actuation of the actuation unit causes the actuation unit to actuate.
With regard to the embodiment as shown in
The strut 3 with its end region is in a fixed connection with the actuation element 6. In the present embodiment, there is a Cardan (universal) joint 62 arranged between the strut 3 and the actuation element 6 in order to compensate angular differences between the strut 3 and the actuation element 6. Furthermore the actuation element 6 comprises an opening 63 in which the strut 3 extends as shown in
Upon rotation of the actuation element 6, the strut will also be rotated and its length will be adjusted according to the degree of rotation. The feedback unit 7 then provides the user with an acoustic as well as with a haptic feedback due to its mechanical structure as outlined above.
Upon rotation of the actuation element 6, the strut will also be rotated and its length will be adjusted according to the degree of rotation. The feedback unit 7 then provides the user with an acoustic as well as with a haptic feedback due to its mechanical structure as outlined above.
The arrangement of the feedback unit 7 as mentioned herein has the advantage that in terms of dimension a very compact structure can be achieved. Thereby the overall weight can be significantly reduced and it is preferably more convenient for the patient to use such a structure.
As shown in
As illustrated in
The half-ring 113 is best illustrated in
The half-ring 113 may also include hinges 1320 at the ends of the main portion 1300. The hinges 1320 may include a first hinge portion 1322 and a second hinge portion 1324. The first hinge portion 1322 may be coupled to the half-ring 113, for example by an adhesive, or may alternately be integral with the half-ring. As illustrated in
The first hinge portion 1322 may also include a textured surface and an aperture to accept a fastener. The aperture preferably is unthreaded. The fastener may be, for example, a screw 1326 with a first portion of the screw shaft unthreaded and a second portion of the screw shaft threaded. The second hinge portion 1324 may be of a generally similar structure to the first hinge portion 1322, having a textured surface and an aperture to accept a fastener. Preferably, the aperture is internally threaded.
The second hinge portion 1324 may also include a connecting portion 1325. The connecting portion 1325 may, for example, be cylindrical and configured to pass through an aperture 10 in the bottom fixation ring 2. The connecting portion 1325 may also be threaded to mate with a locking nut or other fastener to secure the second hinge portion 1324 in a fixed relation to the bottom fixation ring 2.
The screw 1326 may be inserted through the unthreaded aperture in the first hinge portion. Preferably the unthreaded aperture is large enough that the shaft of the screw 1326 can move freely through the aperture. The threaded portion of the screw 1326 is then inserted through the threaded aperture in the second hinge portion 1324. The threaded aperture is preferably dimensioned such that the screw 1326 must be rotated to pass through the threaded aperture. As the screw 1326 is rotated, the second hinge portion 1324 is drawn toward the first hinge portion 1322. When fully inserted, the unthreaded portion of the screw 1326 generally is located at the unthreaded aperture of the first hinge portion 1322 and the threaded portion of the screw is engaged with the threaded aperture of the second hinge portion 1324. In this position, the first hinge portion 1322 and second hinge portion 1324 are frictionally engaged such that rotation of the first hinge portion relative to the second hinge portion about the screw 1326 is resisted. In the embodiment in which one or both of the hinge portions 1322, 1324 include textured surfaces, such as ridges, the engagement of the textured surfaces may provide additional resistance against rotation. A nut may also be threaded onto any portion of the screw 1326 that extends beyond the aperture in the second hinge portion 1324 to help prevent unintentional rotation of the screw 1326 when in the fully threaded, locked position.
The bottom fixation ring 102 is illustrated in
Rolling structure, or rocker 120, is illustrated in
The main body 1200 of the rocker 120 may include one or more connecting pins 1205 (three connecting pins illustrated in
Although only one rocker 120 is illustrated in
As discussed above, multiple struts may be used to connect components of the fixation system and to allow for various types of movement and positioning between the components. In the illustrated embodiment, at least three different types of struts are used, including universal hinge struts 103a, constrained hinge struts 103b and half-ring struts 103c.
Now referring to
The actuation unit 104a may be substantially similar to the actuation unit 4 described above, including a ball and spring mechanism to provide auditory and/or tactile feedback. In the illustrated embodiment, universal hinge strut 103a includes a universal joint 162a near the connecting element 104a′. This is in contrast to the strut 3 described above, in which the universal joint 62 is positioned closer to the actuation element 4. The internal mechanisms described with relation to strut 3, however, generally apply with equal force to the universal hinge strut 103a. The universal hinge strut 103a may also include a quick-release mechanism 135a. Generally, the quick-release mechanism 135a has a locked position and an unlocked position. In the locked position, the threaded strut 133a can move into or out of the non-rotating strut 134a only by rotation of the threaded strut into the non-rotating strut. In the unlocked position, the threaded strut 133a may be moved into or out of the non-rotating strut 134a without rotation of the threaded strut, such that a user may quickly move the threaded strut into the non-rotating strut. This mechanism is more fully described in U.S. patent application Ser. No. 13/592,832, titled “Bone Transport External Fixation Frame.”
Now referring to
The actuation unit 104b may be substantially similar to the actuation unit 4 described above, including a ball and spring mechanism to provide auditory and/or tactile feedback. In the illustrated embodiment, constrained hinge strut 103b includes a constrained joint 168b near the connecting element 104b′. The constrained hinge strut 103b may also include a quick-release mechanism 135b.
Constrained hinge joint 168 is shown in more detail in
The first hinge portion 1422 may also include a textured surface and an aperture to accept a fastener. The aperture preferably is unthreaded. The fastener may be, for example, a screw 1426 with a first portion of the screw shaft unthreaded and a second portion of the screw shaft threaded. The second hinge portion 1424 may be of a generally similar structure to the first hinge portion 1422, having a textured surface and an aperture to accept a fastener. Preferably, the aperture is internally threaded.
The screw 1426 may be inserted through the unthreaded aperture in the first hinge portion. Preferably the unthreaded aperture is large enough that the shaft of the screw 1426 can move freely through the aperture. The threaded portion of the screw 1426 is then inserted through the threaded aperture in the second hinge portion 1424. The threaded aperture is preferably dimensioned such that the screw 1426 must be rotated to pass through the threaded aperture. As the screw 1426 is rotated, the second hinge portion 1424 is drawn toward the first hinge portion 1422. When fully inserted, the unthreaded portion of the screw 1426 generally is located at the unthreaded aperture of the first hinge portion 1422 and the threaded portion of the screw is engaged with the threaded aperture of the second hinge portion 1424. In this position, the first hinge portion 1422 and second hinge portion 1424 are frictionally engaged such that rotation of the first hinge portion relative to the second hinge portion about the screw 1426 is resisted. In the embodiment in which one or both of the hinge portions 1422, 1424 include textured surfaces, such as ridges, the engagement of the textured surfaces may provide additional resistance against rotation. A nut may also be threaded onto any portion of the screw 1426 that extends beyond the aperture in the second hinge portion 1424 to help prevent unintentional rotation of the screw 1426 when in the fully threaded, locked position.
The constrained hinge strut 103b may also include an aperture 169b. The aperture 169b accepts a K-wire or other bone fastener that travels into the bone. The connection of the K-wire with the bone and the aperture 169b of the constrained hinge strut 103b lines the axis of the constrained hinge joint 168b with the anatomic joint axis.
Now referring back to
Now referring to
Half-ring strut 103c includes a length adjusting mechanism having a threaded strut 133c and a non-rotating strut 134c having an internal thread along at least a portion of a length thereof in which the threaded strut 133c engages. Half-ring strut 103c may be connected to the upper fixation plate 101 by means of an actuation unit 104c and to the half ring 113 by means of a connecting element 104c′. The actuation unit 104c is preferably provided to actuate the length-adjusting strut in order to adjust its length.
The actuation unit 104c may be substantially similar to the actuation unit 4 described above, including a ball and spring mechanism to provide auditory and/or tactile feedback. In the illustrated embodiment, half-ring strut 103c includes a constrained 168c near the connecting element 104c′ and a universal joint 162c near the actuation unit 104c. The half-ring strut 103c may also include a quick-release mechanism 135c.
A similar embodiment of half-ring strut 103c is illustrated in
In one embodiment of the fixation device, one universal hinge strut 103a fixes the top fixation plate 101 to the bottom fixation plate 102 at a posterior side of the device. Two constrained hinge joints 103b fix the top fixation plate 101 to the bottom fixation plate 102 at the medial and lateral sides of the device. A half-ring 113 is fixed at the anterior end of the bottom fixation plate 102, and a half-ring strut 103c fixes the half-ring 113 to an anterior portion of the top fixation plate 101. Each of the struts 103a-c may be increased or decreased in length as described above. The universal hinge strut 103a allows for top fixation ring 101 to move relative to the bottom fixation ring 102 with rotation about three axes. The constrained hinge strut 103b allows for the top fixation ring 101 to move relative to the bottom fixation ring 102 with rotation about a single axis. The half-ring 113 is constrained to rotation about one axis of rotation due to the hinges 1320 connecting the half-ring to the bottom fixation ring 102. The axis about which the half-ring rotates may be an axis that extends through the center of hinges 1320. The half-ring strut 103c allows the top fixation ring 101 to be rotated about three axes with respect to the half-ring 113, due to the universal joint 168c of the half-ring strut. This configuration allows the half-ring 113 to be assembled in multiple locations and positions on the distal portion of the foot ring, the half-ring having a lockable hinge. The combination of the features above allows for increased control of the foot and ankle in order to properly return it to an anatomic and functional position. The device also limits and/or avoids the possibility of changing of motor struts during treatment. In addition, the half-ring 113 provides added strength to the frame itself, as described above, by bridging the two free ends of the bottom fixation ring 102.
Now referring to
The bottom fixation ring 102 may also include one or more foot compression modules 200, as illustrated in
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims. For examples, components of one embodiment described herein may be combined with components of another embodiment described herein without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10172523 | Aug 2010 | EP | regional |
11176512 | Aug 2011 | EP | regional |
The present application is continuation of U.S. patent application Ser. No. 16/108,787, filed Aug. 22, 2018, which is a continuation of U.S. Pat. No. 10,080,585, filed Jun. 28, 2017, which is a continuation of U.S. Pat. No. 9,839,445, filed Apr. 12, 2017, which is a continuation of U.S. Pat. No. 9,730,730, filed May 8, 2015, which is a continuation of U.S. Pat. No. 9,220,533, filed Dec. 9, 2014, which is a continuation of U.S. Pat. No. 8,945,128, filed Mar. 11, 2013, which is a continuation-in-part of U.S. Pat. No. 8,834,467, filed Aug. 9, 2011, which claims priority to European Application No. 10 172 523.2, filed Aug. 11, 2010, and European Application No. 11 176 512.9, filed Aug. 4, 2011. The disclosures of each of the above-referenced applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
D6214 | Yerger | Mar 1849 | S |
2035952 | Ettinger | Mar 1936 | A |
2055024 | Bittner | Sep 1936 | A |
2291747 | Neuwirth | Aug 1942 | A |
2333033 | Mraz | Oct 1943 | A |
2391537 | Anderson | Dec 1945 | A |
2393831 | Stader | Jan 1946 | A |
2406987 | Anderson | Sep 1946 | A |
2883219 | Cox | Apr 1959 | A |
3691788 | Mazziotti | Sep 1972 | A |
3727610 | Riniker | Apr 1973 | A |
3863037 | Schindler et al. | Jan 1975 | A |
3941123 | Volkov et al. | Mar 1976 | A |
3977397 | Kalnberz et al. | Aug 1976 | A |
3985127 | Volkov et al. | Oct 1976 | A |
4006740 | Volkov et al. | Feb 1977 | A |
4100919 | Oganesyan et al. | Jul 1978 | A |
4127119 | Kronner | Nov 1978 | A |
4185623 | Volkov et al. | Jan 1980 | A |
4308863 | Fischer | Jan 1982 | A |
4338927 | Volkov et al. | Jul 1982 | A |
4365624 | Jaquet | Dec 1982 | A |
4403606 | Woo et al. | Sep 1983 | A |
4450834 | Fischer | May 1984 | A |
4520983 | Templeman | Jun 1985 | A |
4548199 | Agee | Oct 1985 | A |
4554915 | Brumfield | Nov 1985 | A |
4611586 | Agee et al. | Sep 1986 | A |
4615338 | Ilizarov et al. | Oct 1986 | A |
4730608 | Schlein | Mar 1988 | A |
4768524 | Hardy | Sep 1988 | A |
4784125 | Monticelli et al. | Nov 1988 | A |
4819496 | Shelef | Apr 1989 | A |
4889111 | Ben-Dov | Dec 1989 | A |
4905680 | Tunc | Mar 1990 | A |
4973332 | Kummer | Nov 1990 | A |
4976582 | Clevel et al. | Dec 1990 | A |
4978348 | Ilizarov | Dec 1990 | A |
5028180 | Sheldon et al. | Jul 1991 | A |
5062844 | Jamison et al. | Nov 1991 | A |
5067954 | Ilizarov | Nov 1991 | A |
5074866 | Sherman et al. | Dec 1991 | A |
5087258 | Schewior | Feb 1992 | A |
5112331 | Miletich | May 1992 | A |
5122140 | Asche et al. | Jun 1992 | A |
5160335 | Wagenknecht | Nov 1992 | A |
5179525 | Griffis et al. | Jan 1993 | A |
5207676 | Canadell et al. | May 1993 | A |
5275598 | Cook | Jan 1994 | A |
5279176 | Tahmasebi et al. | Jan 1994 | A |
5301566 | Tahmasebi et al. | Apr 1994 | A |
5353504 | Pai | Oct 1994 | A |
5358504 | Paley et al. | Oct 1994 | A |
5372597 | Hotchkiss et al. | Dec 1994 | A |
5391167 | Pong et al. | Feb 1995 | A |
5397322 | Campopiano et al. | Mar 1995 | A |
5437666 | Tepic et al. | Aug 1995 | A |
5451225 | Ross, Jr. et al. | Sep 1995 | A |
5466237 | Byrd, III et al. | Nov 1995 | A |
5496319 | Allard et al. | Mar 1996 | A |
5540686 | Zippel et al. | Jul 1996 | A |
5568993 | Potzick | Oct 1996 | A |
5630814 | Ross, Jr. et al. | May 1997 | A |
5658283 | Huebner | Aug 1997 | A |
5662648 | Faccioli et al. | Sep 1997 | A |
5681309 | Ross, Jr. et al. | Oct 1997 | A |
5688271 | Faccioli et al. | Nov 1997 | A |
5702389 | Taylor et al. | Dec 1997 | A |
5709681 | Pennig | Jan 1998 | A |
5713897 | Goble et al. | Feb 1998 | A |
5725526 | Allard et al. | Mar 1998 | A |
5725527 | Biedermann et al. | Mar 1998 | A |
5728095 | Taylor et al. | Mar 1998 | A |
5766173 | Ross, Jr. et al. | Jun 1998 | A |
5776132 | Blyakher | Jul 1998 | A |
5776173 | Madsen, Jr. et al. | Jul 1998 | A |
5779703 | Benoist | Jul 1998 | A |
5788695 | Richardson | Aug 1998 | A |
5797908 | Meyers et al. | Aug 1998 | A |
5843081 | Richardson | Dec 1998 | A |
5846245 | McCarthy et al. | Dec 1998 | A |
5863292 | Tosic | Jan 1999 | A |
5870834 | Sheldon | Feb 1999 | A |
5885282 | Szabo | Mar 1999 | A |
5891143 | Taylor et al. | Apr 1999 | A |
5897555 | Clybum et al. | Apr 1999 | A |
5919192 | Shouts | Jul 1999 | A |
5921985 | Ross, Jr. et al. | Jul 1999 | A |
5928230 | Tosic | Jul 1999 | A |
5931837 | Marsh et al. | Aug 1999 | A |
5968043 | Ross, Jr. et al. | Oct 1999 | A |
5971984 | Taylor et al. | Oct 1999 | A |
5976133 | Kraus et al. | Nov 1999 | A |
5997537 | Walulik | Dec 1999 | A |
6007535 | Rayhack et al. | Dec 1999 | A |
6010501 | Raskin et al. | Jan 2000 | A |
6013081 | Burkinshaw et al. | Jan 2000 | A |
6021579 | Schimmels et al. | Feb 2000 | A |
6030386 | Taylor et al. | Feb 2000 | A |
6036691 | Richardson | Mar 2000 | A |
6086283 | Liegert | Jul 2000 | A |
6090111 | Nichols | Jul 2000 | A |
6099217 | Wiegand et al. | Aug 2000 | A |
6129727 | Austin et al. | Oct 2000 | A |
6176860 | Howard | Jan 2001 | B1 |
6196081 | Yau | Mar 2001 | B1 |
6245071 | Pierson | Jun 2001 | B1 |
6277118 | Grant et al. | Aug 2001 | B1 |
6328737 | Moorcroft et al. | Dec 2001 | B1 |
6342052 | Allende | Jan 2002 | B1 |
6342054 | Mata | Jan 2002 | B1 |
6355037 | Crosslin et al. | Mar 2002 | B1 |
6371957 | Amrein et al. | Apr 2002 | B1 |
6391250 | Wolfsgruber et al. | May 2002 | B1 |
6423061 | Bryant | Jul 2002 | B1 |
6428540 | Claes et al. | Aug 2002 | B1 |
6491694 | Orsak | Dec 2002 | B1 |
6537275 | Venturini et al. | Mar 2003 | B2 |
6565565 | Yuan et al. | May 2003 | B1 |
6565567 | Haider | May 2003 | B1 |
6610063 | Kumar | Aug 2003 | B2 |
6613049 | Winquist et al. | Sep 2003 | B2 |
6648583 | Roy et al. | Nov 2003 | B1 |
6648891 | Kim | Nov 2003 | B2 |
6652524 | Weiner | Nov 2003 | B1 |
6671975 | Hennessey | Jan 2004 | B2 |
6701174 | Krause et al. | Mar 2004 | B1 |
6733502 | Altarac et al. | May 2004 | B2 |
6746448 | Weiner et al. | Jun 2004 | B2 |
6769194 | Hennessey | Aug 2004 | B2 |
6784125 | Yamakawa et al. | Aug 2004 | B1 |
6793655 | Orsak | Sep 2004 | B2 |
6860883 | Janowski et al. | Mar 2005 | B2 |
6964663 | Grant et al. | Nov 2005 | B2 |
7022122 | Amreim et al. | Apr 2006 | B2 |
7048735 | Ferrante et al. | May 2006 | B2 |
7127660 | Blaum | Oct 2006 | B2 |
7147640 | Huebner et al. | Dec 2006 | B2 |
7197806 | Boudreaux et al. | Apr 2007 | B2 |
7226449 | Venturini et al. | Jun 2007 | B2 |
7261713 | Langmaid et al. | Aug 2007 | B2 |
7276069 | Biedermann et al. | Oct 2007 | B2 |
7282052 | Mullaney | Oct 2007 | B2 |
7291148 | Agee et al. | Nov 2007 | B2 |
7306601 | McGrath et al. | Dec 2007 | B2 |
7311711 | Cole | Dec 2007 | B2 |
7361176 | Cooper et al. | Apr 2008 | B2 |
7377923 | Purcell et al. | May 2008 | B2 |
7422593 | Cresina et al. | Sep 2008 | B2 |
7449023 | Walulik et al. | Nov 2008 | B2 |
7468063 | Walulik et al. | Dec 2008 | B2 |
7479142 | Weiner et al. | Jan 2009 | B2 |
7491008 | Thomke | Feb 2009 | B2 |
7507240 | Olsen | Mar 2009 | B2 |
7527626 | Lutz et al. | May 2009 | B2 |
7575575 | Olsen et al. | Aug 2009 | B2 |
7578822 | Rezach et al. | Aug 2009 | B2 |
RE40914 | Taylor et al. | Sep 2009 | E |
7608074 | Austin et al. | Oct 2009 | B2 |
7632271 | Baumgartner et al. | Dec 2009 | B2 |
7699848 | Hoffman et al. | Apr 2010 | B2 |
7708736 | Mullaney | May 2010 | B2 |
7749224 | Cresina et al. | Jul 2010 | B2 |
7763020 | Draper | Jul 2010 | B2 |
7803158 | Hayden | Sep 2010 | B2 |
7806843 | Mann | Oct 2010 | B2 |
7815586 | Grant et al. | Oct 2010 | B2 |
7875030 | Hoffmann-Clair et al. | Jan 2011 | B2 |
7881771 | Koo et al. | Feb 2011 | B2 |
7887498 | Mann | Feb 2011 | B2 |
7887537 | Ferrante et al. | Feb 2011 | B2 |
7931650 | Winquist et al. | Apr 2011 | B2 |
7938829 | Mullaney | May 2011 | B2 |
7955333 | Yeager | Jun 2011 | B2 |
7955334 | Steiner et al. | Jun 2011 | B2 |
7985221 | Coull et al. | Jul 2011 | B2 |
8029505 | Hearn et al. | Oct 2011 | B2 |
8057474 | Knuchel et al. | Nov 2011 | B2 |
8114077 | Steiner et al. | Feb 2012 | B2 |
8137347 | Weiner et al. | Mar 2012 | B2 |
8142432 | Matityahu | Mar 2012 | B2 |
8147490 | Bauer | Apr 2012 | B2 |
8147491 | Lavi | Apr 2012 | B2 |
8157800 | Vvedensky et al. | Apr 2012 | B2 |
8172849 | Noon et al. | May 2012 | B2 |
8182483 | Bagnasco et al. | May 2012 | B2 |
8187274 | Schulze | May 2012 | B2 |
8192434 | Huebner et al. | Jun 2012 | B2 |
8202273 | Karidis | Jun 2012 | B2 |
8241285 | Mullaney | Aug 2012 | B2 |
8251937 | Mann | Aug 2012 | B2 |
8257353 | Wong et al. | Sep 2012 | B2 |
8282652 | Mackenzi et al. | Oct 2012 | B2 |
8834467 | Singh | Sep 2014 | B2 |
8858555 | Crozet et al. | Oct 2014 | B2 |
8906020 | Crozet et al. | Dec 2014 | B2 |
8945128 | Singh | Feb 2015 | B2 |
8951252 | Steiner et al. | Feb 2015 | B2 |
9220533 | Singh | Dec 2015 | B2 |
9668794 | Kuster et al. | Jun 2017 | B2 |
9730730 | Singh | Aug 2017 | B2 |
9839445 | Singh | Dec 2017 | B2 |
10080585 | Singh | Sep 2018 | B2 |
10285734 | Singh | May 2019 | B2 |
10376285 | Singh | Aug 2019 | B2 |
20010025181 | Freedlan | Sep 2001 | A1 |
20010049526 | Venturini et al. | Dec 2001 | A1 |
20020010465 | Koo et al. | Jan 2002 | A1 |
20020013584 | Termaten | Jan 2002 | A1 |
20020042613 | Mata | Apr 2002 | A1 |
20020165543 | Winquist et al. | Nov 2002 | A1 |
20030063949 | Hohenocker | Apr 2003 | A1 |
20030069580 | Langmaid et al. | Apr 2003 | A1 |
20030106230 | Hennessey | Jun 2003 | A1 |
20030109879 | Orsak | Jun 2003 | A1 |
20030181911 | Venturini | Sep 2003 | A1 |
20030191466 | Austin et al. | Oct 2003 | A1 |
20030216734 | Mingozzi et al. | Nov 2003 | A1 |
20030225406 | Weiner et al. | Dec 2003 | A1 |
20040059331 | Mullaney | Mar 2004 | A1 |
20040073211 | Austin et al. | Apr 2004 | A1 |
20040073212 | Kim | Apr 2004 | A1 |
20040097944 | Koman et al. | May 2004 | A1 |
20040116926 | Venturini et al. | Jun 2004 | A1 |
20040133199 | Coati et al. | Jul 2004 | A1 |
20040133200 | Ruch et al. | Jul 2004 | A1 |
20040167518 | Estrada | Aug 2004 | A1 |
20040243038 | Patterson | Dec 2004 | A1 |
20050015087 | Walulik et al. | Jan 2005 | A1 |
20050043730 | Janowski et al. | Feb 2005 | A1 |
20050059968 | Grant et al. | Mar 2005 | A1 |
20050084325 | O'Brien et al. | Apr 2005 | A1 |
20050113829 | Walulik et al. | May 2005 | A1 |
20050119656 | Ferrante et al. | Jun 2005 | A1 |
20050149018 | Cooper et al. | Jul 2005 | A1 |
20050215997 | Austin et al. | Sep 2005 | A1 |
20050234448 | McCarthy | Oct 2005 | A1 |
20050248156 | Hsieh | Nov 2005 | A1 |
20050251136 | Noon et al. | Nov 2005 | A1 |
20060155276 | Walulik et al. | Jul 2006 | A1 |
20060184169 | Stevens | Aug 2006 | A1 |
20060229605 | Olsen | Oct 2006 | A1 |
20060235383 | Hollawell | Oct 2006 | A1 |
20060243873 | Carnevali | Nov 2006 | A1 |
20060247622 | Maughan et al. | Nov 2006 | A1 |
20060247629 | Maughan et al. | Nov 2006 | A1 |
20060261221 | Carnevali | Nov 2006 | A1 |
20060276786 | Brinker | Dec 2006 | A1 |
20060287652 | Lessig et al. | Dec 2006 | A1 |
20070038217 | Brown et al. | Feb 2007 | A1 |
20070043354 | Koo et al. | Feb 2007 | A1 |
20070049930 | Hearn et al. | Mar 2007 | A1 |
20070055233 | Brinker | Mar 2007 | A1 |
20070055234 | McGrath et al. | Mar 2007 | A1 |
20070123857 | Deffenbaugh et al. | May 2007 | A1 |
20070161983 | Cresina et al. | Jul 2007 | A1 |
20070161984 | Cresina et al. | Jul 2007 | A1 |
20070162022 | Zhang et al. | Jul 2007 | A1 |
20070225704 | Ziran et al. | Sep 2007 | A1 |
20070233061 | Lehmann et al. | Oct 2007 | A1 |
20070250071 | Soerensen et al. | Oct 2007 | A1 |
20070255280 | Austin et al. | Nov 2007 | A1 |
20070282338 | Mullaney | Dec 2007 | A1 |
20080021451 | Coull et al. | Jan 2008 | A1 |
20080021452 | Ducharme et al. | Jan 2008 | A1 |
20080154310 | White et al. | Jun 2008 | A1 |
20080228185 | Vasta et al. | Sep 2008 | A1 |
20080269741 | Karidis | Oct 2008 | A1 |
20090018541 | Lavi | Jan 2009 | A1 |
20090036890 | Karidis | Feb 2009 | A1 |
20090036891 | Brown et al. | Feb 2009 | A1 |
20090105621 | Boyd et al. | Apr 2009 | A1 |
20090124947 | Grant | May 2009 | A1 |
20090131935 | Yeager | May 2009 | A1 |
20090157088 | Mengato | Jun 2009 | A1 |
20090177198 | Theodoros et al. | Jul 2009 | A1 |
20090198234 | Knuchel et al. | Aug 2009 | A1 |
20090198235 | Steiner et al. | Aug 2009 | A1 |
20090264882 | Steiner et al. | Oct 2009 | A1 |
20090264883 | Steiner et al. | Oct 2009 | A1 |
20090275944 | Huebner | Nov 2009 | A1 |
20090287212 | Hirata et al. | Nov 2009 | A1 |
20090312757 | Kehres et al. | Dec 2009 | A1 |
20100087819 | Mullaney | Apr 2010 | A1 |
20100145336 | Draper | Jun 2010 | A1 |
20100179548 | Mann | Jul 2010 | A1 |
20100191239 | Sakkers et al. | Jul 2010 | A1 |
20100234844 | Edelhauser et al. | Sep 2010 | A1 |
20100249779 | Hotchkiss et al. | Sep 2010 | A1 |
20100280516 | Taylor | Nov 2010 | A1 |
20100298827 | Cremer et al. | Nov 2010 | A1 |
20100305568 | Ross et al. | Dec 2010 | A1 |
20100312243 | Ross et al. | Dec 2010 | A1 |
20100331840 | Ross et al. | Dec 2010 | A1 |
20110060336 | Pool et al. | Mar 2011 | A1 |
20110066151 | Murner et al. | Mar 2011 | A1 |
20110082458 | Crozet et al. | Apr 2011 | A1 |
20110098707 | Mullaney | Apr 2011 | A1 |
20110112533 | Venturini et al. | May 2011 | A1 |
20110118737 | Vesta et al. | May 2011 | A1 |
20110118738 | Vesta et al. | May 2011 | A1 |
20110172663 | Mullaney | Jul 2011 | A1 |
20110172664 | Bagnasco et al. | Jul 2011 | A1 |
20110208187 | Wong et al. | Aug 2011 | A1 |
20110245830 | Zgonis et al. | Oct 2011 | A1 |
20110288549 | Steiner et al. | Nov 2011 | A1 |
20110313418 | Nikonovas | Dec 2011 | A1 |
20110313419 | Mullaney | Dec 2011 | A1 |
20120004659 | Miller et al. | Jan 2012 | A1 |
20120041439 | Singh et al. | Feb 2012 | A1 |
20120078251 | Benenati et al. | Mar 2012 | A1 |
20120089142 | Mullaney et al. | Apr 2012 | A1 |
20120095462 | Miller | Apr 2012 | A1 |
20120136355 | Wolfson | May 2012 | A1 |
20120143190 | Wolfson | Jun 2012 | A1 |
20130253512 | Crozet et al. | Sep 2013 | A1 |
20140058389 | Singh et al. | Feb 2014 | A1 |
20140378972 | Crozet et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2633944 | Jul 2007 | CA |
596826 | Mar 1978 | CH |
3114455 | Oct 1982 | DE |
4421223 | Dec 1995 | DE |
202006006734 | Jun 2006 | DE |
S11007 | Aug 1994 | EP |
0377744 | Jul 2000 | EP |
1016381 | Jul 2000 | EP |
1136041 | Sep 2001 | EP |
2417923 | Feb 2012 | EP |
2417924 | Feb 2012 | EP |
2439002 | May 1980 | FR |
2576774 | Aug 1986 | FR |
2756025 | May 1998 | FR |
2250682 | Jun 1992 | GB |
1259768 | Mar 1996 | IT |
9214426 | Sep 1992 | WO |
9418898 | Sep 1994 | WO |
9730650 | Aug 1997 | WO |
9730651 | Aug 1997 | WO |
0115611 | Mar 2001 | WO |
0122892 | Apr 2001 | WO |
0178613 | Oct 2001 | WO |
0386213 | Oct 2003 | WO |
2006116307 | Nov 2006 | WO |
2007067297 | Jun 2007 | WO |
2007075114 | Jul 2007 | WO |
2007111576 | Oct 2007 | WO |
2009100459 | Aug 2009 | WO |
2010104567 | Sep 2010 | WO |
2011060266 | May 2011 | WO |
2012102685 | Aug 2012 | WO |
Entry |
---|
Alizade et al., Mech. Mack Theory, vol. 29, No. 1, pp. 115-124, 1994, Great Britain, © 1993. |
Basic Ilizarov Techniques, Techniques in Orthopaedics, vol. 5, No. 4, pp. 55-59, Dec. 1990. |
BIOMET® Vision™ Footing™ System: Surgical Technique, 39 pages, (2008). |
Crozet et al., U.S. Appl. No. 13/788,466, filed Mar. 7, 2013, titled “Dynamic External Fixator and Methods for Use” |
European Search Report for Application No. EP15167691 dated Sep. 17, 2015. |
European Search Report, EP 08 15 0944 dated Aug. 18, 2008. |
European Search Report, EP 08 15 0960 dated Jul. 30, 2008. |
European Search Report, EP 08 15 4754 dated Jul. 4, 2008. |
European Search Report, EP 08 15 4761 dated Aug. 21, 2008. |
European Search Report, EP 10 172 523 dated Mar. 25, 2011. |
European Search Report, EP 11176512, dated Sep. 19, 2011. |
European Search Report, EP 11176566, dated Sep. 20, 2011. |
Extended European Search Report EP16170790, dated Dec. 19, 2016, 5 pages. |
Extended European Search Report for Application No. EP13180720 dated Apr. 15, 2014. |
Extended European Search Report for Application No. EP14154811 dated Jun. 30, 2014. |
Extended European Search Report for Application No. EP14158464 dated Jul. 3, 2014. |
Hwang et al, Asian Journal of Control, vol. 6, No. 1, pp. 136-144, Mar. 2004. |
International Search Report and Written Opinion, PCT/US2010/000712, dated Jun. 28, 2010. |
Nanua et al., IEEE Transactions on Robotics and Automation, vol. 6, No. 4, pp. 438-444, Aug. 1990. |
Partial European Search Report for Application No. EP13180720 dated Dec. 3, 2013. |
S.V. Sreenivasan et al., “Closed-Form Direct Displacement Analysis of a 6-6 Stewart Platform,” Mech. Mach. Theory, vol. 29, No. 6, pp. 855-864, 1994. |
Smith&Nephew, Taylor Spatial Frame, website printout, Aug. 12, 2009. |
Taylor et al., U.S. Appl. No. 09/827,252, filed Apr. 5, 2001, titled “Orthopaedic Fixation Plate” |
Tibiotalocalcaneal Arthrodesis with the ILIZAROV method, Surgical Technique, ILIZAROV Foot and Ankle External Fixation, Smith & Nephew, Inc., May 2010. |
Tsai, Technical Research Report, The Jacobian Analysis of a Parallel Manipulator Using Reciprocal Screws, T.R. 98-34, date unknown. |
Number | Date | Country | |
---|---|---|---|
20190282274 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16108787 | Aug 2018 | US |
Child | 16429502 | US | |
Parent | 15635960 | Jun 2017 | US |
Child | 16108787 | US | |
Parent | 15485402 | Apr 2017 | US |
Child | 15635960 | US | |
Parent | 14707630 | May 2015 | US |
Child | 15485402 | US | |
Parent | 14564675 | Dec 2014 | US |
Child | 14707630 | US | |
Parent | 13792634 | Mar 2013 | US |
Child | 14564675 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13206058 | Aug 2011 | US |
Child | 13792634 | US |