External mechanical pressure sensor for gastric band pressure measurements

Information

  • Patent Grant
  • 7927270
  • Patent Number
    7,927,270
  • Date Filed
    Monday, January 29, 2007
    17 years ago
  • Date Issued
    Tuesday, April 19, 2011
    13 years ago
Abstract
A merely exemplary external pressure sensing system comprises a connecting member and a pressure sensor. The connecting member is operable to connect to a syringe barrel and a needle. The connecting member comprises a conduit permitting communication of fluid from the syringe barrel to the needle when the connecting member is connected to the syringe barrel and the needle. The pressure sensor is in communication with the conduit. The pressure sensor is configured to sense pressure of fluid within the connecting member. The connecting member is configured to permit the pressure sensor to sense the pressure of the fluid while the fluid is communicated from the barrel to the needle. The pressure sensor is configured to provide a visual indication of sensed pressure. The visual indication may be provided by a variety of components, including but not limited to a diaphragm, a disc, a needle, or a slider.
Description
BACKGROUND

Many devices and methods for treating obesity have been made and used, including but not limited to adjustable gastric bands. An example of such an adjustable gastric band is disclosed in U.S. Pat. No. 6,067,991, entitled “Mechanical Food Intake Restriction Device,” which issued on May 30, 2000, and which is incorporated herein by reference. To the extent that an adjustable gastric band system is fluid based, those of ordinary skill in the art will appreciate that it may be advantageous to acquire data indicating the pressure of fluid in the band system. Similar advantages may be achieved with fluid-filled members implanted within the stomach cavity or elsewhere. Such pressure data may be obtained before, during, and/or after pressure adjustment, and may be useful for adjustment, diagnostic, monitoring, or other purposes. The foregoing examples are merely illustrative and not exhaustive. While a variety of techniques and devices have been used treat obesity, it is believed that no one prior to the inventors has previously made or used an invention as described in the appended claims.





BRIEF DESCRIPTION OF THE FIGURES

While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:



FIG. 1 is a schematic illustration of an exemplary food intake restriction system;



FIG. 2 is a more detailed perspective view of an exemplary implantable portion for the food intake restriction system of FIG. 1;



FIG. 3 is a perspective view of the adjustable gastric band of FIG. 2, showing the band positioned around the gastro-esophageal junction of a patient in an exemplary use;



FIG. 4 is a cross-sectional view of the adjustable gastric band of FIG. 2, shown in an exemplary deflated configuration;



FIG. 5 is a cross-sectional view of the adjustable gastric band of FIG. 2, shown in an exemplary inflated configuration to create a food intake restriction;



FIG. 6 is a perspective exploded view of an exemplary syringe system with pressure sensor and display device;



FIG. 7 is a cross-sectional view of a pressure sensing portion of the syringe system of FIG. 6;



FIG. 8 is a perspective view of an exemplary infrared communicator suitable for use with the syringe system of FIG. 6;



FIG. 9 is a perspective view of an exemplary RF communicator suitable for use with the syringe system of FIG. 6;



FIG. 10 is a schematic view of an alternative exemplary pressure sensing syringe system;



FIG. 11 is a perspective view of a reusable sensor portion of the pressure sensing syringe system of FIG. 10;



FIG. 12 is a partial perspective view of a disposable cap portion of the pressure sensing syringe system of FIG. 10;



FIG. 13 is a perspective exploded view of an alternative syringe with pressure sensor;



FIG. 14 is a graph indicating a pressure signal from a pressure sensing system, such as may appear on an external monitor display during interrogation by a user;



FIG. 15 is a cross-sectional view of an alternative exemplary pressure sensing syringe system including a directly in-line pressure sensor;



FIG. 16 is a cross-sectional view of an alternative exemplary pressure sensing syringe system including a piston-based pressure sensor;



FIG. 17 is a cross-sectional view of the pressure sensor of FIG. 16, taken along line 17-17;



FIG. 18 is a cross-sectional view of an alternative exemplary pressure sensing syringe system including a diaphragm-based pressure sensor;



FIG. 19 a cross-sectional view of the pressure sensor of FIG. 16, taken along line 19-19;



FIG. 20 is a cross-sectional view of an alternative exemplary pressure sensing syringe system including a bellows-based pressure sensor;



FIG. 21 is a cross-sectional view of the pressure sensor of FIG. 16, taken along line 21-21;



FIG. 22 is a cross-sectional view of an alternative exemplary pressure sensing syringe system including a pressure sensor using a plurality of media;



FIG. 23 is a cross-sectional view of the pressure sensor of FIG. 16, taken along line 23-23;



FIG. 24 is a cross-sectional view of an alternative exemplary pressure sensing syringe system including a pressure sensor using a Bourdon tube pressure gauge; and



FIG. 25 is a plan view of an alternative exemplary pressure sensing syringe system including a pressure sensor using a slide gauge.





DETAILED DESCRIPTION

The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


Referring now to the drawings in detail, wherein like numerals indicate the same elements throughout the views, FIG. 1 illustrates a food intake restriction system 30. System 30 comprises a first portion, identified generally as 32, implanted inside of a patient 34, and a second portion, identified generally as 36, located external to the patient. Implanted portion 32 comprises an adjustable gastric band 38 positioned on the upper portion of the patient's stomach 40. Adjustable band 38 may include a cavity made of silicone rubber, or another type of biocompatible material, that inflates inwardly against stomach 40 when filled with a fluid. Alternatively, band 38 may comprise a mechanically adjustable device having a fluid cavity that experiences pressure changes with band adjustments, or a combination hydraulic/mechanical adjustable band. In the present example, an injection port 42, which will be described in greater detail below, is implanted in a body region accessible for needle injections and/or telemetry communication signals. In the embodiment shown, injection port 42 fluidly communicates with adjustable band 38 via a catheter 44. A surgeon may position and permanently implant injection port 42 inside the body of the patient in order to perform adjustments of the food intake restriction or stoma created by adjustable band 38. The surgeon, for example, may implant injection port 42 in the lateral, subcostal region of the patient's abdomen under the skin and layers of fatty tissue. The surgeon may also implant injection port 42 on the sternum of the patient. Of course, any other suitable implantation sites may be used.



FIG. 2 illustrates an exemplary adjustable gastric band 38 in greater detail. In this embodiment, band 38 includes a variable volume cavity 46 that expands or contracts against the outer wall of the stomach 40 to form an adjustable stoma for controllably restricting food intake into the stomach 40. A physician may decrease the size of the stoma opening by adding fluid to variable volume cavity 46 or, alternatively, may increase the stoma size by withdrawing fluid from the cavity 46. Fluid may be added or withdrawn by inserting a needle into injection port 42. Alternatively, fluid may be transferred in a non-invasive manner between band 38 and injection port 42 using telemetry command signals. The fluid may be, but is not restricted to, a 0.9 percent saline solution.



FIG. 3 shows the adjustable gastric band 38 of FIG. 2 applied about the gastro-esophageal junction of a patient in an exemplary use. As shown in FIG. 3, band 38 at least substantially encloses the upper portion of stomach 40 near the junction with esophagus 48. FIG. 4 is a sectional view of band 38, showing the band 38 in a deflated configuration. In this view, band 38 contains little to no fluid, thereby maximizing the size of the stoma opening into stomach 40. FIG. 5 is a cross-sectional view of band 38 and stomach 40, similar to FIG. 4, showing band 38 in an inflated, fluid-filled configuration. In this view, the pressure of band 38 against stomach 40 is increased due to the fluid within band 38, thereby decreasing the stoma opening to create a food intake restriction. FIG. 5 also schematically illustrates the dilation of esophagus 48 above band 38 to form an upper pouch 50 beneath the diaphragm muscle 52 of the patient.


Returning now to FIG. 1, external portion 36 of food restriction system 30 comprises a pressure-reading device 60 electrically connected (in this embodiment, via an electrical cable assembly 62) to a control box 64. Control box 64 includes a display 66, one or more control switches 68, and an external control module, which will be explained in further detail below. Control box 64 may be configured for use, for example, in a physician's office or examination room. Some ways to mount control box 64 include placement upon a desktop, attachment to an examination table, or hanging on a portable stand. Control box 64 may also be configured for carrying in the physician's lab coat pocket, holding by hand, or placing upon the examination table or the reclining patient. Electrical cable assembly 62 may be detachably connected to control box 64 or pressure-reading device 60 to facilitate cleaning, maintenance, usage, and storage of external portion 36 of system 30.


Pressure-reading device 60 may non-invasively measure the pressure of the fluid within implanted portion 32 even when injection port 42 is implanted beneath thick (e.g., at least over 10 centimeters) subcutaneous fat tissue. For instance, implanted portion 32 may comprise one or more pressure sensors, and pressure-reading device 60 may be configured to obtain pressure data from implanted portion 32 via telemetry or other means. To the extent that implanted portion 32 requires power from an external source, pressure-reading device 60 or some other component, may be further configured to provide transcutaneous energy transfer (TET) to implanted portion. In the present example, a physician may hold pressure-reading device 60 against the patient's skin near the location of injection port 42 in the patient and observe the pressure reading on display 66 of control box 64. Pressure-reading device 60 may also be removably attached to the patient 34, such as during a prolonged examination, using straps, adhesives, and other well-known methods. Pressure-reading device 60 operates through conventional cloth or paper surgical drapes, and may also include a disposal cover (not shown) that may be replaced for each patient.


While the above embodiments contemplate a pressure sensor being implanted within a patient 34, it will be appreciated that pressure sensors and other sensors may be provided external to a patient 34. For instance, another embodiment is shown in FIGS. 6-7, which depicts an exemplary syringe 400 and a display device 420 in communication via a cable 422. Syringe 400 comprises a plunger 402, a barrel 404, a pressure sensing component 410, and a needle 430. In the present example, plunger 402, barrel 404, and needle 430 are conventional components. Accordingly, barrel 404 has a male luer lock portion 406; and needle 430 has a female luer lock portion 424. Plunger 402 has a piston 408 configured to sealingly engage with barrel 404. In one version, needle 430 comprises a Huber needle. Of course, any of these components, among others, may be varied.


Cable 422 has a boot portion 429, which is configured to selectively attach to pressure sensing component 410. Boot portion 429 further comprises a feature (not shown) that is operable to electrically engage with pressure sensor 426, and thereby communicate pressure readings obtained by pressure sensor 426 along cable 422. Such a feature may comprise one or more terminals (not shown) or any other feature(s). In another embodiment, pressure sensing component 410 is fixedly secured to boot portion 429 and cable 422. Other suitable configurations will be apparent to those of ordinary skill in the art.


In the present example, pressure sensing component 410 comprises a male luer lock portion 412, a female luer lock portion 414, a vertical cylindraceous portion 416, a horizontal cylindraceous portion 418, and a pressure sensor 426. Male luer lock portion 412 of pressure sensing component 410 is configured to engage with female luer lock portion 424 of needle 430; while female luer lock portion 414 of pressure sensing component 410 is configured to engage with male luer lock portion 406 of barrel 404. Accordingly, it will be appreciated that pressure sensing component 410 may be retrofitted to a variety of existing syringes. Alternatively, a syringe 400 may be constructed having a pressure sensing component 410 or similar feature integrally formed within.


As shown, pressure sensor 426 is positioned within horizontal cylindraceous portion 418, adjacent to an annular flange 428. In one example, pressure sensor 426 is sealingly secured to annular flange 428. In this example, boot portion 429 comprises one or more electrodes (not shown) or similar features configured to communicate with and/or receive communications from pressure sensor 426 upon engagement of boot portion 429 with pressure sensing component 410. In another example, pressure sensor 426 is fixed within boot portion 429, and may be positioned adjacent to annular flange 428 upon engagement of boot portion 429 with pressure sensing portion 410. Alternatively, any other suitable configuration may be used.


Pressure sensor 426 may be constructed in accordance with any of the pressure sensors described above. Alternatively, pressure sensor 426 may comprise any off-the-shelf pressure sensor suitable for use, or any other type of pressure sensor. In the present example, when syringe 400 is assembled, vertical cylindraceous portion 416 provides a sealed conduit for fluid communication from barrel 404 to needle 430. Vertical cylindraceous portion 416 is further in fluid communication with horizontal cylindraceous portion 418; as is pressure sensor 426. Accordingly, it will be appreciated that pressure sensor 426 may be operable to sense pressure of fluid within syringe 400. It will also be appreciated that pressure sensed by pressure sensor 426 may be communicated to display device 420 via cable 422, and displayed thereon in any suitable format.


In one exemplary use, needle 430 is inserted into patient 34 to reach a septum of an injection port 42. Any suitable port may be used, including but not limited to a port 42 lacking a pressure sensor. Upon such insertion in the present example, needle 430 may be placed in fluid communication with implanted portion 32, such that the pressure of the fluid in implanted portion 32 and the fluid in syringe 400 may be substantially equalized. It will therefore be appreciated that pressure sensed by pressure sensor 426 may be indicative of the pressure of fluid within implanted portion 32. Such pressure information may be particularly useful during a process of adjusting pressure within implanted portion 32 via addition of fluid to implanted portion 32 with syringe 400 or via withdrawal of fluid from implanted portion 32 with syringe 400. In particular, syringe 400 may permit simultaneous adjustment and reading of fluid pressure.


For instance, a user may first insert needle 430 into patient 34 to reach the septum of an injection port 42. Upon pressure equalization, the user may then read the initial pressure via display device 420. It will be appreciated that pressure equalization may be determined by a pressure reading remaining substantially constant. The user may then add or withdraw fluid to or from implanted portion 32 using syringe 400, watching for changes in pressure indicated via display device 420. Because no valve or other mechanism is necessarily required to switch syringe 400 between a pressure sensing mode and an add/withdrawal mode, such pressure readings may be obtained as the user is adding or withdrawing fluid to or from implanted portion 32. Accordingly, pressure sensing component 410 and pressure sensor 426 may be considered substantially in-line with the other syringe 400 components. As used herein, the phrase “substantially in-line” shall be read to imply that fluid may be added or withdrawn with syringe 400 substantially contemporaneously with pressure sensing by pressure sensor 426; and that manipulation of a valve or other mechanism is not required to switch between an add/withdrawal mode of syringe 400 and a pressure sensing mode of syringe 400. However, the phrase “substantially in-line” shall not be read to require that a straight line must be able to intersect pressure sensor 426 and all other components of syringe 400.


Pressure readings may thus be obtained in approximately real-time, as the pressure is adjusted by the user with syringe 400. To the extent that there is a delay between the user's manipulation of syringe 400 and the time the pressure equalizes among syringe 400 and implanted portion 32, the user may simply wait until the pressure reading indicated by display device 420 becomes substantially constant. Other suitable uses for syringe 400 and display device 420 will be apparent to those of ordinary skill in the art.



FIG. 8 depicts an exemplary substitute for cable 422. In this variation, cable 422 of the syringe 400 version shown in FIGS. 6-7 is substituted with a wireless infrared communicator 440. Infrared communicator 440 comprises a pair of LED's 442, a battery 444, and a pull-tab 446. Infrared communicator 440 is securable to pressure sensing component 410, and is in communication with pressure sensor 426. In one embodiment, pressure sensor 426 is housed within infrared communicator 440, and is configured to be exposed to the pressure of fluid within pressure sensing component 410 when coupled with pressure sensing component 410. For instance, such pressure exposure may be provided by having pressure sensor 426 in direct contact with fluid in pressure sensing component 410. Alternatively, infrared communicator 440 and/or pressure sensing component 410 may comprise a diaphragm or other member operable to communicate pressure forces to pressure sensor 426 positioned between pressure sensor 426 and fluid in pressure sensing component 410. In yet another embodiment, pressure sensor 426 is a component of pressure sensing component 410, and infrared communicator 440 is configured to receive pressure data obtained from pressure sensor 426 when coupled with pressure sensing component 410. Still other suitable configurations will be apparent to those of ordinary skill in the art.


Infrared communicator 440 of the present example is operable to communicate pressure data obtained from pressure sensor 426 via LED's 442 in infrared light. Accordingly, it will be appreciated that display device 420 may be modified to include an infrared sensor (not shown) operable to receive such communications. Battery 444 may be used to provide power to infrared communicator 440. Pull-tab 446 may be initially positioned between battery 444 and a terminal to preserve the life of battery 444 before a first use. The user may thus remove pull-tab 446 before the first use. Alternatively, infrared communicator 440 may comprise a switch or other mechanism for selectively activating battery 444. Other variations will be apparent to those of ordinary skill in the art. In addition, it will be appreciated that the wireless nature of infrared communicator 440 or other communication devices described herein may provide a degree of patient isolation, other results, or no appreciable results. It will also be appreciated that this variation of syringe 400 may be used in a manner similar to any of the other variations of syringe 400, as described above.



FIG. 9 shows yet another exemplary substitute for cable 422. In this variation, cable 422 of the syringe 400 version shown in FIGS. 6-7 is substituted with a wireless radio frequency (RF) communicator 450. RF communicator 450 comprises an RF coil 452, a battery 444, and a pull-tab 446. RF communicator 450 is securable to pressure sensing component 410, and is in communication with pressure sensor 426. As noted above with respect to infrared communicator 440, pressure sensor 426 may reside within RF communicator 450 or within pressure sensing component 410. other suitable configurations will be apparent to those of ordinary skill in the art.


RF communicator 450 of the present example is operable to communicate pressure data obtained from pressure sensor 426 via RF coil 452 as an RF signal. Accordingly, it will be appreciated that display device 420 may be modified to include an RF signal receiver (not shown) operable to receive such communications. Battery 444 may be used to provide power to RF communicator 450. Pull-tab 446 may be initially positioned between battery 444 and a terminal to preserve the life of battery 444 before a first use. The user may thus remove pull-tab 446 before the first use. Alternatively, RF communicator 450 may comprise a switch or other mechanism for selectively activating battery 444. Other variations will be apparent to those of ordinary skill in the art. It will also be appreciated that this variation of syringe 400 may be used in a manner similar to any of the other variations of syringe 400, as described above.



FIG. 10 shows another exemplary pressure sensing syringe system 1400. In this example, syringe system 1400 comprises a syringe 400, tubing 1402, a pressure sensing portion 1420, cables 1404, an interface component 1406, and a display device 1408. Syringe 400 comprises “T”-joint 1410 having a two-way leur activated valve 1412. “T”-joint 1410 is in fluid communication with needle 430 and tubing 1402. Two-way luer activated valve 1412 is configured such that it opens when “T”-joint 1410 is coupled with male luer lock portion 406 of syringe 400. Of course, a “T”-joint 1410 or other device may be provided without a two-way luer activated valve 1412. It will also be appreciated that pressure sensing component 410 described above may also have a two-way luer activated valve (e.g., at female luer lock portion 414). In the present example, when “T”-joint 1410 is coupled with syringe 400, tubing 1402 is operable to communicate the pressure of fluid within syringe 400 to pressure sensing portion 1420. It will be appreciated that “T”-joint may be secured to a variety of existing syringes 400 and needles 430. To the extent that a two-way luer activated valve 1412 or similar device is used (e.g., in “T”-joint 1410, in pressure sensing component 410, etc.), barrel 404 may be removed after pressure is adjusted without affecting fluid pressure in components “downstream” of two-way luer activated valve 1412. By way of example only, it may be desirable to adjust pressure using syringe 400, then remove barrel 404 from two-way luer activated valve 1412, then have patient 34 stand upright, then obtain subsequent pressure measurements. Removal of barrel 404 and/or other uses for two-way luer activated valve 1412 may also be desirable in a number of other situations.


As shown in FIGS. 10-12, pressure sensing portion 1420 comprises a reusable sensor portion 1422 and a disposable cap portion 1424. Reusable sensor portion 1422 and disposable cap portion 1424 are configured to selectively engage one another. When coupled with reusable sensor portion 1422, disposable cap portion 1424 is in fluid communication with reusable sensor portion 1422, such that pressure of fluid within tubing 1402 may be communicated to reusable sensor portion 1422 via disposable cap portion 1424. In one embodiment, disposable cap portion 1424 comprises the pressure dome described in U.S. Pat. No. 6,725,726, the disclosure of which is incorporated by reference herein. Reusable sensor portion 1422 comprises a pressure port 1426, which is configured to receive such fluid pressure communications from disposable cap portion 1424. For instance, pressure port 1426 may comprise a diaphragm or other structure suited for receiving fluid pressure communications. Reusable sensor portion 1422 further comprises a pressure sensor (not shown), such as a transducer, which is configured to provide pressure data via cable 1404 to interface component 1406. Interface component 1406 is operable to process such pressure data and communicate it to display device 1408 via cable 1404. In one embodiment, reusable sensor portion 1422 comprises a Model SP840 or SP844 sensor from MEMSCAP of Durham, N.C., though any other sensor portion 1422 component(s) may be used. Of course, interface component 1406 and display device 1408 may alternatively be integrated as a single device. Interface component 1406 and/or display device 1408 may comprise a desktop PC, a laptop computer, a personal digital assistant (PDA), a dedicated device, or any other suitable device(s).


It will be appreciated that, in order to effectively communicate the pressure of fluid in syringe 400 to reusable sensor portion 1422, it may be desirable to provide a fluid within tubing 1402. Such fluid may be provided within tubing 1402 before attempting to take pressure measurements. While the fluid within tubing 1402 may be the same type of fluid within syringe 400 (e.g. saline), any fluid may be used, including but not limited to gels, silicone fluid, saline, etc. In one embodiment, 1402 tubing is provided pre-primed, such that fluid is provided within tubing 1402 prior to use (e.g., before “T”-joint 1410 is coupled with syringe 400). In another embodiment, tubing 1402 is initially empty of fluid, and the user primes tubing 1402 with fluid before using syringe 400 to add or withdraw fluid to or from injection port 42. Accordingly, a vent cap 1414 is provided in disposable cap portion 1424 to facilitate priming of tubing 1402 with fluid by facilitating the evacuation of air from tubing 1402.


As described above, a user may use syringe 400 to add fluid to or withdraw fluid from port 42 to adjust a gastric band 38. With pressure sensing syringe system 1400 assembled as shown in FIG. 10 during such use, or when any suitable variation of pressure sensing syringe system 1400 is used, it will be appreciated that fluid pressure may be sensed, and pressure measurements may be made, as gastric band 38 pressure is adjusted. In other words, pressure may be sensed and adjusted substantially simultaneously, without the need to manipulate a stopcock valve or similar device in order to switch between solely adjusting pressure or solely sensing pressure. Alternatively, such a stopcock valve or similar device may be provided.


While reusable sensor portion 1422 and disposable cap portion 1424 are shown as being separate components, it is contemplated that these components 1422, 1424 may alternatively be unitary. Still other variations will be apparent to those of ordinary skill in the art.



FIG. 13 depicts a variation of syringe 400. In this variation, pressure sensor 426 is positioned between plunger 402 and piston 408, and is in communication with display device 420 via cable 422. Alternatively, pressure sensor 426 may be positioned within piston 408 or at the distal end of piston 408, such that it is in contact with fluid within barrel 404. In any of these variations, pressure sensor 426 may be configured to sense the pressure of fluid within barrel 404, and hence, the pressure of fluid within implanted portion 32 when needle 430 is placed in fluid communication with implanted portion 32. As with embodiments described above, such pressure measurements may be communicated to the user via display device 420 as the user is adding fluid to or withdrawing fluid from the implanted portion 32 via syringe 400 in approximately real-time.


The foregoing describes but a few examples of suitable locations for a pressure sensor external to a patient 34. Several other suitable locations exist, including but not limited to in barrel 404 (e.g., adjacent to male luer lock portion 406), in needle 430 (e.g., adjacent to female luer lock portion 424), or in any other suitable location. Similarly, just as syringe 400 may be varied, so may display device 420. For instance, while display device 420 of the present example is dedicated for use with pressure sensor 426, display device 420 may be any other device. By way of example only, display device 350 shown in FIG. 27 may be configured to receive communications from pressure sensor 426. Alternatively, pressure sensor 426 may be configured to communicate with a desktop PC, laptop computer, personal digital assistant (PDA), or any other device. Other variations of syringe 400 and display device 420 will be apparent to those of ordinary skill in the art, as will methods of processing pressure data. By way of example only, display device 420 or any other device may be configured to analyze pressure amplitude, the rate of change in pressure, and/or other factors to determine whether a user is using a syringe 400 that is too large, too small, or is using the syringe 400 improperly (e.g., injecting fluid too quickly, etc.), and may alert the user (e.g., visually and/or aurally) when such conditions are found.


In the present example, in any of the foregoing embodiments, it will be appreciated that and display 66 and/or display device 420 may be used to provide approximately real-time pressure measurements to a user before, during, and after the addition or withdrawal of fluid to or from implanted portion 32. For instance, a surgeon may adjust the saline content of implanted portion 32 while patient 34 swallows a fixed amount of water, and may monitor the pressure level in implanted portion via display 66 and/or display device 420 during such activities. It will be appreciated that an optimal pressure adjustment may be determined based on a variety of factors related to pressure data, including but not limited to any of the following: the original baseline pressure; the new baseline pressure; the maximum peristaltic pressure; the minimum peristaltic pressure; the length of a peristaltic contraction; the Fourier transform, Laplace transform, other transform, or other use of time/frequency domain information of a peristaltic contraction data spike; the pressure decay time constant during persistaltic contractions; the total averaged pressure decay time constant during a water swallowing period; the number of peristaltic contractions to swallow a fixed amount of water; one or more forces exerted by an implanted device and/or an anatomical structure; energy of an implanted device or of fluid therein; the fill rate of fluid into an implanted device; the volume of fluid in an implanted device; the capacity of an implanted device; the flow rate of fluid into or within an implanted device; the pressure pulse rate of fluid within an implanted device; a counted number of pressure pulses of fluid within an implanted device; one or more electrical signals communicated from tissue prior to and/or in response to adjustment of an implanted device; chemical(s) output from tissue prior to and/or in response to adjustment of an implanted device; other tissue feedback responsive to adjustment of an implanted device; or any other factors.


In one embodiment, control box 64 or display device 420 is operable to receive data indicative of the above-noted factors in any suitable fashion (e.g., from sensors, etc.), and is further operable to automatically process such factors and present the result of such processing to the user via display 66 or display device 420. For instance, control box 64 or display device 420 may be configured to determine an ideal amount of fluid to be added or withdrawn based on such processing of factors, and may simply display a message to the user such as “Add 4 cc's of fluid,” “Withdraw 0.5 cc's of fluid,” or the like. Such messages may be displayed in addition to or in lieu of displaying pressure measurements, changes in pressure, or other data. Other suitable processes of any of the above-noted factors or other factors, as well as ways in which results of such processes may be presented to the user, will be apparent to those of ordinary skill in the art.


As discussed above, it may be desirable to account for temperature, atmospheric pressure, and other factors when considering measurements of pressure within implanted portion 32. Accordingly, pressure-reading device 60 or any other component may receive additional data such as temperature measurements taken within implanted portion 32, and control box 64 or display device 420 may comprise logic configured to adjust pressure readings in accordance with a variety of such factors.



FIG. 14 is an exemplary graphical representation of a pressure signal 216 from any of the foregoing pressure sensing systems, such as may appear on display 66 or display device 420 during interrogation by a user. In one embodiment, the fluid pressure is initially measured by pressure reading device 60 or sensor 426 while the patient is stable, resulting in a steady pressure reading as shown. Next, an adjustment is applied to band 38 to decrease the stoma size. During the band adjustment, the pressure sensing system continues to measure the fluid pressure and transmit the pressure readings to control box 64 or display device 420. As seen in the graph of FIG. 14, the pressure reading rises slightly following the band adjustment. In the example shown, the patient is then asked to drink a liquid to check the accuracy of the adjustment. As the patient drinks, the pressure sensing system continues to measure the pressure spikes due to the peristaltic pressure of swallowing the liquid, and transmit the pressure readings to external module 36 for display. By measuring and visually depicting the loading of the restriction device against the peristaltic motion of the stomach both during and after an adjustment, the system of the present example provides the physician with an accurate, real-time visualization of the patient's response to the adjustment. This instantaneous, active display of recorded pressure data enables the physician to perform more accurate band adjustments. The data may be displayed over time to provide a pressure verses time history.


While several of the above embodiments comprise one or more electronic components, it will be appreciated that a pressure sensing system may alternatively comprise mechanical or other non-electronic-based pressure sensing components. For instance, several merely exemplary mechanical pressure sensing systems are depicted in FIGS. 15-25, and will be described in greater detail below. While these examples will be described as being mechanical or otherwise non-electronic-based, it will be appreciated that the following devices and components, including variations of the same, may nevertheless be modified or supplemented with a variety of electronic components, including but not limited to those electronic components described above. Furthermore, any of the devices and components described above may be modified or supplemented with a variety of mechanical components, including but not limited to the mechanical components described below.



FIG. 15 shows a syringe 400 coupled with a pressure sensing component 500. Syringe 400 is a conventional syringe, and comprises a plunger 402, barrel 404, piston 408, and needle 430 like syringe 400 of FIGS. 6 and 10. Pressure sensing component 500 is selectively connectable with barrel 404 and needle 430 of syringe 400. For instance, such selective connectivity may be provided by complimentary luer lock features or by other structures. Pressure sensing component 500 comprises a fluid flow chamber 502 and a pressure reading chamber 504. In the present example, pressure sensing component 500 is configured such that fluid may be communicated from barrel 404 to needle 430 via fluid flow chamber 502 when pressure sensing component 500 is coupled with barrel 404 and needle 430.


In this example, fluid flow chamber 502 and pressure reading chamber 504 are not in fluid communication. However, as will be described in greater detail below, a portion of fluid flow chamber 502 and a portion of pressure reading chamber 504 are separated by a diaphragm 506. Pressure reading chamber 504 comprises a first medium 508 and a second medium 510, which are separated by an indicator 512. Indicator 512 of the present example comprises a plastic disc, though any other suitable structures or materials may be used. Furthermore, while indicator 512 of the present example comprises a disc, it will be appreciated that such a disc or any other indicator 512 may have any other suitable shape or configuration, and it need not necessarily be round. In the present example, first medium 508 and second medium 510 comprise different materials, though first medium 508 and second medium 510 may alternatively comprise the same material. First medium 508 and/or second medium 510 may be selected from the following group: any fluid (e.g., gas, liquid), gel, foam, one or more springs, including combinations thereof. Other suitable materials and structures for first medium 508 and second medium 510 will be apparent to those of ordinary skill in the art. It will also be appreciated that certain selections of materials for first medium 508 and second medium 510 may obviate the need for a separate indicator 512, as an interface of first medium 508 and second medium 510 may serve a function similar to indicator 512 as described below.


Indicator 512 is configured to move up and down within pressure reading chamber 504 in response to pressure variations communicated via diaphragm 506. In particular, diaphragm 506 is configured such that pressure of fluid within fluid flow chamber 502 will cause a corresponding deformation of diaphragm 506. Such deformation of diaphragm 506 will be communicated through first medium 508, which will cause a corresponding rise or fall of indicator 512 within pressure reading chamber 504.


Pressure reading chamber 504 of the present example further comprises a plurality of graduations 514. It will be appreciated that the position of indicator 512 relative to graduations 514 may provide a visual indication of fluid pressure within fluid flow chamber 502. It will also be appreciated that, to the extent that the pressure of fluid within implanted portion 32 is substantially equalized with the pressure of fluid within fluid flow chamber 502 (e.g., when needle 430 has been inserted into port 42), indicator 512 and graduations 514 may provide an indication of the fluid pressure within implanted portion 32. Accordingly, a syringe 400 coupled with a pressure sensing component 500 may be used in a manner similar to that described above with respect to the embodiments depicted in FIGS. 6-13, albeit relying on mechanical-based pressure measurements rather than electronic-based pressure measurements. In other words, in some versions of this embodiment and versions of other embodiments described herein, the pressure of fluid may be sensed and measured with a pressure sensing component 500 substantially contemporaneously with an act of adjusting fluid pressure with a syringe 400.


As shown, pressure sensing component 500 further comprises a capped vent 516 in communication with pressure reading chamber 504. Pressure sensing component 500 may therefore be used to obtain measurements of gauge pressure. The structure of capped vent 516, alone or in combination with other features not depicted, may also secure pressure reading chamber 504 relative to fluid flow chamber 502. In an alternate embodiment, capped vent 516 is eliminated, such that pressure sensing component 500 may be used to obtain measurements of absolute pressure. Such embodiments, among others, may rely on any suitable structures to secure pressure reading chamber 504 relative to fluid flow chamber 502. Still other suitable variations of pressure sensing component 500 will be apparent to those of ordinary skill in the art, as the embodiments explicitly described herein are not intended to be exhaustive.


As shown in FIG. 15, pressure sensing component 500 is directly “in line” with the other components of syringe 400. In other words, a straight line is able to intersect pressure sensing component 500 and other components of syringe 400. Of course, pressure sensing component 500 need not be directly in line with syringe 400 per se. For instance, pressure sensing component 500 may be merely substantially in line with syringe 400 as described above with respect to the embodiment depicted in FIG. 6. Alternatively, any other suitable relationship between pressure sensing component 500 and syringe 400 may be used.


Another mechanical-based pressure measurement system is shown in FIGS. 16-17. In this embodiment, a conventional syringe 400 is coupled with a pressure sensing component 600. Pressure sensing component 600 of this example comprises a “T”-shaped fitting 602 and a pressure sensor 604. “T”-shaped fitting 602 is selectively coupled with barrel 404 of syringe 400, needle 430 of syringe 400, and pressure sensor 604. As with other embodiments described herein, such selective coupling may be provided by complimentary luer lock features or other structures. Alternatively, any components described herein as selectively connectable may be integral or otherwise fixedly and permanently secured to one another. In any event, “T”-shaped fitting 602 of the present example is in fluid communication with the components to which it is coupled, and is configured to permit fluid communication from barrel 404 to needle 430. Of course, the “T” shape of “T”-shaped fitting 602 is merely exemplary. Those of ordinary skill in the art will immediately recognize that any fitting described herein may have any suitable alternative shape (e.g., “Y” shape).


In one embodiment, the interface of barrel 404 and “T”-shaped fitting 602 comprises a luer activated valve (not shown) or other feature configured to selectively prevent communication of fluid at the interface. For instance, a luer activated valve may be provided on the barrel 404 side of the interface and configured to block communication of fluid into and/or out of barrel 404 at the interface until barrel 404 is coupled with “T”-shaped fitting 602. In addition or in the alternative, a luer activated valve may be provided on the “T”-shaped fitting 602 side of the interface and configured to block communication of fluid into and/or out of “T”-shaped fitting 602 at the interface until “T”-shaped fitting 602 is coupled with barrel 404. As will be appreciated in view of the teachings herein, such a luer activated valve may prevent backflow, address hysteretic effects, reduce the likelihood of plunger 402 movement while pressure is sensed, provide other results, or provide no appreciable results. Furthermore, a luer activated valve may be provided on either side or both sides of any other interface described herein. For instance, a luer activated valve may be provided at either or both sides of interface of “T”-shaped fitting 602 and pressure sensor 604; or at interface of “T”-shaped fitting 602 and needle 430. It will also be appreciated that any other device or structure may be provided at or near either or both sides of any interface described herein, including but not limited to a one-way valve, a stopcock, or any other device or structure to provide similar or different results. Alternatively, such devices or structures may be omitted altogether.


Pressure sensor 604 of the present example comprises a diaphragm 606, a medium 608, a piston 610, a pressure-calibrated spring 612, markings 614, and vent holes 616. Medium 608 may comprise any suitable material including but not limited to gel, air, any other gas, or any liquid. Similar to diaphragm 506 of FIG. 15, diaphragm 606 of FIG. 16 is configured to deform in response to fluid pressure within “T”-shaped fitting 602. Such deformation of diaphragm 606 may be communicated through medium 608 to piston 610. Piston 610 may therefore move within pressure sensor 604 in response to changes of pressure within “T”-shaped fitting 602. Vent holes 616 formed in pressure sensor 604 may permit movement of air into and out of pressure sensor 604 as piston 610 moves.


Pressure-calibrated spring 612 is coupled or engaged with piston 610, and is configured to resist movement of piston 610. Suitable properties (e.g., spring constant, material, etc.) for pressure-calibrated spring 612 will be apparent to those of ordinary skill in the art. Markings 614 are provided to indicate optimal pressure values or ranges. In other words, the position of piston 610 relative to markings 614 may be viewed for indication of fluid pressure within “T”-shaped fitting 602. As will be apparent to those of ordinary skill in the art, the pressure of fluid within “T”-shaped fitting 602 may be indicative of the pressure of fluid within implanted portion 32. Suitable methods for determining optimal pressure values or ranges, and therefore locations for markings 614 on pressure sensor 604, will also be apparent to those of ordinary skill in the art.



FIGS. 18-19 show yet another mechanical-based pressure measurement system. In this embodiment, a conventional syringe 400 is coupled with a pressure sensing component 620. Pressure sensing component 620 of this example comprises a “T”-shaped fitting 602 and a pressure sensor 622. The relationship between “T”-shaped fitting 602 and syringe 400 components in this embodiment, and the relationship between “T”-shaped fitting 602 and pressure sensor 622 in this embodiment, are essentially the same as those relationships described above with respect to the embodiment depicted in FIGS. 16-17.


Pressure sensor 622 of the present example comprises a pressure-calibrated diaphragm 624, graduations 626, and vent holes 628. As with other diaphragms 506, 606 described herein, pressure-calibrated diaphragm 624 is configured to deform in response to fluid pressure within “T”-shaped fitting 602. Vent holes 628 formed in pressure sensor 622 may permit movement of air into and out of pressure sensor 622 as pressure-calibrated diaphragm 624 deforms. Graduations 626 are provided along pressure sensor 622 to indicate fluid pressure measurements. In particular, the position of pressure-calibrated diaphragm 624 relative to graduations 626 may be viewed for measurement of fluid pressure within “T”-shaped fitting 602. As noted above, the pressure of fluid within “T”-shaped fitting 602 may be indicative of the pressure of fluid within implanted portion 32.


Still another mechanical-based pressure measurement system is shown in FIGS. 20-21. In this embodiment, a conventional syringe 400 is coupled with a pressure sensing component 640. Pressure sensing component 640 of this example comprises a “T”-shaped fitting 602 and a pressure sensor 642. The relationship between “T”-shaped fitting 602 and syringe 400 components in this embodiment, and the relationship between “T”-shaped fitting 602 and pressure sensor 642 in this embodiment, are essentially the same as those relationships described above with respect to the embodiments depicted in FIGS. 16-19.


Pressure sensor 642 of the present example comprises a pressure-calibrated bellows 644, a piston 646, graduations 648, a threshold marking 650, and vent holes 652. Bellows 644 and piston 646 are coupled together, and bellows 644 and piston 646 are configured to move within pressure sensor 642. The interior of bellows 644 is in fluid communication with “T”-shaped fitting 602. In this embodiment, the combination of bellows 644 and piston 646 operate in a manner similar to that of diaphragm 624 in the embodiment depicted in FIG. 18. That is, bellows 644 and piston 646 are configured to move within pressure sensor 642 in response to changes of fluid pressure within “T”-shaped fitting 602. Vent holes 652 formed in pressure sensor 642 may permit movement of air into and out of pressure sensor 642 as bellows 644 and piston 646 move within pressure sensor 642.


Graduations 648 are provided along pressure sensor 642 to indicate fluid pressure measurements. In particular, the position of piston 646 relative to graduations 648 may be viewed for measurement of fluid pressure within “T”-shaped fitting 602. As noted above, the pressure of fluid within “T”-shaped fitting 602 may be indicative of the pressure of fluid within implanted portion 32. Furthermore, threshold marking 650 within pressure sensor 642 provides an indication of the maximum amount of fluid pressure that should be provided. In other words, as the position of piston 646 approaches the threshold marking 650, a user may be so notified that additional fluid should not be injected with syringe 400 lest the fluid pressure threshold be exceeded. Suitable methods for determining a maximum pressure threshold will be apparent to those of ordinary skill in the art, and may be based on properties of implanted portion 32, patient 34 parameters, and/or other considerations. It will also be appreciated that a threshold marking 650 may be provided in or with any other pressure sensor described herein.



FIGS. 22-23 show yet another exemplary mechanical-based pressure measurement system. In this embodiment, a conventional syringe 400 is coupled with a pressure sensing component 660. Pressure sensing component 660 of this example comprises a “T”-shaped fitting 602 and a pressure sensor 662. The relationship between “T”-shaped fitting 602 and syringe 400 components in this embodiment, and the relationship between “T”-shaped fitting 602 and pressure sensor 662 in this embodiment, are essentially the same as those relationships described above with respect to the embodiments depicted in FIGS. 16-21.


Pressure sensor 662 of the present example comprises a diaphragm 664, a first medium 666, a second medium 668, an indicator 670, and graduations 672. Indicator 670 separates first medium 666 from second medium 668. Indicator 670 of the present example comprises a plastic disc, though any other suitable structures or materials may be used. In the present example, first medium 666 and second medium 668 comprise different materials, though first medium 666 and second medium 668 may alternatively comprise the same material. First medium 666 and/or second medium 668 may be selected from the following group: any fluid (e.g., gas, liquid), gel, foam, one or more springs, including combinations thereof. Other suitable materials and structures for first medium 666 and second medium 668 will be apparent to those of ordinary skill in the art. It will also be appreciated that certain selections of materials for first medium 666 and second medium 668 may obviate the need for a separate indicator 670, as an interface of first medium 666 and second medium 668 provide a functional equivalent of indicator 670 as described below.


Indicator 670 is configured to move within pressure sensor 662 in response to pressure variations communicated via diaphragm 664. In particular, diaphragm 664 is configured such that pressure of fluid within “T”-shaped fitting 602 will cause a corresponding deformation of diaphragm 664. Such deformation of diaphragm 664 will be communicated through first medium 666, which will cause a corresponding movement of indicator 670 within pressure sensor 662. Of course, as with any other diaphragm described herein, diaphragm 664 may be substituted with any suitable structure, including but not limited to a bellows.


Pressure sensor 662 of the present example further comprises a plurality of graduations 672. It will be appreciated that the position of indicator 670 relative to graduations 672 may provide an indication of fluid pressure within “T”-shaped fitting 602. It will also be appreciated that, to the extent that the pressure of fluid within implanted portion 32 is substantially equalized with the pressure of fluid within “T”-shaped fitting 602 (e.g., when needle 430 has been inserted into port 42), indicator 670 and graduations 672 may provide an indication of the fluid pressure within implanted portion 32. Accordingly, the embodiment depicted in FIGS. 22-23 operates in a manner similar to the manner in which the embodiment depicted in FIG. 15 operates. However, the pressure sensor 662 of FIGS. 22-23 is not directly in line with syringe 400.


Another exemplary mechanical-based pressure measurement system is depicted in FIG. 24. In this embodiment, a conventional syringe 400 is coupled with a pressure sensing component 680. Pressure sensing component 680 of this example comprises a “T”-shaped fitting 602 and a Bourdon tube pressure gauge 682. The relationship between “T”-shaped fitting 602 and syringe 400 components in this embodiment, and the relationship between “T”-shaped fitting 602 and Bourdon tube pressure gauge 682 in this embodiment, are essentially the same as those relationships described above with respect to the embodiments depicted in FIGS. 16-23.


Bourdon tube pressure gauge 682 of this example comprises a conventional Bourdon tube pressure gauge assembly. In particular, Bourdon tube pressure gauge 682 comprises a Bourdon tube 684 and an indicator needle 686. Bourdon tube pressure gauge 682 is configured such that needle 686 moves in response to changes in fluid pressure within “T”-shaped fitting 602. While not depicted in FIG. 24, needle 686 may be presented in front of a face having pressure indications marked thereon, such that pressure measurements may be obtained by viewing the position of needle 686 relative to such markings. As noted above, measurements of the pressure of fluid within “T”-shaped fitting 602 may be indicative of the pressure of fluid within implanted portion 32.



FIG. 25 shows yet another exemplary mechanical-based pressure measurement system. In this embodiment, a conventional syringe 400 is coupled with a pressure sensing component 690. Pressure sensing component 690 of this example comprises a “T”-shaped fitting 602 and a slide gauge 692. The relationship between “T”-shaped fitting 602 and syringe 400 components in this embodiment, and the relationship between “T”-shaped fitting 602 and slide gauge 692 in this embodiment, are essentially the same as those relationships described above with respect to the embodiments depicted in FIGS. 16-24.


Slide gauge 692 of this example is similar to conventional slide gauges that are often used to measure the pressure of air in tires. In particular, slide gauge comprises an elongate housing 694 and a slider 696 that is configured to move longitudinally into and out of housing 694. That is, slider 696 moves in response to changes in fluid pressure within “T”-shaped fitting 602. A seal is provided between slider 696 and housing 694 to prevent leakage of fluid therebetween. A plurality of graduations 698 are provided on slider 696 to indicate pressure measurements, such that pressure measurements may be obtained by viewing the position of graduations 698 relative to the end 670 of housing 694. As noted above, measurements of the pressure of fluid within “T”-shaped fitting 602 may be indicative of the pressure of fluid within implanted portion 32.


To the extent that any of the foregoing embodiments include leur-type interfaces (e.g., ports of “T”-shaped fittings 602, etc.), it will be appreciated that such interfaces may comprise conventional luer lock structures. It will also be appreciated that such interfaces may comprise a luer-activated valve or other feature. Furthermore, any pressure sensor described herein may be configured to measure absolute pressure or gauge pressure. Still further, while pressure sensors are described herein as being coupled with conventional syringe components, it will be appreciated that any of the pressure sensors described herein may alternatively be integral with a plunger 402, a barrel 404, a needle 430, or any other component.


While several exemplary mechanical-based pressure sensing systems and components have been discussed above, it will be appreciated that the embodiments explicitly described are not intended to be exhaustive. Various components described above may be varied, substituted, supplemented, moved, rearranged from one embodiment to another, merged, combined, and/or separated. Suitable modifications will be apparent to those of ordinary skill in the art.


In addition to use during adjustments, the pressure sensing systems of the foregoing examples may also be used to measure pressure variations in implanted portion 32 at various intervals during treatment. Periodic pressure readings may enable the pressure sensing system to function as a diagnostic tool, to ensure that adjustable band 38 is operating effectively. In particular, a pressure sensing system may be utilized to detect a no pressure condition within band 38, which may indicate a fluid leakage or other condition. Alternatively, the system may be used to detect excessive pressure spikes within band 38, which may indicate a kink in catheter 44 or a blockage within the stoma or other conditions.


It will become readily apparent to those skilled in the art that the above invention has equally applicability to other types of implantable bands. For example, bands are used for the treatment of fecal incontinence. One such band is described in U.S. Pat. No. 6,461,292 which is hereby incorporated herein by reference. Bands can also be used to treat urinary incontinence. One such band is described in U.S. Patent Application 2003/0105385 which is hereby incorporated herein by reference. Bands can also be used to treat heartburn and/or acid reflux. One such band is described in U.S. Pat. No. 6,470,892 which is hereby incorporated herein by reference. Bands can also be used to treat impotence. One such band is described in U.S. Patent Application 2003/0114729 which is hereby incorporated herein by reference.


The present invention has application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.


Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed an sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.


While the present invention has been illustrated by description of several embodiments, it is not the intention of the applicant to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. For instance, the device and method of the present invention has been illustrated in relation to providing the pressure sensor within the injection port. Alternatively, the sensor could be positioned within a fluid filled portion of the band in order to measure pressure changes within the band. Additionally, the pressure sensor could be associated with an elastomeric balloon implanted within the stomach cavity to measure fluid pressure within the balloon. The structure of each element associated with the present invention can be alternatively described as a means for providing the function performed by the element. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.

Claims
  • 1. An external pressure sensing system, the system comprising: (a) a connecting member operable to connect to a syringe barrel, wherein the connecting member is further operable to connect to a needle, wherein the connecting member comprises a conduit permitting communication of fluid from the syringe barrel to the needle when the connecting member is connected to the syringe barrel and the needle, wherein at least a portion of the connecting member is positioned to maintain coaxial alignment in relation to the needle, wherein the at least a portion of the connecting member is positioned to maintain coaxial alignment in relation to the syringe barrel, wherein the connecting member is configured to maintain a distance between the syringe barrel and the needle such that the syringe barrel and the needle is configured for single-handed use; and(b) a pressure sensor in communication with the conduit, wherein the pressure sensor comprises an outer body, wherein the pressure sensor is configured to sense pressure of fluid within the connecting member, wherein the connecting member is configured to permit the pressure sensor to sense the pressure of the fluid while the fluid is communicated from the barrel to the needle, wherein the pressure sensor is configured to provide a visual indication of sensed pressure, wherein the visual indication of the sensed pressure is confined within a volume defined by the outer body of the pressure sensor.
  • 2. The external pressure sensing system of claim 1, wherein the pressure sensor comprises a movable indicator, wherein the movable indicator is configured to move in response to changes in pressure of the fluid.
  • 3. The external pressure sensing system of claim 2, wherein the pressure sensor comprises a first medium and a second medium, wherein the first medium and the second medium are separated by the movable indicator.
  • 4. The external pressure sensing system of claim 2, wherein the movable indicator is positioned such that the movable indicator is intersected by an axis defined by a syringe barrel and a needle when the connecting member is connected to the syringe barrel and the needle.
  • 5. The external pressure sensing system of claim 2, wherein the movable indicator is engaged with a resilient member.
  • 6. The external pressure sensing system of claim 5, wherein the resilient member comprises one or both of a spring or a bellows.
  • 7. The external pressure sensing system of claim 2, wherein the movable indicator comprises one or more of a diaphragm, a disc, a needle, or a slider.
  • 8. The external pressure sensing system of claim 1, wherein the pressure sensor is free of electronic components.
  • 9. The external pressure sensing system of claim 1, wherein the pressure sensor is housed within the connecting member.
  • 10. The external pressure sensing system of claim 9, wherein the connecting member has a first connection port, a second connection port, and a third connection port.
  • 11. The external pressure sensing system of claim 10, wherein the first connection port is configured to engage with a syringe barrel, wherein the second connection port is configured to engage with a syringe needle, and wherein the third connection port is configured to engage with the pressure sensor.
  • 12. The external pressure sensing system of claim 1, wherein the pressure sensor comprises a member marked with graduations indicative of pressure levels.
  • 13. An external pressure sensing kit for use with a gastric band system comprising a fluid-fillable band, the kit comprising: (a) a syringe, wherein the syringe comprises: (i) a barrel,(ii) a plunger, wherein at least a portion of the plunger is configured to fit within the barrel, and(iii) a needle,wherein the syringe is configured to be in selective fluid communication with the gastric band system, wherein the syringe is operable to adjust an amount of fluid contained in the gastric band system, wherein the fluid-filled band of the gastric band system is configured to form a gastric restriction within a patient; and(b) a pressure sensing system, wherein the pressure sensing system comprises: (i) a connector, wherein the connector is configured to fit between the barrel and the needle, wherein the connector provides a fluid path configured to permit communication of fluid from the barrel to the needle,(ii) a pressure sensor in communication with the connector, wherein the pressure sensor is configured to sense pressure of fluid within the connector as fluid moves from the barrel to the needle or from the needle to the barrel when the connector is attachably positioned between the barrel and the needle such that the syringe and the pressure sensing system are together structurally sized and configured to be operable using a single-handed operation, wherein the pressure sensor is configured to provide a visual indication of sensed pressure.
  • 14. The external pressure sensing kit of claim 13, wherein the pressure sensor comprises a housing externally attached to the connector.
  • 15. The external pressure sensing kit of claim 13, wherein the pressure sensor is housed within the connector.
  • 16. The external pressure sensing kit of claim 13, wherein the pressure sensor comprises a pressure indicator, wherein the pressure indicator is operable to move in response to changes in pressure within the connector.
  • 17. The external pressure sensing kit of claim 16, wherein the pressure indicator comprises one or more of a disc, a diaphragm, a needle, or a slider.
  • 18. A method for externally measuring the pressure of fluid in a gastric band system using a syringe assembly and an external pressure sensor assembly in fluid communication with the syringe assembly, wherein the gastric band system comprises an injection port and a fluid-filled band in fluid communication with the injection port, wherein the syringe assembly comprises a syringe barrel and a needle, wherein the syringe barrel comprises a fluid, wherein the needle is in fluid communication with the barrel, wherein the external pressure sensor assembly is locatable external to a patient, wherein the external pressure assembly comprises a movable indicator configured to indicate sensed pressure, the method comprising: (a) inserting the needle of the syringe assembly into the patient, wherein the needle is inserted into the injection port of the gastric band system, which is located within the patient, wherein the fluid injection port comprises a fluid;(b) establishing fluid communication between the syringe assembly and the fluid-filled band of the gastric band system via the injection port;(c) adjusting the pressure of fluid in the gastric band system, wherein the act of adjusting comprises manipulating the syringe assembly to add fluid to the port or to withdraw fluid from the port; and(d) obtaining a pressure reading with the external pressure sensor assembly while adjusting the pressure of fluid in the gastric band system, wherein the pressure data relates to the pressure of the fluid within at least a portion of the syringe assembly, wherein the act of obtaining a pressure reading comprises viewing the movable indicator.
  • 19. The method of claim 18, wherein the act of obtaining a pressure reading and the act of adjusting the pressure of fluid in the injection port are performed substantially simultaneously.
  • 20. The method of claim 18, wherein the external pressure sensor assembly is free of electronic components.
PRIORITY

This application is a continuation-in-part of prior co-pending U.S. Non-Provisional application Ser. No. 11/369,389, filed Mar. 7, 2006, entitled “External Pressure-Based Gastric Band Adjustment System and Method,” and published as U.S. Pub. No. 2006/0211912, which is a continuation-in-part of prior co-pending U.S. Non-Provisional application Ser. No. 11/065,410, filed Feb. 24, 2005, entitled “Device for Non-Invasive Measurement of Fluid Pressure in an Adjustable Restriction Device,” and published as U.S. Pub. No. 2006/0189888. The disclosure of each of those applications and publications is incorporated by reference herein.

US Referenced Citations (1693)
Number Name Date Kind
RE3036 Shunk Jul 1868 E
RE3037 Tucker Jul 1868 E
RE3115 Lewis Sep 1868 E
RE3187 Winchester Nov 1868 E
RE3322 Murch Mar 1869 E
236373 Spilman Jan 1881 A
322388 Lord Jul 1885 A
400401 Gutzkow Mar 1889 A
D23637 Casad et al. Sep 1894 S
D24900 Clemecet Nov 1895 S
D25318 Perky Mar 1896 S
D27151 Moulten Jun 1897 S
D29715 Wheeler Nov 1898 S
D29745 Bunker Nov 1898 S
D29885 Gillespie et al. Dec 1898 S
D30690 Schwedtmann May 1899 S
D30966 Howe Jun 1899 S
D31230 Hogan Jul 1899 S
689758 Shaw Dec 1901 A
724913 Montgomery Apr 1903 A
899477 Williams Sep 1908 A
926197 Kim Jun 1909 A
953875 Waring Apr 1910 A
991192 Battenfeld May 1911 A
1087988 Sheldon Feb 1914 A
1210701 Ryden Jan 1917 A
1219296 Hahn Mar 1917 A
1224355 Brown May 1917 A
1263914 Martin Apr 1918 A
1310290 Piechowicz Jul 1919 A
1384873 Strickland Jul 1921 A
1421507 Lindberg Jul 1922 A
1551525 Hamer Aug 1925 A
1560973 Cheron Nov 1925 A
1620633 Colvin Mar 1927 A
1623403 Friel Apr 1927 A
1689085 Russell et al. Oct 1928 A
1764071 Foulke Jun 1930 A
1782704 Woodruff et al. Nov 1930 A
1807107 Sternberch May 1931 A
1865446 Sears Jul 1932 A
1882338 Reed et al. Oct 1932 A
1924781 Gaiser Aug 1933 A
2027875 Odend'hal Jan 1936 A
2063430 Graser Dec 1936 A
2099160 Charch Nov 1937 A
2105127 Petrone Jan 1938 A
2106192 Saville Jan 1938 A
2143429 Auble Jan 1939 A
2166603 Menzer Jul 1939 A
2168427 McConkey Aug 1939 A
2174525 Padernal Oct 1939 A
2178463 Bahnson Oct 1939 A
2180599 Menasco Nov 1939 A
2177564 Havill Dec 1939 A
2203460 Fieber Jun 1940 A
2206038 Ford Jul 1940 A
2216374 Martin Oct 1940 A
2223699 Norgren Dec 1940 A
2225145 Baumbach Dec 1940 A
2225880 Montelius Dec 1940 A
2261060 Giesler Oct 1941 A
2261355 Flynn Nov 1941 A
2295539 Beach Sep 1942 A
2303108 Blackburn Nov 1942 A
2303502 Rous Dec 1942 A
2318819 Verson May 1943 A
2327407 Edyvean Aug 1943 A
2327615 Ankarlo Aug 1943 A
2354571 Blain Jul 1944 A
2396351 Thompson Mar 1946 A
2426392 Fennema Aug 1947 A
2426817 Carlton et al. Sep 1947 A
2440260 Gall Apr 1948 A
2442573 Stafford Jun 1948 A
2453217 Gregg et al. Nov 1948 A
2455859 Foley Dec 1948 A
2477922 Emery et al. Aug 1949 A
2478876 Nelson Aug 1949 A
2482392 Whitaker Sep 1949 A
2494881 Kost Jan 1950 A
2509210 Clark May 1950 A
2509673 Church May 1950 A
2511765 Bradbury Jun 1950 A
2520056 Pozun Aug 1950 A
2521976 Hays Sep 1950 A
2533924 Foley Dec 1950 A
2538259 Merriman Jan 1951 A
2581479 Grashman Jan 1952 A
2600324 Rappaport Jun 1952 A
2606003 McNeill Aug 1952 A
2615940 Williams Oct 1952 A
2632447 Dobes Mar 1953 A
2639342 Cope May 1953 A
2640119 Bradford, Jr. May 1953 A
2641742 Wolfe Jun 1953 A
2651304 Browner Sep 1953 A
2665577 Sanowskis Jan 1954 A
2673999 Shey Apr 1954 A
2676609 Pfarrer Apr 1954 A
2684118 Osmun Jul 1954 A
2689611 Martinson Sep 1954 A
2697435 Ray Dec 1954 A
2723323 Niemi Nov 1955 A
2734992 Elliot et al. Feb 1956 A
2740007 Amelang Mar 1956 A
2740853 Hatman, Jr. Apr 1956 A
2742323 Shey Apr 1956 A
2747332 Morehouse May 1956 A
2753876 Kurt Jul 1956 A
2756883 Schreck Jul 1956 A
2756983 Furcini Jul 1956 A
2761603 Fairchild Sep 1956 A
2773312 Peck Dec 1956 A
2783728 Hoffmann Mar 1957 A
2787875 Johnson Apr 1957 A
2793379 Moore May 1957 A
2795460 Bletcher Jun 1957 A
2804514 Peters Aug 1957 A
2822113 Joiner, Jr. Feb 1958 A
2831478 Uddenberg et al. Apr 1958 A
2864393 Drake Dec 1958 A
2865541 Hicks Dec 1958 A
2870024 Martin Jan 1959 A
2883995 Bialous et al. Apr 1959 A
2886355 Wurzel May 1959 A
2895215 Neher et al. Jul 1959 A
2899493 Levine Aug 1959 A
2902861 Frost et al. Sep 1959 A
2923531 Bauer et al. Feb 1960 A
2924263 Landis Feb 1960 A
2924432 Arps et al. Feb 1960 A
2930170 Holsman et al. Mar 1960 A
2938592 Charske et al. May 1960 A
2941338 Santschi Jun 1960 A
2943682 Ingram, Jr. et al. Jul 1960 A
2958781 Marchal et al. Nov 1960 A
2961479 Berting Nov 1960 A
2976355 Levine Mar 1961 A
2976686 Stelzer Mar 1961 A
2977876 Meyers Apr 1961 A
2986715 Church et al. May 1961 A
2989019 Van Sciver, II Jun 1961 A
3010692 Jentoft Nov 1961 A
3013234 Bourns Dec 1961 A
3018791 Knox Jan 1962 A
3034356 Bieganski May 1962 A
3040800 Hartley Jun 1962 A
3054618 Abrams et al. Sep 1962 A
3060262 Hoer Oct 1962 A
3070373 Mathews et al. Dec 1962 A
3082414 Papaminas Mar 1963 A
3085577 Berman et al. Apr 1963 A
3096410 Anderson Jul 1963 A
3099262 Bigliano Jul 1963 A
3125028 Rohde Mar 1964 A
3126029 Englesson Mar 1964 A
3129072 Cook et al. Apr 1964 A
3135914 Callan et al. Jun 1964 A
3144017 Muth Aug 1964 A
3151258 Sonderegger et al. Sep 1964 A
3153460 Raskin Oct 1964 A
3161051 Perry, Jr. Dec 1964 A
3167044 Henrickson Jan 1965 A
3171549 Orloff Mar 1965 A
3172700 Haas Mar 1965 A
3173269 Imbertson Mar 1965 A
3182494 Beatty et al. May 1965 A
3187181 Keller Jun 1965 A
3187745 Baum et al. Jun 1965 A
3190388 Moser et al. Jun 1965 A
3205547 Riekse Sep 1965 A
3208255 Burk Sep 1965 A
3209570 Hills Oct 1965 A
3221468 Casey Dec 1965 A
3228703 Wilson Jan 1966 A
3229684 Nagumo et al. Jan 1966 A
3236088 Moller Feb 1966 A
3238624 McCabe Mar 1966 A
3240510 Spouge Mar 1966 A
3245642 Dicke Apr 1966 A
3255568 Martin et al. Jun 1966 A
3260091 Shaw, Jr. Jul 1966 A
3265822 Moulten Aug 1966 A
3266489 Watkins et al. Aug 1966 A
3273447 Frank Sep 1966 A
3283352 Hu Nov 1966 A
3290919 Malinak et al. Dec 1966 A
3292493 Franklin Dec 1966 A
3292888 Fischer Dec 1966 A
3294988 Packard Dec 1966 A
3299603 Shaw Jan 1967 A
3299882 Masino Jan 1967 A
3301514 Sugaya Jan 1967 A
3302457 Mayes Feb 1967 A
3306384 Ross Feb 1967 A
3313314 Burke et al. Apr 1967 A
3316935 Kaiser et al. May 1967 A
3320750 Haise et al. May 1967 A
3321035 Tarpley May 1967 A
3332788 Barnby Jul 1967 A
3334510 Hallesy Aug 1967 A
3339401 Peters Sep 1967 A
3340868 Darling Sep 1967 A
3347162 Braznell Oct 1967 A
3350944 De Michele Nov 1967 A
3353364 Blanding et al. Nov 1967 A
3353481 Antonucci Nov 1967 A
3356334 Scaramucci Dec 1967 A
3356510 Barnby Dec 1967 A
3357218 Mitchell Dec 1967 A
3357461 Friendship Dec 1967 A
3359741 Nelson Dec 1967 A
3361300 Kaplan Jan 1968 A
3364929 Ide et al. Jan 1968 A
3365684 Stemke Jan 1968 A
3378456 Roberts Apr 1968 A
3380445 Frasier Apr 1968 A
3380649 Roberts Apr 1968 A
3385022 Anderson May 1968 A
3389355 Schroeder, Jr. Jun 1968 A
3393612 Gorgens et al. Jul 1968 A
3396561 Day Aug 1968 A
3399667 Nishimoto et al. Sep 1968 A
3400734 Rosenberg Sep 1968 A
3403237 Wysong Sep 1968 A
3409924 Slama Nov 1968 A
3411347 Wirth et al. Nov 1968 A
3417476 Martens Dec 1968 A
3420325 McAlister et al. Jan 1969 A
3422324 Webb Jan 1969 A
3426165 Beaman Feb 1969 A
3438391 Yocum Apr 1969 A
3443608 Copping et al. May 1969 A
3445335 Gluntz May 1969 A
3447281 Bufford et al. Jun 1969 A
3450153 Hildebrandt et al. Jun 1969 A
3453546 Fryer Jul 1969 A
3453848 Williamson Jul 1969 A
3456134 Ko Jul 1969 A
3457909 Laird Jul 1969 A
3460557 Gallant Aug 1969 A
3463338 Schneider Aug 1969 A
3469818 Cowan Sep 1969 A
3470725 Brown et al. Oct 1969 A
3472230 Fogarty Oct 1969 A
3478344 Schwitzgebel et al. Nov 1969 A
3482449 Werner Dec 1969 A
3482816 Arnold Dec 1969 A
3487959 Pearne et al. Jan 1970 A
3491842 Delacour et al. Jan 1970 A
3492638 Lane Jan 1970 A
3502829 Reynolds Mar 1970 A
3503116 Strack Mar 1970 A
3504664 Haddad Apr 1970 A
3505808 Eschle Apr 1970 A
3509754 Massingill et al. May 1970 A
3512517 Kadish et al. May 1970 A
3514919 Ashton et al. Jun 1970 A
3516220 Buford et al. Jun 1970 A
3517553 Williams et al. Jun 1970 A
3527226 Hakin et al. Sep 1970 A
3529908 Smith Sep 1970 A
3530449 Anderson Sep 1970 A
3533403 Woodson Oct 1970 A
3534728 Barrows Oct 1970 A
3534872 Roth et al. Oct 1970 A
3535914 Veith et al. Oct 1970 A
3539009 Kudlaty Nov 1970 A
3543744 LePar Dec 1970 A
3545275 Harrison et al. Dec 1970 A
3550583 Chiku Dec 1970 A
3550847 Scott Dec 1970 A
3563094 Rieschel Feb 1971 A
3563245 McLean et al. Feb 1971 A
3566083 McMillin Feb 1971 A
3566875 Stoehr Mar 1971 A
3568367 Myers Mar 1971 A
3568636 Lockwood Mar 1971 A
3576554 Temps, Jr. et al. Apr 1971 A
3580082 Strack May 1971 A
3581402 London et al. Jun 1971 A
3583387 Garner et al. Jun 1971 A
3587204 George Jun 1971 A
3590809 London Jul 1971 A
3590818 Lemole Jul 1971 A
3590992 Soderstrom et al. Jul 1971 A
3592183 Watkins et al. Jul 1971 A
3594519 Schmidlin Jul 1971 A
3602885 Grajeda Aug 1971 A
3610016 Bultman Oct 1971 A
3610851 Krupski Oct 1971 A
3611811 Lissau Oct 1971 A
3614926 Brechtel Oct 1971 A
3614955 Mirowski et al. Oct 1971 A
3619742 Rud, Jr. Nov 1971 A
3623371 Jullien-Davin Nov 1971 A
3624854 Strong Dec 1971 A
3630242 Schieser et al. Dec 1971 A
3631847 Hobbs, II Jan 1972 A
3633881 Yurdin Jan 1972 A
3635061 Rydell et al. Jan 1972 A
3635074 Moos et al. Jan 1972 A
3638496 King Feb 1972 A
3644883 Borman et al. Feb 1972 A
3648687 Ramsey, III Mar 1972 A
3651289 Nagashima et al. Mar 1972 A
3651405 Whitney et al. Mar 1972 A
3653671 Shipes Apr 1972 A
3659615 Enger May 1972 A
3677685 Aoki et al. Jul 1972 A
3686958 Porter et al. Aug 1972 A
3688568 Karper et al. Sep 1972 A
3701392 Wirth et al. Oct 1972 A
3702677 Heffington Nov 1972 A
3703099 Rouse et al. Nov 1972 A
3712138 Alinari et al. Jan 1973 A
3713124 Durland et al. Jan 1973 A
3719524 Ripley et al. Mar 1973 A
3721412 Kindorf Mar 1973 A
3723247 Leine et al. Mar 1973 A
3724000 Eakman Apr 1973 A
3727463 Intraub Apr 1973 A
3727616 Lenzkes Apr 1973 A
3730174 Madison May 1973 A
3730560 Abildgaard et al. May 1973 A
3731679 Wilhelmson et al. May 1973 A
3731681 Blackshear et al. May 1973 A
3732731 Fussell, Jr. May 1973 A
3735040 Punt et al. May 1973 A
3736930 Georgi Jun 1973 A
3738356 Workman Jun 1973 A
3740921 Meyer et al. Jun 1973 A
3746111 Berthiaume et al. Jul 1973 A
3748678 Ballou Jul 1973 A
3749098 De Bennetot et al. Jul 1973 A
3749422 Abildgaard et al. Jul 1973 A
3749423 Abildgaard et al. Jul 1973 A
3750194 Summers Aug 1973 A
3757770 Brayshaw et al. Sep 1973 A
3759095 Short, Jr. et al. Sep 1973 A
3760638 Lawson et al. Sep 1973 A
3763960 John et al. Oct 1973 A
3765142 Lindquist et al. Oct 1973 A
3765494 Kielman, Jr. Oct 1973 A
3769156 Brecy et al. Oct 1973 A
3769830 Porter et al. Nov 1973 A
3774243 Ny et al. Nov 1973 A
3776333 Mathauser Dec 1973 A
3778051 Allen et al. Dec 1973 A
3780578 Sellman et al. Dec 1973 A
3781902 Shim et al. Dec 1973 A
3783585 Hoyland et al. Jan 1974 A
3789667 Porter et al. Feb 1974 A
3796095 Fussell, Jr. Mar 1974 A
3807219 Wallskog Apr 1974 A
3811429 Fletcher et al. May 1974 A
3815722 Sessoms Jun 1974 A
3818765 Eriksen et al. Jun 1974 A
3820400 Russo Jun 1974 A
3820795 Taylor Jun 1974 A
3823610 Fussell, Jr. Jul 1974 A
3825065 Lloyd et al. Jul 1974 A
3825963 Abildgaard et al. Jul 1974 A
3825964 Groswith, III et al. Jul 1974 A
3828672 Gazzola et al. Aug 1974 A
3828766 Krasnow Aug 1974 A
3831588 Rindner Aug 1974 A
3831942 Del Mar Aug 1974 A
3833238 Liard et al. Sep 1974 A
3834167 Tabor Sep 1974 A
3834739 Abildgaard et al. Sep 1974 A
3835523 Stansfield et al. Sep 1974 A
3839708 Bredesen et al. Oct 1974 A
3842483 Cramer Oct 1974 A
3842668 Lippke et al. Oct 1974 A
3845664 Perry, Jr. Nov 1974 A
3845751 Runstetler Nov 1974 A
3845757 Weyer Nov 1974 A
3847434 Weman et al. Nov 1974 A
3850208 Hamilton Nov 1974 A
3853117 Murr Dec 1974 A
3854469 Giori et al. Dec 1974 A
3855902 Kirst et al. Dec 1974 A
3857399 Zacouto et al. Dec 1974 A
3857452 Hartman Dec 1974 A
3857745 Grausch et al. Dec 1974 A
3858581 Kamen Jan 1975 A
3863622 Buuck Feb 1975 A
3863933 Tredway Feb 1975 A
3867950 Fischell Feb 1975 A
3868008 Brumbaugh Feb 1975 A
3868679 Arneson Feb 1975 A
3871599 Takada et al. Mar 1975 A
3872285 Shum et al. Mar 1975 A
3874388 King et al. Apr 1975 A
3876980 Haemmig et al. Apr 1975 A
3878908 Andersson et al. Apr 1975 A
3881528 Mackenzie May 1975 A
3886948 Hakim et al. Jun 1975 A
3893111 Cotter Jul 1975 A
3893451 Durand et al. Jul 1975 A
3895681 Griffin et al. Jul 1975 A
3899862 Muys et al. Aug 1975 A
3904234 Hill et al. Sep 1975 A
3908334 Rychiger et al. Sep 1975 A
3908461 Turpen Sep 1975 A
3908721 McGahey et al. Sep 1975 A
3910087 Jones Oct 1975 A
3912168 Mullins et al. Oct 1975 A
3912304 Abildgaard et al. Oct 1975 A
3918286 Whitehead Nov 1975 A
3918291 Pauly et al. Nov 1975 A
3920965 Sohrwardy et al. Nov 1975 A
3921682 McGahey et al. Nov 1975 A
3922951 Linsinger et al. Dec 1975 A
3923060 Ellinwood, Jr. Dec 1975 A
3924635 Hakim et al. Dec 1975 A
3928980 Ganzinotti et al. Dec 1975 A
3929175 Coone Dec 1975 A
3930682 Booth Jan 1976 A
3930852 Tanaka et al. Jan 1976 A
3936028 Norton et al. Feb 1976 A
3939823 Kaye et al. Feb 1976 A
3940122 Janzen et al. Feb 1976 A
3940630 Bergonz Feb 1976 A
3942299 Bory et al. Mar 1976 A
3942382 Hok et al. Mar 1976 A
3942536 Mirowski et al. Mar 1976 A
3943915 Severson Mar 1976 A
3945704 Kraus et al. Mar 1976 A
3946613 Silver Mar 1976 A
3946615 Hluchan Mar 1976 A
3946724 La Balme et al. Mar 1976 A
3948141 Shinjo et al. Apr 1976 A
3949388 Fuller Apr 1976 A
3953289 Costes et al. Apr 1976 A
3954271 Tredway, Sr. May 1976 A
3958558 Dunphy et al. May 1976 A
3960142 Elliott et al. Jun 1976 A
3961425 Swanson et al. Jun 1976 A
3961646 Schon et al. Jun 1976 A
3962895 Rydell Jun 1976 A
3962921 Lips Jun 1976 A
3963019 Quandt Jun 1976 A
3964485 Neumeier Jun 1976 A
3964770 Abildgaard et al. Jun 1976 A
3967737 Peralta et al. Jul 1976 A
3968473 Patton et al. Jul 1976 A
3968594 Kawakami Jul 1976 A
3972320 Kalman Aug 1976 A
3973753 Wheeler Aug 1976 A
3973858 Poisson et al. Aug 1976 A
3974655 Halpern et al. Aug 1976 A
3974865 Fenton et al. Aug 1976 A
3976278 Dye et al. Aug 1976 A
3977391 Fleischmann Aug 1976 A
3980871 Lindstrom et al. Sep 1976 A
3982571 Fenton et al. Sep 1976 A
3983948 Jeter Oct 1976 A
3985133 Jenkins et al. Oct 1976 A
3987860 Jabsen Oct 1976 A
3989005 Bowler, Jr. et al. Nov 1976 A
3991749 Zent Nov 1976 A
3992948 D'Antonio et al. Nov 1976 A
3993149 Harvey Nov 1976 A
3996927 Frank Dec 1976 A
3996962 Sutherland Dec 1976 A
4003141 Le Roy Jan 1977 A
4005282 Jennings Jan 1977 A
4005593 Goldberg Feb 1977 A
4006735 Hittman et al. Feb 1977 A
4009591 Hester Mar 1977 A
4010449 Faggin et al. Mar 1977 A
4014319 Favre et al. Mar 1977 A
4014321 March Mar 1977 A
4016764 Rice Apr 1977 A
4017329 Larson Apr 1977 A
4018134 Linsinger et al. Apr 1977 A
4022190 Meyer May 1977 A
4024864 Davies et al. May 1977 A
4025912 Rice May 1977 A
4026276 Chubbuck May 1977 A
4027661 Lyon et al. Jun 1977 A
4031899 Renirie et al. Jun 1977 A
4036775 Trautvetter et al. Jul 1977 A
4039069 Kwan et al. Aug 1977 A
4041954 Ohara et al. Aug 1977 A
4042504 Drori et al. Aug 1977 A
4045345 Drori et al. Aug 1977 A
4047296 Ishida et al. Sep 1977 A
4047851 Bender Sep 1977 A
4048494 Liesting et al. Sep 1977 A
4048879 Cox Sep 1977 A
4049004 Walters Sep 1977 A
4051338 Harris, III Sep 1977 A
4052991 Zacouto et al. Oct 1977 A
4055074 Thimons et al. Oct 1977 A
4055175 Clemens et al. Oct 1977 A
4056854 Boretos et al. Nov 1977 A
4058007 Exner et al. Nov 1977 A
4062351 Hastwell et al. Dec 1977 A
4062354 Taylor et al. Dec 1977 A
4062360 Bentley Dec 1977 A
4063439 Besson et al. Dec 1977 A
4064879 Leibinsohn Dec 1977 A
4064882 Johnson et al. Dec 1977 A
4070239 Bevilacqua Jan 1978 A
4072047 Reismuller et al. Feb 1978 A
4073292 Edelman Feb 1978 A
4075099 Pelton et al. Feb 1978 A
4075602 Clothier Feb 1978 A
4077072 Dezura et al. Mar 1978 A
4077394 McCurdy Mar 1978 A
4077405 Haerten et al. Mar 1978 A
4077882 Gangemi Mar 1978 A
4078620 Westlake et al. Mar 1978 A
4080653 Barnes, Jr. et al. Mar 1978 A
4084752 Hagiwara et al. Apr 1978 A
4086488 Hill Apr 1978 A
4087568 Fay et al. May 1978 A
4088417 Kosmowski May 1978 A
4089329 Couvillon, Jr. et al. May 1978 A
4090802 Bilz et al. May 1978 A
4092719 Salmon et al. May 1978 A
4092925 Fromson Jun 1978 A
4096866 Fischell Jun 1978 A
4098293 Kramer et al. Jul 1978 A
4103496 Colamussi et al. Aug 1978 A
4106370 Kraus et al. Aug 1978 A
4107689 Jellinek Aug 1978 A
4107995 Ligman et al. Aug 1978 A
4108148 Cannon, III Aug 1978 A
4108575 Schal et al. Aug 1978 A
4109148 Jaulmes et al. Aug 1978 A
4109518 Dooley et al. Aug 1978 A
4109644 Kojima Aug 1978 A
4111056 Mastromatteo Sep 1978 A
4111629 Nussbaumer et al. Sep 1978 A
4114424 Johnson Sep 1978 A
4114603 Wilkinson Sep 1978 A
4114606 Seylar Sep 1978 A
4120097 Jeter Oct 1978 A
4120134 Scholle Oct 1978 A
4121635 Hansel Oct 1978 A
4123310 Varon et al. Oct 1978 A
4124023 Fleischmann et al. Nov 1978 A
4127110 Bullara Nov 1978 A
4130169 Denison Dec 1978 A
4131596 Allen Dec 1978 A
4133355 Mayer Jan 1979 A
4133367 Abell Jan 1979 A
4135509 Shannon Jan 1979 A
4140131 Dutcher et al. Feb 1979 A
4141348 Hittman Feb 1979 A
4141349 Ory et al. Feb 1979 A
4143661 LaForge et al. Mar 1979 A
4146029 Ellinwood, Jr. Mar 1979 A
4147161 Ikebe et al. Apr 1979 A
4148096 Haas et al. Apr 1979 A
4149423 Frosch et al. Apr 1979 A
4151823 Grosse et al. May 1979 A
4153085 Adams May 1979 A
4156422 Hildebrandt et al. May 1979 A
4160448 Jackson Jul 1979 A
4160971 Jones et al. Jul 1979 A
4166469 Littleford Sep 1979 A
4167304 Gelbke Sep 1979 A
4167952 Reinicke Sep 1979 A
4168567 Leguy et al. Sep 1979 A
4170280 Schwarz Oct 1979 A
4171218 Hoshino et al. Oct 1979 A
4173228 Van Steenwyk et al. Nov 1979 A
4183124 Hoffman Jan 1980 A
4183247 Allen et al. Jan 1980 A
4185641 Minior et al. Jan 1980 A
4186287 Scott Jan 1980 A
4186749 Fryer Feb 1980 A
4186751 Fleischmann Feb 1980 A
4190057 Hill et al. Feb 1980 A
4191004 Gmuer et al. Mar 1980 A
4191187 Wright et al. Mar 1980 A
4192192 Schnell Mar 1980 A
4193397 Tucker et al. Mar 1980 A
4204547 Allocca May 1980 A
4206755 Klein et al. Jun 1980 A
4206761 Cosman Jun 1980 A
4206762 Cosman Jun 1980 A
4207903 O'Neill Jun 1980 A
4212074 Kuno et al. Jul 1980 A
4217221 Masso Aug 1980 A
4217588 Freeny, Jr. Aug 1980 A
4220189 Marquez Sep 1980 A
4221219 Tucker Sep 1980 A
4221523 Eberle Sep 1980 A
4223837 Gubbiotti et al. Sep 1980 A
4226124 Kersten et al. Oct 1980 A
4226229 Eckhart et al. Oct 1980 A
4227533 Godfrey Oct 1980 A
4231376 Lyon et al. Nov 1980 A
4232682 Veth Nov 1980 A
4237900 Schulman et al. Dec 1980 A
4241247 Byrne et al. Dec 1980 A
4241870 Marcus Dec 1980 A
4245593 Stein Jan 1981 A
4246877 Kennedy Jan 1981 A
4247850 Marcus Jan 1981 A
4248238 Joseph et al. Feb 1981 A
4248241 Tacchi Feb 1981 A
4256094 Kapp et al. Mar 1981 A
4256118 Nagel et al. Mar 1981 A
4262343 Claycomb Apr 1981 A
4262632 Hanton et al. Apr 1981 A
4265241 Portner et al. May 1981 A
4265252 Chubbuck et al. May 1981 A
4271018 Drori et al. Jun 1981 A
4273070 Hoefelmayr et al. Jun 1981 A
4274444 Ruyak Jun 1981 A
4275600 Turner et al. Jun 1981 A
4275913 Marcus Jun 1981 A
4278540 Drori et al. Jul 1981 A
4280036 Fukatsu et al. Jul 1981 A
4280775 Wood Jul 1981 A
4281666 Cosman Aug 1981 A
4281667 Cosman Aug 1981 A
4284073 Krause et al. Aug 1981 A
4285770 Chi et al. Aug 1981 A
4291699 Geddes et al. Sep 1981 A
4295963 Drori et al. Oct 1981 A
4297927 Kuroda et al. Nov 1981 A
4303075 Heilman et al. Dec 1981 A
4305402 Katims Dec 1981 A
4312374 Drori et al. Jan 1982 A
4314480 Becker Feb 1982 A
4316693 Baxter et al. Feb 1982 A
4325387 Helfer Apr 1982 A
4327804 Reed May 1982 A
4328654 Van Ginkel et al. May 1982 A
4332254 Lundquist Jun 1982 A
4332255 Hakim et al. Jun 1982 A
4339831 Johnson Jul 1982 A
4342218 Fox Aug 1982 A
4342308 Trick Aug 1982 A
4346604 Snook et al. Aug 1982 A
4347851 Jundaniam Sep 1982 A
4350647 de la Cruz Sep 1982 A
4350970 von Tomkewitsch et al. Sep 1982 A
4351037 Scherbatskoy Sep 1982 A
4351116 Scott, Jr. Sep 1982 A
4356486 Mount Oct 1982 A
4360010 Finney Nov 1982 A
4360277 Daniel et al. Nov 1982 A
4361153 Slocum et al. Nov 1982 A
4363236 Meyers Dec 1982 A
4364276 Shimazoe et al. Dec 1982 A
4365425 Gotchel Dec 1982 A
4368937 Palombo et al. Jan 1983 A
4369013 Abildgaard et al. Jan 1983 A
4373527 Fischell Feb 1983 A
4376523 Goyen et al. Mar 1983 A
4378809 Cosman Apr 1983 A
4380427 Hehl et al. Apr 1983 A
4385636 Cosman May 1983 A
4386422 Mumby et al. May 1983 A
4387715 Hakim et al. Jun 1983 A
4387907 Hiestand et al. Jun 1983 A
4392368 Folkesson et al. Jul 1983 A
4393899 Tsuji et al. Jul 1983 A
4393951 Horst-Rudolf et al. Jul 1983 A
4395232 Koch Jul 1983 A
4395258 Wang et al. Jul 1983 A
4395916 Martin Aug 1983 A
4398983 Suzuki et al. Aug 1983 A
4399705 Weiger et al. Aug 1983 A
4399707 Wamstad Aug 1983 A
4399809 Baro et al. Aug 1983 A
4399821 Bowers Aug 1983 A
4403984 Ash et al. Sep 1983 A
4404968 Evans, Sr. Sep 1983 A
4404974 Titus Sep 1983 A
4405318 Whitney et al. Sep 1983 A
4407125 Parsons et al. Oct 1983 A
4407271 Schiff Oct 1983 A
4407296 Anderson Oct 1983 A
4407326 Wilhelm Oct 1983 A
4408597 Tenney, Jr. Oct 1983 A
4415071 Butler et al. Nov 1983 A
4416282 Saulson et al. Nov 1983 A
4418899 Zimmermann et al. Dec 1983 A
4419393 Hanson et al. Dec 1983 A
4421124 Marshall Dec 1983 A
4421505 Schwartz Dec 1983 A
4424720 Bucchianeri Jan 1984 A
4428228 Banzhaf et al. Jan 1984 A
4428365 Hakky et al. Jan 1984 A
4430899 Wessel et al. Feb 1984 A
4431009 Marino, Jr. et al. Feb 1984 A
4431365 Sturtz, Jr. Feb 1984 A
4432363 Kakegawa et al. Feb 1984 A
4435173 Siposs et al. Mar 1984 A
4439186 Kuhl et al. Mar 1984 A
4441491 Evans, Sr. Apr 1984 A
4441501 Parent Apr 1984 A
4444194 Burcham Apr 1984 A
4444498 Heinemann Apr 1984 A
4445385 Endo May 1984 A
4446711 Valente May 1984 A
4447224 DeCant, Jr. et al. May 1984 A
4449493 Kopec et al. May 1984 A
4450811 Ichikawa et al. May 1984 A
4450946 Olding et al. May 1984 A
4451033 Nestegard May 1984 A
4453537 Spitzer Jun 1984 A
4453578 Wilder Jun 1984 A
4460835 Masuoka et al. Jul 1984 A
4464170 Clemens et al. Aug 1984 A
4465015 Osta et al. Aug 1984 A
4465474 Mardorf et al. Aug 1984 A
4466290 Frick Aug 1984 A
4468172 Dixon et al. Aug 1984 A
4468762 Jurgens et al. Aug 1984 A
4469365 Marcus et al. Sep 1984 A
4471182 Wielgos et al. Sep 1984 A
4471786 Inagaki et al. Sep 1984 A
4473067 Schiff Sep 1984 A
4473078 Angel Sep 1984 A
4476721 Hochreuther et al. Oct 1984 A
4478213 Redding Oct 1984 A
4478538 Kakino et al. Oct 1984 A
4483196 Kurtz et al. Nov 1984 A
4484135 Ishihara et al. Nov 1984 A
4485813 Anderson et al. Dec 1984 A
4489916 Stevens Dec 1984 A
4492632 Mattson Jan 1985 A
4494411 Koschke et al. Jan 1985 A
4494950 Fischell Jan 1985 A
4497176 Rubin et al. Feb 1985 A
4497201 Allen et al. Feb 1985 A
4499394 Koal Feb 1985 A
4499691 Karazim et al. Feb 1985 A
4499750 Gerber et al. Feb 1985 A
4503678 Wimbush et al. Mar 1985 A
4511974 Nakane et al. Apr 1985 A
4513295 Jones et al. Apr 1985 A
4515004 Jaenson May 1985 A
4515750 Pardini et al. May 1985 A
4516866 Yamauchi et al. May 1985 A
4518637 Takeda et al. May 1985 A
4519401 Ko et al. May 1985 A
4520443 Yuki et al. May 1985 A
4522213 Wallroth et al. Jun 1985 A
4527568 Rickards et al. Jul 1985 A
4529401 Leslie et al. Jul 1985 A
4531526 Genest Jul 1985 A
4531936 Gordon Jul 1985 A
4536000 Rohm et al. Aug 1985 A
4537005 Hoyland et al. Aug 1985 A
4537129 Heinemann et al. Aug 1985 A
4538616 Rogoff Sep 1985 A
4540404 Wolvek Sep 1985 A
4542461 Eldridge et al. Sep 1985 A
4544369 Skakoon et al. Oct 1985 A
4545185 Chikatani et al. Oct 1985 A
4546524 Kreft Oct 1985 A
4548209 Wielders et al. Oct 1985 A
4551128 Hakim et al. Nov 1985 A
4552150 Zacouto et al. Nov 1985 A
4553226 Scherbatskoy Nov 1985 A
4556063 Thompson et al. Dec 1985 A
4556086 Raines Dec 1985 A
4557269 Reynolds et al. Dec 1985 A
4557332 Denison et al. Dec 1985 A
4559815 Needham et al. Dec 1985 A
4560979 Rosskopf et al. Dec 1985 A
4561442 Vollmann et al. Dec 1985 A
4562751 Nason et al. Jan 1986 A
4563175 LaFond Jan 1986 A
4565116 Hehl et al. Jan 1986 A
4566456 Koning et al. Jan 1986 A
4569623 Goldmann Feb 1986 A
4570351 Szanto et al. Feb 1986 A
4571161 Leblanc et al. Feb 1986 A
4571749 Fischell Feb 1986 A
4571995 Timme Feb 1986 A
4573835 Eckardt et al. Mar 1986 A
4574792 Trick Mar 1986 A
4576181 Wallace et al. Mar 1986 A
4576183 Plicchi et al. Mar 1986 A
4577512 Lowenheck et al. Mar 1986 A
4581018 Jassawalla et al. Apr 1986 A
4581915 Haulsee et al. Apr 1986 A
4587840 Dobler et al. May 1986 A
4589805 Duffner et al. May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592340 Boyles Jun 1986 A
4593703 Cosman Jun 1986 A
4595228 Chu Jun 1986 A
4595390 Hakim et al. Jun 1986 A
4596563 Pande Jun 1986 A
4599943 Kobler et al. Jul 1986 A
4600855 Strachan et al. Jul 1986 A
4602541 Benzinger et al. Jul 1986 A
4604089 Santangelo et al. Aug 1986 A
4605354 Daly Aug 1986 A
4606419 Perini Aug 1986 A
4606478 Hack et al. Aug 1986 A
4610256 Wallace Sep 1986 A
4614137 Jones Sep 1986 A
4615691 Hakim et al. Oct 1986 A
4617016 Blomberg et al. Oct 1986 A
4618861 Gettens et al. Oct 1986 A
4620807 Polit Nov 1986 A
4621331 Iwata et al. Nov 1986 A
4622871 Van Sickle et al. Nov 1986 A
4626462 Kober et al. Dec 1986 A
4633304 Nagasaki et al. Dec 1986 A
4633878 Bombardieri et al. Jan 1987 A
4635182 Hintz Jan 1987 A
4637736 Andeen et al. Jan 1987 A
4638665 Benson et al. Jan 1987 A
4644246 Knapen et al. Feb 1987 A
4646553 Tufte et al. Mar 1987 A
4648363 Kronich Mar 1987 A
4648406 Miller Mar 1987 A
4658358 Leach et al. Apr 1987 A
4658760 Zebuhr Apr 1987 A
4660568 Cosman Apr 1987 A
4665511 Rodney et al. May 1987 A
4665896 LaForge et al. May 1987 A
4669484 Masters Jun 1987 A
4672974 Lee Jun 1987 A
4674457 Berger et al. Jun 1987 A
4674546 Fournier et al. Jun 1987 A
4678408 Nason et al. Jul 1987 A
4681559 Hooven Jul 1987 A
4683850 Bauder et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685469 Keller et al. Aug 1987 A
4685903 Cable et al. Aug 1987 A
4686987 Salo et al. Aug 1987 A
4687530 Berscheid et al. Aug 1987 A
4691694 Boyd et al. Sep 1987 A
4691710 Dickens et al. Sep 1987 A
4693253 Adams Sep 1987 A
4695237 Inaba et al. Sep 1987 A
4696189 Hochreuther et al. Sep 1987 A
4697574 Karcher et al. Oct 1987 A
4698038 Key et al. Oct 1987 A
4700497 Sato et al. Oct 1987 A
4700610 Bauer et al. Oct 1987 A
4701143 Key et al. Oct 1987 A
4703756 Gough et al. Nov 1987 A
4705507 Boyles Nov 1987 A
4706948 Kroecher et al. Nov 1987 A
4711249 Brooks Dec 1987 A
4712562 Ohayon et al. Dec 1987 A
4718425 Tanaka et al. Jan 1988 A
4722348 Ligtenberg et al. Feb 1988 A
4724806 Hartwig et al. Feb 1988 A
4724830 Fischell Feb 1988 A
4725826 Hunter Feb 1988 A
4727887 Haber Mar 1988 A
4728479 Merkovsky Mar 1988 A
4729517 Krokor et al. Mar 1988 A
4730188 Milheiser Mar 1988 A
4730420 Stratmann et al. Mar 1988 A
4730619 Koning et al. Mar 1988 A
4731058 Doan Mar 1988 A
4735205 Chachques et al. Apr 1988 A
4738267 Lazorthes et al. Apr 1988 A
4738268 Kipnis Apr 1988 A
4741345 Matthews et al. May 1988 A
4741732 Crankshaw et al. May 1988 A
4743129 Keryhuel et al. May 1988 A
4745541 Vaniglia et al. May 1988 A
4746830 Holland May 1988 A
4750495 Moore et al. Jun 1988 A
4752115 Murray, Jr. et al. Jun 1988 A
4752658 Mack Jun 1988 A
4757463 Ballou et al. Jul 1988 A
4759386 Grouw, III Jul 1988 A
4763649 Merrick Aug 1988 A
4765001 Smith Aug 1988 A
4767406 Wadham et al. Aug 1988 A
4769001 Prince Sep 1988 A
4772257 Hakim et al. Sep 1988 A
4772896 Nakatsu et al. Sep 1988 A
4773401 Citak et al. Sep 1988 A
4774950 Cohen Oct 1988 A
4774955 Jones Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779626 Peel et al. Oct 1988 A
4781192 Demer Nov 1988 A
4782826 Fogarty Nov 1988 A
4783106 Nutter Nov 1988 A
4785822 Wallace Nov 1988 A
4788847 Sterghos Dec 1988 A
4791318 Lewis et al. Dec 1988 A
4794803 Osterhout et al. Jan 1989 A
4796641 Mills et al. Jan 1989 A
4798211 Goor et al. Jan 1989 A
4798227 Goodwin Jan 1989 A
4799491 Eckerle Jan 1989 A
4799625 Weaver, Jr. et al. Jan 1989 A
4802488 Eckerle Feb 1989 A
4803987 Calfee et al. Feb 1989 A
4804368 Skakoon et al. Feb 1989 A
4807321 Grasselli et al. Feb 1989 A
4808167 Mann et al. Feb 1989 A
4812823 Dickerson Mar 1989 A
4819656 Spector Apr 1989 A
4820265 DeSatnick et al. Apr 1989 A
4820953 Saubolle et al. Apr 1989 A
4821167 Wiebe Apr 1989 A
4821723 Baker, Jr. et al. Apr 1989 A
4823779 Daly et al. Apr 1989 A
4830006 Haluska et al. May 1989 A
4832034 Pizziconi et al. May 1989 A
4833384 Munro et al. May 1989 A
4834731 Nowak et al. May 1989 A
4838857 Strowe et al. Jun 1989 A
4840068 Mayhew, Jr. Jun 1989 A
4840350 Cook et al. Jun 1989 A
4844002 Yasue et al. Jul 1989 A
4846153 Berci Jul 1989 A
4846191 Brockway et al. Jul 1989 A
4846664 Hehl et al. Jul 1989 A
4854328 Pollack Aug 1989 A
4863470 Carter Sep 1989 A
4865587 Walling Sep 1989 A
4867160 Schaldach et al. Sep 1989 A
4867498 Delphia et al. Sep 1989 A
4867618 Brohammer Sep 1989 A
4869252 Gilli Sep 1989 A
4870258 Mochizuki et al. Sep 1989 A
4871351 Feingold et al. Oct 1989 A
4872483 Shah Oct 1989 A
4872869 Johns Oct 1989 A
4873677 Sakamoto et al. Oct 1989 A
4875483 Vollmann et al. Oct 1989 A
4880004 Baker, Jr. et al. Nov 1989 A
4882678 Hollis et al. Nov 1989 A
4886392 Iio et al. Dec 1989 A
4893630 Bray, Jr. Jan 1990 A
4895151 Grevis et al. Jan 1990 A
4896594 Baur et al. Jan 1990 A
4898158 Daly et al. Feb 1990 A
4898578 Rubalcaba, Jr. Feb 1990 A
4899751 Cohen Feb 1990 A
4899752 Cohen Feb 1990 A
4902277 Mathies et al. Feb 1990 A
4903701 Moore et al. Feb 1990 A
4905698 Strohl, Jr. et al. Mar 1990 A
4909678 Kakimoto et al. Mar 1990 A
4913147 Fahlstrom et al. Apr 1990 A
4919143 Ayers Apr 1990 A
4924872 Frank May 1990 A
4926903 Kawai et al. May 1990 A
4932406 Berkovits Jun 1990 A
4934369 Maxwell Jun 1990 A
4936304 Kresh et al. Jun 1990 A
4940037 Eckert et al. Jul 1990 A
4941718 Alexander, III et al. Jul 1990 A
4942004 Catanzaro Jul 1990 A
4944050 Shames et al. Jul 1990 A
4944298 Sholder Jul 1990 A
4944307 Hon et al. Jul 1990 A
4945761 Lessi et al. Aug 1990 A
4949724 Mahutte et al. Aug 1990 A
4952205 Mauerer et al. Aug 1990 A
4952928 Carroll et al. Aug 1990 A
4953563 Kaiser et al. Sep 1990 A
4954677 Alberter et al. Sep 1990 A
4958630 Rosenbluth et al. Sep 1990 A
4958645 Cadell et al. Sep 1990 A
4960424 Grooters Oct 1990 A
4960966 Evans et al. Oct 1990 A
4967585 Grimaldo Nov 1990 A
4967761 Nathanielsz Nov 1990 A
4970823 Chen et al. Nov 1990 A
4971251 Dobrick et al. Nov 1990 A
4977896 Robinson et al. Dec 1990 A
4978335 Arthur, III Dec 1990 A
4978338 Melsky et al. Dec 1990 A
4979730 Holbrook et al. Dec 1990 A
4980671 McCurdy Dec 1990 A
4981141 Segalowitz Jan 1991 A
4981173 Perkins et al. Jan 1991 A
4981426 Aoki et al. Jan 1991 A
4987897 Funke et al. Jan 1991 A
4988337 Ito et al. Jan 1991 A
4992794 Brouwers et al. Feb 1991 A
4997556 Yano et al. Mar 1991 A
5001528 Bahraman Mar 1991 A
5003807 Terrell et al. Apr 1991 A
5003975 Hafelfinger et al. Apr 1991 A
5003976 Alt et al. Apr 1991 A
5004472 Wallace Apr 1991 A
5004873 Schnut Apr 1991 A
5005574 Fearnot et al. Apr 1991 A
5005586 Lahr Apr 1991 A
5006844 Ohta et al. Apr 1991 A
5006997 Reich Apr 1991 A
5007401 Grohn et al. Apr 1991 A
5007430 Dardik Apr 1991 A
5007919 Silva et al. Apr 1991 A
5009662 Wallace et al. Apr 1991 A
5010893 Sholder Apr 1991 A
5012286 Kawano et al. Apr 1991 A
5012810 Strand et al. May 1991 A
5013292 Lemay et al. May 1991 A
5014040 Weaver et al. May 1991 A
5019032 Robertson May 1991 A
5019041 Robinson et al. May 1991 A
5020845 Falcoff et al. Jun 1991 A
5021046 Wallace Jun 1991 A
5022395 Russie Jun 1991 A
5024965 Chang et al. Jun 1991 A
5026180 Tajima et al. Jun 1991 A
5026360 Johnsen et al. Jun 1991 A
5028918 Giles et al. Jul 1991 A
5032822 Sweet Jul 1991 A
5036869 Inahara et al. Aug 1991 A
5038800 Oba et al. Aug 1991 A
5041086 Koenig et al. Aug 1991 A
5041826 Milheiser Aug 1991 A
5042503 Torok et al. Aug 1991 A
5044770 Haghkar Sep 1991 A
5046661 Kimura et al. Sep 1991 A
5048060 Arai et al. Sep 1991 A
5050922 Falcoff Sep 1991 A
5052910 Hehl et al. Oct 1991 A
5053008 Bajaj Oct 1991 A
5057078 Foote et al. Oct 1991 A
5058583 Geddes et al. Oct 1991 A
5061239 Shiels Oct 1991 A
5062052 Sparer et al. Oct 1991 A
5062053 Shirai et al. Oct 1991 A
5064974 Vigneau et al. Nov 1991 A
5067960 Grandjean et al. Nov 1991 A
5068779 Sullivan et al. Nov 1991 A
5069680 Grandjean et al. Dec 1991 A
5077102 Chong Dec 1991 A
5077870 Melbye et al. Jan 1992 A
5078139 Strand et al. Jan 1992 A
5082006 Jonasson et al. Jan 1992 A
5083563 Collins et al. Jan 1992 A
5084699 DeMichele Jan 1992 A
5085224 Galen et al. Feb 1992 A
5085258 Fink, Jr. et al. Feb 1992 A
5089673 Strzodka et al. Feb 1992 A
5089979 McEachern et al. Feb 1992 A
5095309 Troyk et al. Mar 1992 A
5096271 Portman Mar 1992 A
5097831 Lekholm Mar 1992 A
5098384 Abrams Mar 1992 A
5099845 Besz et al. Mar 1992 A
5103832 Jackson Apr 1992 A
5105810 Collins et al. Apr 1992 A
5107850 Olive Apr 1992 A
5112344 Petros et al. May 1992 A
5113859 Funke et al. May 1992 A
5113869 Nappholz et al. May 1992 A
5115676 Lee May 1992 A
5117825 Grevious Jun 1992 A
5120313 Elftman Jun 1992 A
5121777 Leininger et al. Jun 1992 A
5127451 Fink, Jr. et al. Jul 1992 A
5129394 Mehra Jul 1992 A
5129806 Hehl et al. Jul 1992 A
5131145 Badoureaux et al. Jul 1992 A
5131388 Pless et al. Jul 1992 A
5133358 Gustafson et al. Jul 1992 A
5135488 Foote et al. Aug 1992 A
5139484 Hazon et al. Aug 1992 A
5144949 Olson Sep 1992 A
5148580 Dyckow et al. Sep 1992 A
5148695 Ellis Sep 1992 A
5152770 Bengmark et al. Oct 1992 A
5152776 Pinchuk Oct 1992 A
5154170 Bennett et al. Oct 1992 A
5154171 Chirife et al. Oct 1992 A
5154693 East et al. Oct 1992 A
5156972 Issachar et al. Oct 1992 A
5158078 Bennett et al. Oct 1992 A
5163429 Cohen Nov 1992 A
5163904 Lampropoulos et al. Nov 1992 A
5167615 East et al. Dec 1992 A
5168757 Rabenau et al. Dec 1992 A
5168982 Hakanen et al. Dec 1992 A
5171299 Heitzmann et al. Dec 1992 A
5173873 Wu et al. Dec 1992 A
5174286 Chirige et al. Dec 1992 A
5174291 Schoonen et al. Dec 1992 A
5176502 Sanderson et al. Jan 1993 A
5178197 Healy Jan 1993 A
5181423 Philipps et al. Jan 1993 A
5181517 Hickey Jan 1993 A
5184132 Baird Feb 1993 A
5184614 Collins et al. Feb 1993 A
5184619 Austin Feb 1993 A
5185535 Farb et al. Feb 1993 A
5186224 Schirmacher et al. Feb 1993 A
5188106 Nappholz et al. Feb 1993 A
5188604 Orth Feb 1993 A
5192314 Daskalakis Mar 1993 A
5195362 Eason Mar 1993 A
5197322 Indravudh Mar 1993 A
5199427 Strickland Apr 1993 A
5199428 Obel et al. Apr 1993 A
5201753 Lampropoulos et al. Apr 1993 A
5204670 Stinton Apr 1993 A
5207429 Walmsley et al. May 1993 A
5209223 McGorry et al. May 1993 A
5209732 Lampropoulos et al. May 1993 A
5211129 Taylor et al. May 1993 A
5211161 Stef et al. May 1993 A
5212476 Maloney May 1993 A
5213331 Avanzini May 1993 A
5215523 Williams et al. Jun 1993 A
5218343 Stobbe et al. Jun 1993 A
5218957 Strickland Jun 1993 A
5226429 Kuzmak Jul 1993 A
5226604 Seiffert et al. Jul 1993 A
5230694 Rosenblum Jul 1993 A
5233985 Hudrik Aug 1993 A
5235326 Beigel et al. Aug 1993 A
5244269 Harriehausen et al. Sep 1993 A
5244461 Derlien et al. Sep 1993 A
5246008 Mueller et al. Sep 1993 A
5249858 Nusser Oct 1993 A
5250020 Bley Oct 1993 A
5254096 Rondelet et al. Oct 1993 A
5256157 Samiotes et al. Oct 1993 A
5263244 Centa et al. Nov 1993 A
5263981 Polyak et al. Nov 1993 A
5267940 Moulder Dec 1993 A
5267942 Saperston Dec 1993 A
5269891 Colin et al. Dec 1993 A
5271395 Wahlstrand et al. Dec 1993 A
5274859 Redman et al. Jan 1994 A
5280789 Potts Jan 1994 A
5282839 Roline et al. Feb 1994 A
5282840 Hudrlik Feb 1994 A
5291894 Nagy et al. Mar 1994 A
5292219 Merin et al. Mar 1994 A
5295967 Rondelet et al. Mar 1994 A
5298022 Bernardi et al. Mar 1994 A
5298884 Gilmore et al. Mar 1994 A
5300093 Koestner Apr 1994 A
5300120 Knapp et al. Apr 1994 A
5304112 Mrklas et al. Apr 1994 A
5305923 Kirschner et al. Apr 1994 A
5312443 Adams et al. May 1994 A
5312452 Salo May 1994 A
5312453 Shelton et al. May 1994 A
5313953 Yomtov et al. May 1994 A
5314451 Mulier May 1994 A
5314457 Jeutter et al. May 1994 A
5324315 Grevious Jun 1994 A
5325834 Ballheimer et al. Jul 1994 A
5326249 Weissfloch et al. Jul 1994 A
5328460 Lord et al. Jul 1994 A
5330511 Boute et al. Jul 1994 A
5337750 Wallock Aug 1994 A
5341430 Aulia et al. Aug 1994 A
5342401 Spano et al. Aug 1994 A
5342406 Thompson Aug 1994 A
5344388 Maxwell et al. Sep 1994 A
5347476 McBean, Sr. Sep 1994 A
5348210 Linzell et al. Sep 1994 A
5348536 Young et al. Sep 1994 A
5350413 Miller et al. Sep 1994 A
5352180 Candelon et al. Oct 1994 A
5353622 Theener Oct 1994 A
5353800 Pohndorf et al. Oct 1994 A
5354200 Klein et al. Oct 1994 A
5354316 Keimel Oct 1994 A
5354319 Wyborny et al. Oct 1994 A
5360407 Leonard et al. Nov 1994 A
5365462 McBean, Sr. Nov 1994 A
5365619 Solomon Nov 1994 A
5365985 Todd et al. Nov 1994 A
5368040 Carney Nov 1994 A
5370665 Hudrlik Dec 1994 A
5373852 Harrison et al. Dec 1994 A
5375073 McBean Dec 1994 A
5377128 McBean Dec 1994 A
5378231 Johnson et al. Jan 1995 A
5382232 Hague et al. Jan 1995 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5388586 Lee et al. Feb 1995 A
5388831 Quadri et al. Feb 1995 A
5394909 Mitchell et al. Mar 1995 A
5396899 Strittmatter Mar 1995 A
5402944 Pape et al. Apr 1995 A
5406957 Tansey Apr 1995 A
5409009 Olson Apr 1995 A
5411031 Yomtov May 1995 A
5411551 Winston et al. May 1995 A
5411552 Andersen et al. May 1995 A
5416372 Ljungstroem et al. May 1995 A
5417226 Juma May 1995 A
5417717 Salo et al. May 1995 A
5425362 Siker et al. Jun 1995 A
5425713 Taylor et al. Jun 1995 A
5431171 Harrison et al. Jul 1995 A
5431629 Lampropoulos et al. Jul 1995 A
5431694 Snaper et al. Jul 1995 A
5433694 Lim et al. Jul 1995 A
5437605 Helmy et al. Aug 1995 A
5443215 Fackler Aug 1995 A
5447519 Peterson Sep 1995 A
5449345 Taylor et al. Sep 1995 A
5449368 Kuzmak Sep 1995 A
5456690 Duong-Van Oct 1995 A
5461293 Rozman et al. Oct 1995 A
5461390 Hoshen Oct 1995 A
5464435 Neumann Nov 1995 A
5467627 Smith et al. Nov 1995 A
5474226 Joseph Dec 1995 A
5479818 Walter et al. Jan 1996 A
5482049 Addiss et al. Jan 1996 A
5487760 Villafana Jan 1996 A
5490514 Rosenberg Feb 1996 A
5493738 Sanderson et al. Feb 1996 A
5494036 Uber, III et al. Feb 1996 A
5494193 Kirschner et al. Feb 1996 A
5504474 Libman et al. Apr 1996 A
5505916 Berry, Jr. Apr 1996 A
5507412 Ebert et al. Apr 1996 A
5507737 Palmskog et al. Apr 1996 A
5507785 Deno Apr 1996 A
5509888 Miller Apr 1996 A
5509891 DeRidder Apr 1996 A
5513945 Hartmann et al. May 1996 A
5514103 Srisathapat et al. May 1996 A
5518504 Polyak May 1996 A
5520606 Schoolman et al. May 1996 A
5523740 Burgmann et al. Jun 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5535752 Halperin et al. Jul 1996 A
5538005 Harrison et al. Jul 1996 A
5540731 Testerman Jul 1996 A
5541857 Walter et al. Jul 1996 A
5545140 Conero et al. Aug 1996 A
5545151 O'Connor et al. Aug 1996 A
5545186 Olson et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5547470 Johnson et al. Aug 1996 A
5551427 Altman Sep 1996 A
5551439 Hickey Sep 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5564434 Halperin et al. Oct 1996 A
5575770 Melsky et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5586629 Shoberg et al. Dec 1996 A
5591171 Brown Jan 1997 A
5592939 Martinelli Jan 1997 A
5593430 Renger Jan 1997 A
5594665 Walter et al. Jan 1997 A
5596986 Goldfarb Jan 1997 A
5597284 Weltlich et al. Jan 1997 A
5610083 Chan et al. Mar 1997 A
5611768 Tutrone, Jr. Mar 1997 A
5612497 Walter et al. Mar 1997 A
5615671 Schoonen et al. Apr 1997 A
5619991 Sloane Apr 1997 A
5622869 Lewis et al. Apr 1997 A
5625946 Wildeson et al. May 1997 A
5626623 Kieval et al. May 1997 A
5626630 Markowitz et al. May 1997 A
5630836 Prem et al. May 1997 A
5634255 Bishop et al. Jun 1997 A
5637083 Bertrand et al. Jun 1997 A
5643207 Rise Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5645116 McDonald Jul 1997 A
5650766 Burgmann et al. Jul 1997 A
5673585 Bishop et al. Oct 1997 A
5676690 Noren et al. Oct 1997 A
5681285 Ford et al. Oct 1997 A
5686831 Vandervalk et al. Nov 1997 A
5687734 Dempsey et al. Nov 1997 A
5693076 Kaemmerer Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5702427 Ecker et al. Dec 1997 A
5702431 Wang et al. Dec 1997 A
5704352 Tremblay et al. Jan 1998 A
5711302 Lampropoulos et al. Jan 1998 A
5715786 Seiberth et al. Feb 1998 A
5715837 Chen Feb 1998 A
5716342 Dumbraveanu et al. Feb 1998 A
5720436 Buschor et al. Feb 1998 A
5721382 Kriesel et al. Feb 1998 A
5730101 Aupperle et al. Mar 1998 A
5732710 Rabinovich et al. Mar 1998 A
5733313 Barreras, Sr. et al. Mar 1998 A
5738652 Boyd et al. Apr 1998 A
5742233 Hoffman et al. Apr 1998 A
5743267 Nikolic et al. Apr 1998 A
5749369 Rabinovich et al. May 1998 A
5749909 Schroeppel et al. May 1998 A
5755687 Donion May 1998 A
5755748 Borza et al. May 1998 A
5765568 Sweezer, Jr. et al. Jun 1998 A
5769812 Stevens et al. Jun 1998 A
5771903 Jakobsson Jun 1998 A
5782774 Shmulewitz Jul 1998 A
5787520 Dunbar Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5792094 Stevens et al. Aug 1998 A
5792179 Sideris Aug 1998 A
5795325 Valley et al. Aug 1998 A
5796827 Coppersmith et al. Aug 1998 A
5797403 DiLorenzo Aug 1998 A
5800375 Sweezer et al. Sep 1998 A
5803917 Butter field et al. Sep 1998 A
5807265 Itoigawa et al. Sep 1998 A
5807336 Russo et al. Sep 1998 A
5810015 Flaherty Sep 1998 A
5810757 Sweezer, Jr. et al. Sep 1998 A
5810841 McNeirney et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5836300 Mault Nov 1998 A
5836886 Itoigawa et al. Nov 1998 A
5840081 Anderson et al. Nov 1998 A
5849225 Ebina et al. Dec 1998 A
5855597 Jayaraman et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860938 LaFontaine et al. Jan 1999 A
5861018 Feierbach Jan 1999 A
5863366 Snow Jan 1999 A
5868702 Stevens et al. Feb 1999 A
5873837 Lieber et al. Feb 1999 A
5875953 Shioya et al. Mar 1999 A
5879499 Corvi Mar 1999 A
5881919 Womac et al. Mar 1999 A
5885238 Stevens et al. Mar 1999 A
5887475 Muldner Mar 1999 A
5899927 Ecker et al. May 1999 A
5916179 Sharrock Jun 1999 A
5916237 Schu Jun 1999 A
5928182 Kraus et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5935083 Williams Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5951487 Brehmeier-Flick et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5967986 Cimochowski et al. Oct 1999 A
5970801 Ciobanu et al. Oct 1999 A
5971934 Scherer et al. Oct 1999 A
5974873 Nelson et al. Nov 1999 A
5978985 Thurman Nov 1999 A
5991664 Seligman Nov 1999 A
5993395 Shulze Nov 1999 A
5993398 Alperin Nov 1999 A
5995874 Borza et al. Nov 1999 A
6009878 Weijand et al. Jan 2000 A
6010482 Kriesel et al. Jan 2000 A
6015386 Kensey et al. Jan 2000 A
6015387 Schwartz et al. Jan 2000 A
6019729 Itoigawa et al. Feb 2000 A
6024704 Meador et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6035461 Nguyen Mar 2000 A
6053873 Govari et al. Apr 2000 A
6056723 Donlon May 2000 A
6058330 Borza et al. May 2000 A
6059757 Macoviak et al. May 2000 A
6067474 Schulman et al. May 2000 A
6067991 Forsell et al. May 2000 A
6071267 Zamierowski Jun 2000 A
6076016 Feierbach Jun 2000 A
6083174 Brehmeier-Flick et al. Jul 2000 A
6089831 Bruehmann et al. Jul 2000 A
6090096 St. Goar et al. Jul 2000 A
6102678 Peciat et al. Aug 2000 A
6102856 Groff et al. Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6106477 Meisel et al. Aug 2000 A
6106551 Crossett et al. Aug 2000 A
6110145 Macoviak Aug 2000 A
6113553 Chubbuck Sep 2000 A
6131664 Sonnier Oct 2000 A
6135945 Sultan Oct 2000 A
6152885 Taepke Nov 2000 A
6158965 Butterfield et al. Dec 2000 A
6159156 Van Bockel et al. Dec 2000 A
6162180 Miesel et al. Dec 2000 A
6162245 Jayaraman et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171252 Roberts Jan 2001 B1
6210347 Forsell Apr 2001 B1
6216028 Haynor et al. Apr 2001 B1
6234745 Pugh et al. May 2001 B1
6240316 Richmond et al. May 2001 B1
6240318 Phillips May 2001 B1
6245102 Jayaraman Jun 2001 B1
6248080 Miesel et al. Jun 2001 B1
6251093 Valley et al. Jun 2001 B1
6269819 Oz et al. Aug 2001 B1
6277078 Porat et al. Aug 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6292697 Roberts Sep 2001 B1
6305381 Weijand et al. Oct 2001 B1
6309350 Van Tassel et al. Oct 2001 B1
6315769 Peer et al. Nov 2001 B1
6319208 Abita et al. Nov 2001 B1
6328699 Eigler et al. Dec 2001 B1
6338735 Stevens Jan 2002 B1
6357438 Hansen Mar 2002 B1
6360122 Fischell et al. Mar 2002 B1
6360822 Robertson et al. Mar 2002 B1
6366799 Acker et al. Apr 2002 B1
6366817 Kung Apr 2002 B1
6379308 Brockway et al. Apr 2002 B1
6379380 Satz Apr 2002 B1
6398752 Sweezer, Jr. et al. Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6416291 Butterfield et al. Jul 2002 B1
6423031 Donlon Jul 2002 B1
6430444 Borza et al. Aug 2002 B1
6431175 Penner et al. Aug 2002 B1
6432040 Meah Aug 2002 B1
6443887 Derus et al. Sep 2002 B1
6443893 Schnakenberg et al. Sep 2002 B1
6450173 Forsell Sep 2002 B1
6450543 Fukano et al. Sep 2002 B1
6450946 Forsell Sep 2002 B1
6453907 Forsell et al. Sep 2002 B1
6454698 Forsell et al. Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6460543 Forsell et al. Oct 2002 B1
6461292 Forsell et al. Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463329 Goedeke Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470212 Weijand et al. Oct 2002 B1
6470213 Alley Oct 2002 B1
6470892 Forsell Oct 2002 B1
6471635 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6475170 Doron et al. Nov 2002 B1
6481292 Reich Nov 2002 B1
6482145 Forsell Nov 2002 B1
6482171 Corvi et al. Nov 2002 B1
6482177 Leinders et al. Nov 2002 B1
6486588 Doron et al. Nov 2002 B2
6503189 Forsell et al. Jan 2003 B1
6503208 Skovlund et al. Jan 2003 B1
6504286 Porat et al. Jan 2003 B1
6505062 Ritter et al. Jan 2003 B1
6511490 Robert Jan 2003 B2
6516062 Yang et al. Feb 2003 B1
6531739 Cable et al. Mar 2003 B2
6533719 Kuyava et al. Mar 2003 B2
6533733 Ericson et al. Mar 2003 B1
6542350 Rogers Apr 2003 B1
6543907 Nishiyama et al. Apr 2003 B2
6558321 Burd et al. May 2003 B1
6558994 Cha et al. May 2003 B2
6573563 Lee et al. Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6587709 Solf et al. Jul 2003 B2
6589189 Meyerson et al. Jul 2003 B2
6599250 Webb et al. Jul 2003 B2
6605112 Moll et al. Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6640137 MacDonald Oct 2003 B2
6641610 Wolf et al. Nov 2003 B2
6645143 Van Tassel et al. Nov 2003 B2
6654629 Montegrande Nov 2003 B2
6673109 Cox Jan 2004 B2
6678561 Forsell et al. Jan 2004 B2
6682480 Habib et al. Jan 2004 B1
6682503 Fariss et al. Jan 2004 B1
6682559 Myers Jan 2004 B2
6689046 Sayet et al. Feb 2004 B2
6690963 Ben-Haim et al. Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6709385 Forsell et al. Mar 2004 B2
6718200 Marmaropoulos et al. Apr 2004 B2
6719787 Cox Apr 2004 B2
6719788 Cox Apr 2004 B2
6719789 Cox Apr 2004 B2
6731976 Penn et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6757557 Bladen et al. Jun 2004 B1
6779851 Bouchiere Aug 2004 B2
6796942 Kreiner et al. Sep 2004 B1
6822343 Estevez Nov 2004 B2
6851628 Garrison et al. Feb 2005 B1
6855115 Fonseca et al. Feb 2005 B2
6889772 Buytaeft et al. May 2005 B2
6890300 Lloyd et al. May 2005 B2
6896651 Gross et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6913600 Valley et al. Jul 2005 B2
6915165 Forsell et al. Jul 2005 B2
6926246 Ginggen et al. Aug 2005 B2
6929653 Strecter Aug 2005 B2
6932792 St. Goar et al. Aug 2005 B1
6951229 Garrison et al. Oct 2005 B2
6951571 Srivastava Oct 2005 B1
6953429 Forsell et al. Oct 2005 B2
6961619 Casey Nov 2005 B2
6970742 Mann et al. Nov 2005 B2
6979350 Moll et al. Dec 2005 B2
6985078 Suzuki et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
7011095 Wolf et al. Mar 2006 B2
7011624 Forsell et al. Mar 2006 B2
7017583 Forsell et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7021402 Beato et al. Apr 2006 B2
7025727 Brockway et al. Apr 2006 B2
7044920 Letort et al. May 2006 B2
7060080 Bachmann et al. Jun 2006 B2
7081683 Ariav et al. Jul 2006 B2
7109933 Ito et al. Sep 2006 B2
7131447 Sterman et al. Nov 2006 B2
7131945 Fink et al. Nov 2006 B2
7134580 Garrison et al. Nov 2006 B2
7143462 Hohlbein Dec 2006 B2
7144400 Byrum et al. Dec 2006 B2
7147640 Huebner et al. Dec 2006 B2
7153262 Stivoric et al. Dec 2006 B2
7187978 Malek et al. Mar 2007 B2
7225032 Schmeling et al. May 2007 B2
7257438 Kinast Aug 2007 B2
7285090 Stivoric et al. Oct 2007 B2
20010011543 Forsell Aug 2001 A1
20010041823 Snyder et al. Nov 2001 A1
20020049394 Roy et al. Apr 2002 A1
20020120200 Brockway et al. Aug 2002 A1
20020138009 Brockway et al. Sep 2002 A1
20020177782 Penner Nov 2002 A1
20030009201 Forsell Jan 2003 A1
20030023134 Tracey Jan 2003 A1
20030030893 Cornelius et al. Feb 2003 A1
20030032857 Forsell Feb 2003 A1
20030037591 Ashton et al. Feb 2003 A1
20030045775 Forsell Mar 2003 A1
20030066536 Forsell Apr 2003 A1
20030088148 Forsell May 2003 A1
20030092962 Forsell May 2003 A1
20030093117 Saadat May 2003 A1
20030100929 Forsell May 2003 A1
20030105385 Forsell Jun 2003 A1
20030109771 Forsell Jun 2003 A1
20030114729 Forsell Jun 2003 A1
20030120150 Govari Jun 2003 A1
20030125605 Forsell Jul 2003 A1
20030125768 Peter Jul 2003 A1
20030135089 Forsell Jul 2003 A1
20030135090 Forsell Jul 2003 A1
20030136417 Fonseca et al. Jul 2003 A1
20030144648 Forsell Jul 2003 A1
20030163079 Burnett Aug 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030225371 Hadzic et al. Dec 2003 A1
20040014456 Vnnen Jan 2004 A1
20040016874 Rao et al. Jan 2004 A1
20040039256 Kawatahara et al. Feb 2004 A1
20040054351 Deniega et al. Mar 2004 A1
20040054352 Adams et al. Mar 2004 A1
20040055610 Forsell Mar 2004 A1
20040064030 Forsell Apr 2004 A1
20040082867 Esch et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040113790 Hamel et al. Jun 2004 A1
20040133092 Kain Jul 2004 A1
20040143212 Trombley et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040172087 Forsell Sep 2004 A1
20040186396 Roy et al. Sep 2004 A1
20040193045 Scarborough et al. Sep 2004 A1
20040215159 Forsell Oct 2004 A1
20040243148 Wasielewski Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20050004516 Vanney Jan 2005 A1
20050015014 Fonseca et al. Jan 2005 A1
20050025979 Sandt et al. Feb 2005 A1
20050027175 Yang Feb 2005 A1
20050027998 Teglia et al. Feb 2005 A1
20050038328 Stoehrer et al. Feb 2005 A1
20050061079 Schulman Mar 2005 A1
20050065450 Stuebe et al. Mar 2005 A1
20050102026 Turner et al. May 2005 A1
20050159789 Brockway et al. Jul 2005 A1
20050165317 Turner et al. Jul 2005 A1
20050182330 Brockway et al. Aug 2005 A1
20050187482 O'Brien et al. Aug 2005 A1
20050187488 Wolf Aug 2005 A1
20050192642 Forsell Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050240144 Wassermann et al. Oct 2005 A1
20050240155 Conlon Oct 2005 A1
20050240156 Conlon Oct 2005 A1
20050250979 Coe Nov 2005 A1
20050267406 Hassler Dec 2005 A1
20050267500 Hassler et al. Dec 2005 A1
20050272968 Byrum et al. Dec 2005 A1
20050277960 Hassler et al. Dec 2005 A1
20050277974 Hasslet et al. Dec 2005 A1
20050288604 Eigler et al. Dec 2005 A1
20050288720 Ross et al. Dec 2005 A1
20050288721 Girouard et al. Dec 2005 A1
20050288739 Hassler et al. Dec 2005 A1
20050288740 Hassler Dec 2005 A1
20050288741 Hassler et al. Dec 2005 A1
20050288742 Giordano et al. Dec 2005 A1
20060002035 Gao et al. Jan 2006 A1
20060010090 Brockway et al. Jan 2006 A1
20060020224 Geiger Jan 2006 A1
20060020305 Desai et al. Jan 2006 A1
20060035446 Chang et al. Feb 2006 A1
20060047205 Ludomirsky et al. Mar 2006 A1
20060049714 Liu et al. Mar 2006 A1
20060058627 Flaherty et al. Mar 2006 A1
20060064134 Mazar et al. Mar 2006 A1
20060085051 Fritsch Apr 2006 A1
20060089571 Gertner Apr 2006 A1
20060089619 Ginggen Apr 2006 A1
20060094966 Brockway et al. May 2006 A1
20060100531 Moser May 2006 A1
20060113187 Deng et al. Jun 2006 A1
20060118793 Yang et al. Jun 2006 A1
20060122285 Falloon et al. Jun 2006 A1
20060122863 Gottesman et al. Jun 2006 A1
20060142635 Forsell Jun 2006 A1
20060149124 Forsell Jul 2006 A1
20060149161 Wilson et al. Jul 2006 A1
20060149324 Mann et al. Jul 2006 A1
20060149327 Hedberg et al. Jul 2006 A1
20060157701 Bauer et al. Jul 2006 A1
20060161186 Hassler et al. Jul 2006 A1
20060178617 Adams et al. Aug 2006 A1
20060178695 Decant et al. Aug 2006 A1
20060183967 Lechner Aug 2006 A1
20060184206 Baker et al. Aug 2006 A1
20060189887 Hassler et al. Aug 2006 A1
20060189888 Hassler et al. Aug 2006 A1
20060189889 Gertner Aug 2006 A1
20060199997 Hassler, Jr. et al. Sep 2006 A1
20060211912 Dlugos et al. Sep 2006 A1
20060211913 Dlugos et al. Sep 2006 A1
20060211914 Hassler et al. Sep 2006 A1
20060217668 Schulze et al. Sep 2006 A1
20060217673 Schulze et al. Sep 2006 A1
20060235310 O'Brien et al. Oct 2006 A1
20060235439 Molitor et al. Oct 2006 A1
20060235448 Roslin et al. Oct 2006 A1
20060244914 Cech et al. Nov 2006 A1
20060247682 Gerber et al. Nov 2006 A1
20060247719 Maschino et al. Nov 2006 A1
20060247721 Maschino et al. Nov 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060247723 Gerber et al. Nov 2006 A1
20060247724 Gerber et al. Nov 2006 A1
20060247725 Gerber et al. Nov 2006 A1
20060252982 Hassler et al. Nov 2006 A1
20060293625 Hunt et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20060293627 Byrum et al. Dec 2006 A1
20070010790 Byrum et al. Jan 2007 A1
20070027356 Ortiz Feb 2007 A1
20070027493 Ben-Haim et al. Feb 2007 A1
20070067206 Haggerty et al. Mar 2007 A1
20070070906 Thakur Mar 2007 A1
20070072452 Inagaki et al. Mar 2007 A1
20070081304 Takeguchi Apr 2007 A1
20070156013 Birk Jul 2007 A1
20070167672 Dlugos et al. Jul 2007 A1
20070173881 Birk et al. Jul 2007 A1
20070179583 Goetzinger et al. Aug 2007 A1
20070208313 Conlon et al. Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20080009680 Hassler Jan 2008 A1
20080172072 Pool et al. Jul 2008 A1
20080250340 Dlugos et al. Oct 2008 A1
20080250341 Dlugos et al. Oct 2008 A1
20090005703 Fasciano Jan 2009 A1
20100179488 Spiegel et al. Jul 2010 A1
Foreign Referenced Citations (161)
Number Date Country
729 467 Feb 2001 AU
1059035 Jul 1979 CA
1119469 Mar 1982 CA
1275135 Oct 1990 CA
1277885 Dec 1990 CA
1317482 May 1993 CA
2082015 May 1993 CA
1327191 Feb 1994 CA
2119101 Sep 1994 CA
2305998 Apr 1999 CA
1119469 Mar 1982 CN
1059035 Feb 1992 CN
1241003 Jan 2000 CN
9416395 Dec 1994 DE
10156494 Jun 2003 DE
4581 Jun 2004 EA
0417171 Mar 1991 EP
0508141 Oct 1992 EP
0568730 Nov 1993 EP
0605302 Jul 1994 EP
0 654 232 May 1995 EP
0660482 Jun 1995 EP
0714017 May 1996 EP
0769340 Apr 1997 EP
0846475 Jun 1998 EP
0848780 Jun 1998 EP
0876808 Nov 1998 EP
0888079 Jan 1999 EP
0914059 May 1999 EP
0981293 Mar 2000 EP
0997680 May 2000 EP
1003021 May 2000 EP
1022983 Aug 2000 EP
1050265 Nov 2000 EP
1115329 Jul 2001 EP
1119314 Aug 2001 EP
1128871 Sep 2001 EP
1202674 May 2002 EP
1213991 Jun 2002 EP
1253877 Nov 2002 EP
1253879 Nov 2002 EP
1253880 Nov 2002 EP
1253881 Nov 2002 EP
1253883 Nov 2002 EP
1253888 Nov 2002 EP
1255511 Nov 2002 EP
1255513 Nov 2002 EP
1255514 Nov 2002 EP
1263355 Dec 2002 EP
1263357 Dec 2002 EP
1284691 Feb 2003 EP
1374758 Jan 2004 EP
1442715 Aug 2004 EP
1488735 Dec 2004 EP
1500411 Jan 2005 EP
1510306 Mar 2005 EP
1518514 Mar 2005 EP
1545303 Jun 2005 EP
1547549 Jun 2005 EP
1563814 Aug 2005 EP
1568338 Aug 2005 EP
1582175 Oct 2005 EP
1582176 Oct 2005 EP
1584303 Oct 2005 EP
1586283 Oct 2005 EP
1591086 Nov 2005 EP
1593359 Nov 2005 EP
1598030 Nov 2005 EP
1600120 Nov 2005 EP
1609440 Dec 2005 EP
1649884 Apr 2006 EP
1674033 Jun 2006 EP
1 676 527 Jul 2006 EP
1704833 Sep 2006 EP
1 736 123 Dec 2006 EP
1736123 Dec 2006 EP
1799119 Jun 2007 EP
2355937 May 2001 GB
2006175191 Jul 2006 JP
WO 8911244 Nov 1989 WO
WO 8911701 Nov 1989 WO
WO 9004368 May 1990 WO
WO 9511057 Apr 1995 WO
WO 9715351 May 1997 WO
WO 9733513 Sep 1997 WO
WO 9833554 Aug 1998 WO
WO 9835610 Aug 1998 WO
WO 9901063 Jan 1999 WO
WO 9918850 Apr 1999 WO
WO 0004945 Feb 2000 WO
WO 0033738 Jun 2000 WO
WO 0072899 Dec 2000 WO
WO 0104487 Jan 2001 WO
WO 0112075 Feb 2001 WO
WO 0112076 Feb 2001 WO
WO 0112077 Feb 2001 WO
WO 0112078 Feb 2001 WO
WO 0121066 Mar 2001 WO
WO 0136014 May 2001 WO
WO 0145485 Jun 2001 WO
WO 0145486 Jun 2001 WO
WO 0147431 Jul 2001 WO
WO 0147432 Jul 2001 WO
WO 0147433 Jul 2001 WO
WO 0147434 Jul 2001 WO
WO 0147435 Jul 2001 WO
WO 0147440 Jul 2001 WO
WO 0147575 Jul 2001 WO
WO 0148451 Jul 2001 WO
WO 0149245 Jul 2001 WO
WO 0150832 Jul 2001 WO
WO 0150833 Jul 2001 WO
WO 0154626 Aug 2001 WO
WO 0158388 Aug 2001 WO
WO 0158390 Aug 2001 WO
WO 0158391 Aug 2001 WO
WO 0158393 Aug 2001 WO
WO 0160453 Aug 2001 WO
WO 0181890 Nov 2001 WO
WO 0200118 Jan 2002 WO
WO 0215769 Feb 2002 WO
WO 0226161 Apr 2002 WO
WO 02053228 Jul 2002 WO
WO 02055126 Jul 2002 WO
WO 02058551 Aug 2002 WO
WO 02065894 Aug 2002 WO
WO 02076289 Oct 2002 WO
WO 02082984 Oct 2002 WO
WO 02089655 Nov 2002 WO
WO 02090894 Nov 2002 WO
WO 02100481 Dec 2002 WO
WO 03002192 Jan 2003 WO
WO 03002193 Jan 2003 WO
WO 03020182 Mar 2003 WO
WO 03043534 May 2003 WO
WO 03061467 Jul 2003 WO
WO 03061504 Jul 2003 WO
WO 03096889 Nov 2003 WO
WO 2004014245 Feb 2004 WO
WO 2004019773 Mar 2004 WO
WO 2004030541 Apr 2004 WO
WO 2004058101 Jul 2004 WO
WO 2004066879 Aug 2004 WO
WO 2004110263 Dec 2004 WO
WO 2005000206 Jan 2005 WO
WO 2005007075 Jan 2005 WO
WO 2005027998 Mar 2005 WO
WO 2005084544 Sep 2005 WO
WO 2005107583 Nov 2005 WO
WO 2006001851 Jan 2006 WO
WO 2006018927 Feb 2006 WO
WO 2006035446 Apr 2006 WO
WO 2006113187 Oct 2006 WO
WO 2006122285 Nov 2006 WO
WO 2007067206 Jun 2007 WO
WO 2007070906 Jun 2007 WO
WO 2007072452 Jun 2007 WO
WO 2007081304 Jul 2007 WO
WO 2007104356 Sep 2007 WO
WO 2007140430 Dec 2007 WO
WO 2008088949 Jul 2008 WO
Related Publications (1)
Number Date Country
20080015406 A1 Jan 2008 US
Continuation in Parts (2)
Number Date Country
Parent 11369389 Mar 2006 US
Child 11668122 US
Parent 11065410 Feb 2005 US
Child 11369389 US