There are no related applications claiming priority.
The present invention generally relates to a portable external structural exoskeleton apparatus utilized typically by an article for bracing and strengthening of the article. More particularly, the present invention helps maintain the structural relationship and integrity between the upper, middle, or lower body structures, in addition to restricting over extension of these body structures in an effort to minimize stress and potential injury to the individual's torso and limbs. Further, more particularly, the present invention provides an active, portable, and lightweight exoskeleton support apparatus that can be worn for long periods of time to assist an individual in performing repetitive high load movements involving stress to the structural portion of an individual's torso and limbs for activities that can include bending, lifting, and standing for extended periods of time.
The medical profession may recommend the use of an individual with a back injury or potential back problem to use an exoskeleton structural support apparatus to alleviate the strain and provide relief to the back. The apparatus can immobilize and support the spine when there is a condition that needs to be treated. Depending on the apparatus used, it can put the spine in a neutral, upright, hyper-extended, flexed, or lateral-flexed position. An exoskeleton structural support apparatus can be used to control pain, lessen the chance of further injury, allow healing to take place, compensate for muscle weakness, or prevent or correct a deformity. They offer a safe, relatively inexpensive, non-invasive way to prevent future problems or to help an individual heal from a current condition. The use of exoskeleton structural support apparatus which are commonly termed “braces” is widely accepted and is an effective tool in the treatment of back disorders. In fact, more than 99% of orthopedic physicians advocate using braces as there is a high potential benefit and little downside risk of the individual wearing the brace. In fact, historically braces have been used as far back as 2000 B.C. Recently, braces have become a popular way to help prevent primary and secondary lower back pain from ever occurring or reoccurring.
The Occupational Safety & Health Administration (OSHA) cites injuries to the upper, middle, and lower back as the most common reason for absenteeism in the general workforce after the common cold. It is estimated that about 80% of adults in North America can expect a back injury in their lifetime and about 10% can expect a re-injury. Back injuries can develop gradually as a result of micro-trauma brought about by repetitive activity over a period time or a single traumatic event. Back injuries can be the immediate result of improper lifting techniques and/or lifting loads that are too heavy for the back to support or brought on by repetitive lifting of lighter loads.
While an acute injury may seem to be caused by a single well-defined incident, OSHA states that the actual cause can be from a series of micro traumas coupled by years of weakening of the muscular-skeletal support system by repetitive lifting and bending, being the most hidden type of injury. Injuries can arise in muscles, ligaments, vertebras, and discs, either singly or in combination. Although back injuries do not cause death, they do account for a significant loss in productivity, income, and expenses plus the physical suffering. For some, the pain and suffering is long-term or even lifelong. For individuals with long-term, disabling musculoskeletal injuries, lifetime earnings may drop significantly. These individuals may also suffer a loss of independence due to a restricted ability to ambulate or complete daily tasks such as cooking, cleaning, bathing, dressing, and the like that can lead to a diminished quality of life and depression.
OSHA cites back injuries in the United States as one of the leading causes of workplace absenteeism and disability; it afflicts over 600,000 employees each year with a cost of about $50 billion in lost productivity and medical costs. In addition, one to five percent of this group will suffer chronic back pain that lasts six months or longer. The frequency and economic impact of back injuries on the work force are expected to increase significantly over the next several decades as the age of the working population increases and the cost of healthcare escalates, thus intensifying the problem. For those under the age of 45, back pain is the most frequent cause of activity limitation. Although 80% to 90% of individuals will recover from back pain within three to six days of their injury, the Journal of the American Medical Association estimates that $31 million will be spent on physician office visits and $20 billion on prescription drugs—and only three percent of that total cost will go to prevention of back pain.
Thus, it is clear that there is a great need in the art for an improved method and system for providing active support to the upper, middle, and lower back to assist in bending, lifting, and standing to prevent injury while avoiding the shortcomings and drawbacks of the prior art apparatuses and methodologies as reviewed in the following section.
In looking at the high end of the prior art in this area with powered exoskeletons, Lockheed Martin has designed a Human Universal Load Carrier termed an acronym as the HULC being an anthropomorphic exoskeleton robot for soldiers carrying heavy combat loads that increase the stress on the body leading to potential injuries. With the Lockheed Martin wearable exoskeleton robot, these loads are transferred to the ground through powered titanium legs without loss of mobility. The Lockheed Martin HULC is a completely un-tethered, hydraulic-powered anthropomorphic exoskeleton that provides individuals with the ability to carry loads of up to 200 lbs for extended periods of time and over all terrains. The flexible design of the Lockheed Martin allows for deep squats, crawls and upper-body lifting. The Lockheed Martin exoskeleton fits individuals from 5′4″ to 6′2″ and weighs approximately 53 pounds. The Lockheed Martin exoskeleton senses what users want to do and where they want to go in addition to augmenting their ability, strength and endurance. An onboard micro-computer ensures the Lockheed Martin exoskeleton moves in concert with the individual. The Lockheed Martin modularity allows for major components to be swapped out in the field, in addition to having a unique power-saving design for the user to operate on battery power for extended missions.
Also in this same area Berkley Bionics has designed an eLEGS exoskeleton that has an emphasis on helping paraplegics walk, having the same root design team that developed the HULC as previously described, having a lot of the same design methodology in using battery powered hydraulics. However, both the HULC and the eLEGS are both currently in the developmental prototyping stage having a cost of about $100,000 per unit, with a likely potential of a price reduction to $50,000 for a simplified version, thus still being an esoteric technology for now.
Now looking considerably back in time at the prior art, toward simpler non-powered exoskeleton apparatus that utilize springs, wire, and elastomeric components as assistive exoskeletons, starting with U.S. Pat. No. 654,173 to Mendenhall discloses a back-brace for cotton pickers or any activity requiring a repetitive stooping posture. In Mendenhall the apparatus is attached to the individual's shoulders, waist, and limbs, and uses wire interconnected between flexible elastic fabric straps which press against the individual's lower portion of their back, being connected to the user's shoulders and upper legs, exerting a resistive support for the lower back, see FIG. 1, items 1, 3, 5, and 14, particularly when the user is bending or stooping over. Two major problems with Mendenhall are that it requires additional effort from the user to do the initial bending or stooping over as the wires 16 will limit the amount of bending over that can be done, and further to this the wire 16 with the attachment point on the user's shoulders and upper legs acts to put the user's back into added compression, thus the exoskeleton in Mendenhall does not itself carry any of the user's load, it simply transfers the load to the added compressive force upon the user's back, which is undesirable.
Similar to Mendenhall, in Vigne being in U.S. Pat. No. 1,544,162 discloses a set of more than 15 adjustable straps that attach to the shoulders, waist, hips, and knees of the user, wherein these attachment straps are interconnected with coiled springs 13, 17, and 8, as shown in FIGS. 1 and 2, that urge the straps toward one another, thus again as in Mendenhall when the user bends over there is resistance and then in an opposing manner then coiled spring urges the user into an erect standing position. However, much the same as Mendenhall, the coiled springs put compressive stress upon the back of the user which is undesirable and the exoskeleton carries absolutely no weight or load itself, as the flexible straps and coiled springs apparatus of Vigne has no independent stiffness of its own and thus does not remove any load from the user's bone structure and even worse both Mendenhall and Vigne further increase the compressive force loading on the user's back, thus in effect leaving the user worse off than if they did not use the Mendenhall or Vigne apparatus at all.
Also somewhat like Mendenhall and Vigne, however, a bit of improvement due to the coil spring providing lateral bending resistance with tensile resistance, in U.S. Pat. No. 1,202,851 to Kelly disclosed a back brace with an elongated bar twisted between its ends into a coil spring with an adjustable mounted pad designed to rest against the lower back thereby connecting at its opposing ends to the shoulder and the upper legs of the user, see FIG. 1. In Kelly each end of the rod has padded grips and is connected to the rod by adjustable couplings. One Y-shaped padded bar in Kelly extends over the shoulders while a second y-shaped bar is used to attach the upper thighs to the support apparatus. Kelly attaches to the upper body and thighs using no fasteners and is used to lightly and support an individual bending at the hips. In addition, Kelly does not offer a means to adjust the amount of support offered by the apparatus. Thus as differentiated as against Mendenhall and Vigne, Kelly does not solely rely upon a wire or coiled spring to urge the user into an erect position via only tensile pulling along a longitudinal axis of the wire or coiled spring, with Kelly at least recognizing the problem of needing lateral stiffness (being perpendicular to the wire or coiled spring longitudinal axis) as being required for the exoskeleton to actually carry some of the user's load. However, Kelly still has a component of longitudinally based tensile contracting force due to the coil spring, and thus can still put the user's back in undesirable compression, thus having the same drawbacks as Mendenhall and Vigne in that area as previously described.
Finally in getting away from the wire or coiled spring that exerts pulling tension along its longitudinal axis, Williamson uses a multi plate leaf type spring 2, as disclosed in U.S. Pat. No. 1,409,326 wherein the leaf spring 2, as shown in FIGS. 1 and 2, does not induce longitudinally based pulling tension on its own, which is highly desirable as not independently inducing a compressive loading upon the back. Functionally overall Williamson is much like Mendenhall, Vigne, and Kelly and includes a spring lift apparatus which when worn by an individual will assist individual in repeated bending over and stooping to relieve lower back strain. Further, the Williamson apparatus assists an individual in raising the upper body to an erect position while allowing the individual to temporarily sit while wearing the apparatus. The Williamson apparatus is strapped to the individuals head, upper chest, and knee for support, see FIG. 2 items 5, 6, 17 and 18 and FIG. 1 items 10, 12, 13, and 14. In addition, Williamson is strapped to the individual's head, shoulders, one leg, and shovel, also including a fixed setting for support and resistance, see FIG. 2 17, 18 and FIG. 1 items 10, 12, 13, and 14. The Williamson apparatus provides unbalanced asymmetrical support to the back by strapping itself to only one leg of an individual, as the asymmetrical attachment to the individual creates unequal support for the left and right lower back. A further problem in Williamson is in the racket 10 and setscrew 11 as shown in FIG. 2, wherein with the user stooped over there is a locked longitudinal arrangement as between the bracket 10 and the rigid extension 4 that in effect will produce the undesirable effect of again compressing the back of the user as when the bend or stoop over extension 4 will pull downward compressing the back, thus again bringing on the same problems as previously described in Mendenhall, Vigne, and Kelly in that area as previously described, thus due to the bracket 10 and the setscrew 11 completely takes away the benefit of the leaf spring 2 as also previously described.
Finally, the next reference to Naig in U.S. Pat. No. 3,570,011 does a better job of not compressing the user's back by using a beam 12 that pivots upon the user's lower back to simply pull against the user's upper chest in a manner completely perpendicular to the user's back, however, adding the somewhat undesirable issue of putting the user's lower back and legs into compression, which probably being better than putting the user's back into compression via elastic straps 52, whereas straps 44 are not stretchable, thus even this compression is still not desirable, further Naig is quite large and bulky, especially due to tubular frame 12, see in particular FIG. 2. In detail, Naig is comprised of a series of ropes, straps, buckles and harnesses used to attach the apparatus to individual's chest, waist, hips, ankles and feet, see FIG. 1 items 10, 12, 14, 16, 20, 26, 30, 34, 36, 44 and 57.
In an opposite approach, Deamer in U.S. Pat. No. 4,829,989 is mounted on the user's front or chest side as opposed to all the previously described references that have the exoskeleton apparatus mount on the back side of the user, thus again recognizing the problem of avoiding compressive force upon the user back, that was somewhat recognized by Naig, Williamson, and Kelly. Thus Deamer is pushing with force against the user's chest and the front of the user's legs wherein slidable pads 32 and 36 help preclude compressive force to be placed upon the user's back, which the Deamer apparatus urges the user into an upright position. Deamer is a portable spring leveraged apparatus that attaches to the individual's hips to offset the strain to the hips while stooping. The Deamer apparatus includes a U-shaped frame, hinged in each arm of the U and provided with spring urging at each hinge point, see FIG. 2 items 32 and 40. The Deamer frame is belt mounted at the individual's waist with the hinge points adjacent the hips and with the bottom of the U and arms providing padded slidable contact at the individual's chest and thighs, respectively, see FIG. 1, items 22, 28, 32, 36, 34, and 40. In Deamer the two arms 46 provide independent leg movement for walking while the chest contact 32 resiliently supports the upper torso weight during leaning and stooping. The Deamer apparatus only provides one way support and restraint to the lower back when an individual bends forward and does not provide support for bending backward.
Further, having much the same design and drawbacks as Vigne, in U.S. Pat. No. 6,190,342 to Taylor, disclosed a back harness for the alleviation of individual's back strain using multiple elastic straps than run longitudinally along the user's legs and back, see FIG. 2A and FIG. 2B, wherein undesirably again the user's back is put into compression from the elastics 19, 21, and 45. The Taylor harness provides urging from the shoulders to the lower back and legs if the user into the upright position and provides light assistance in lifting medium weight objects, however, as in Vigne, Taylor provide absolutely no rigidity on its own. Taylor provides the upright urging from the shoulders to the lower back using soft elastic straps 19, 21, and 45. Taylor requires the individual to install and wear a cumbersome number of straps buckled to the torso, shoulders, upper back, mid torso, upper legs, mid-legs, ankles and feet.
Continuing in this area in the prior art in the U.S. Pat. No. 6,450,131 to Broman which is similar to Mendenhall discloses a light flimsy harness for supposedly preventing lower back injuries caused by improper bending and lifting however, again as in Mendenhall, the user's back is put undesirably into compression from the user bending over or stooping and also as in Mendenhall the Broman apparatus has no independent stiffness with which to support any weight or load. In Broman the harness consists of a thin, light weight flexible back strap 26 and two flexible shoulder straps 28 as shown in FIG. 2. The Broman harness and straps are used to allow forward bending of the lower back and an individual's knees. In Broman two additional straps 38 compose the lower portion of this apparatus that are connected to the back 26 and shoulder 28 straps, with the lower left strap has one end connected to the left foot, while the lower right strap has one end connected to the right foot, see FIG. 2.
Yet further in the prior art in the U.S. Pat. No. 7,553,266 to Abdoli, being fairly like Naig discloses a lift assist apparatus and method, however, being worse than Naig in that the user's back is put into undesirable compression via elastic member 40, 50, 60 and 70 as shown in FIG. 1, as opposed to Naig who used a rigid member 12 to pivot upon the user's lower back thus inducing a force perpendicular to the user's back, wherein Abdoli pulls the user's shoulders toward the lower back in order to urge the user in an upright position, thus putting the user's back into the undesirable compression, and further also undesirably putting the user's legs into compression. Abdoli includes two anchors that attach to the sides of the individual's body joints and elastic straps connecting the first anchor and the second anchor to the individual's torso, see FIG. 1 items 5, 20, 25, 30 and 35. The Abdoli apparatus may be used at an individual's waist, ankle, wrist, knee, hip, elbow, shoulder, and/or at least one joint of the back and/or neck. In Abdoli, articulation of the individual's joint in a first direction causes deformation of the elastic member and storing of energy, and articulation of the joint in a second direction causes relaxation of the elastic member wherein the energy is released and assists the individual to perform a motion in said second direction. The Abdoli system uses soft fabric and elastic straps to passively support an individual's back. The passive support is adjustable by loosening and tightening the fabric straps, noting that as previously discussed in Mendenhall, Vigne, Taylor, and Broman, Abdoli has no independent rigidity to remove any load from the user.
Moving to very narrow and specific purpose exoskeleton apparatus in the prior art in U.S. Pat. No. 4,638,510 to Hubbard, disclosed is a head and neck restraint apparatus for use in a high performance vehicle, see FIG. 1 and in particular straps 15 a, 15b, and 15c, further in FIG. 3. The primary function of Hubbard is to protect the head and neck positional relationship upon impact, thereby helping to prevent hyper extending neck injury upon a frontal impact. The Hubbard apparatus includes a tether strap attached between the vehicle and the helmet, wherein the tether provides the individual's restraint. The Hubbard apparatus is used in conjunction with a harness seat assembly that affixes the individual's head and neck to the vehicles seat via the helmet to help restrict movement. The Hubbard apparatus is very specific in only protecting the head and neck positional relationship and makes no attempt to protect the upper, middle or lower back when bending, lifting, standing and pushing.
In looking at specifically the use of stiffening flex rods as they are currently applied to exercise machines in the prior art, in U.S. Pat. No. 4,620,704 to Shefferaw, relating to an exercising machine having a plurality of different cross sectional diameter resilient rods which are flexed laterally (i.e. perpendicular to their longitudinal axis) and resist movement of an individual using the exercise machine via cables, see FIG. 12 and FIG. 13, items 44 and 52. In Shefferaw '704 forces are exerted on the resilient rods through cables to which a variety of attachments such as hand grips, foot stirrups, and a sliding bench can be connected to exercise different parts of the body. The rods in Shefferaw '704 can be used in any combination to suit the requirements and physical abilities of the person using the machine. Shefferaw '704 contains the plurality of vertically extending rods of resilient material mounted on a post in a cantilevered fashion with the lower ends of the rods being rigidly affixed to the post and the upper ends of the rods being cantilevered freely and selectively connectable to the various cables to the previously mentioned attachments. The Shefferaw '704 apparatus requires the use of distinctive different cross section diameter rods to vary the degree of lateral flexing resistance. The Shefferaw '704 apparatus was designed to stay in a permanent, fixed position and not designed to be carried in a portable manner by an individual. In a second patent to Shefferaw, in U.S. Pat. No. 4,725,057, Shefferaw adds the ability for an individual to collapse the exercising machine for storage and portability to Shefferaw U.S. Pat. No. 4,620,704.
What is needed is an external structural brace apparatus that is practical, affordable, and portable, requires no power to operate, is easy to take on and off, is easily adjustable for varying stiffness and that has the ability to provide rigid user skeletal support without placing compressive loading upon the user's own skeletal structure.
Broadly an external structural brace apparatus for supporting a user on a surface and for the user to ambulate along the surface to relieve shoulder, armpit, hand, foot, and wrist loads, the external structural brace apparatus including a first support extension beam having a first proximal end portion and an opposing first distal end portion and a first longitudinal axis spanning therebetween, the first distal end portion including a first telescoping cantilever beam having extension and retraction movement along the first longitudinal axis to vary a total length of the first support extension beam, wherein the first telescoping cantilever beam has intermittent contact with the surface. Further included in the external structural brace apparatus is a second support extension beam having a second proximal end portion and an opposing second distal end portion and a second longitudinal axis spanning therebetween, the second distal end portion including a second telescoping cantilever beam having extension and retraction movement along the second longitudinal axis to vary a total length of the second support extension beam, wherein the second telescoping cantilever beam has intermittent contact with the surface. In addition, the first and second proximal end portions have a primary pivotal couple to one another, wherein the first and second support extension beams are limited to have a primary pivotal movement relative to one another in a single primary radial plane.
Also included is a mechanism affixed therebetween the first and second proximal end portions that causes the primary pivotal movement to be symmetrical as between the first and second distal end portions in equal and opposite directions, wherein a single primary pivotal movement initiated at the first distal end portion causes an automatic equal and opposite primary pivotal movement of the second distal end portion and a single primary pivotal movement initiated at the second distal end portion causes an automatic equal and opposite primary pivotal movement of the first distal end portion;
Further included is an attachment element structure that has a secondary pivotal connection to the first and second proximal end portions, allowing a secondary pivotal movement that is limited to a single secondary pivotal movement plane that is oriented in a perpendicular manner to the primary radial plane, wherein the attachment element structure is sized and configured to removably engage an upper torso portion of the user. Additionally included is a third handle structure that has a first pivotal engagement on the first proximal end portion, wherein the first pivotal engagement has movement along the first longitudinal axis and a fourth handle structure that has a second pivotal engagement on the second proximal end portion, wherein the second pivotal engagement has movement along the second longitudinal axis.
Continuing, the external structural brace apparatus includes a third means for facilitating same direction movement of the third handle structure and the first telescoping cantilever beam, wherein there is a decreasing speed of relative movement of the first telescoping cantilever beam in relation to the third handle structure movement, as the third handle structure is manually pushed toward the first telescoping cantilever beam, to accommodate the user being able to more precisely position the first telescoping cantilever beam on the surface as the user's arm is extended toward the first telescoping cantilever beam. Further the third means accommodates an increasing speed of retraction movement of the first telescoping cantilever beam as the third handle structure is manually pulled away from the first telescoping cantilever beam to help the first telescoping cantilever beam better clear obstacles on the surface for the user to ambulate along the surface.
Further, the external structural brace apparatus includes a fourth means for facilitating same direction movement of the fourth handle structure and the second telescoping cantilever beam, wherein there is a decreasing speed of relative movement of the second telescoping cantilever beam in relation to the fourth handle structure movement, as the fourth handle structure is manually pushed toward the second telescoping cantilever beam, to accommodate the user being able to more precisely position the second telescoping cantilever beam on the surface as the user's arm is extended toward the second telescoping cantilever beam. Further the third means accommodates an increasing speed of retraction movement of the second telescoping cantilever beam as the fourth handle structure is manually pulled away from the second telescoping cantilever beam to help the second telescoping cantilever beam better clear obstacles on the surface for the user to ambulate along the surface.
Wherein operationally on the external structural brace apparatus the user is engaged to the attachment element structure at the user's upper torso portion, further the user utilizes each one of their hands to manually grasp each one of the third and fourth handle structures wherein the user while standing with their hands manually moves the first and second support extensions that are connected via the mechanism in the primary pivotal movement to place the first and second telescoping cantilever beams in contact with the surface for user stability in the single primary radial plane. At this point the user is able to assume a seated position being supported on the surface by the first and second telescoping cantilever beams, further the user can ambulate across the surface via standing while simultaneously the user pushing on the third and fourth handle structures toward the first and second telescoping cantilever beams that pushes downward on the first and second telescoping cantilever beams as the user's arms are extended to raise the entire external structural brace apparatus, thus assisting the user to stand, at which point the user pulls upward on the third and fourth handle structures resulting in the first and second telescoping cantilever beams lifting from the surface with the user then momentarily balancing on their foot on the surface. Subsequently the user utilizing the primary and secondary pivotal movements to selectively reposition the first and second telescoping cantilever beams on the surface with the user then pushing downward on the third and fourth handle structures to have the first and second telescoping cantilever beams contact the surface with the user then repositioning their foot on the surface for balance.
With initial reference to
Continuing,
Further,
Moving onward,
Continuing,
Next,
Broadly as best shown in
The external structural brace apparatus 50 also includes a second support extension beam 185 having a second proximal end portion 190 and an opposing second distal end portion 195 and a second longitudinal axis 200 spanning therebetween. The second distal end portion 195 including a second telescoping cantilever beam 205 having extension 210 and retraction 215 movement along the second longitudinal axis 200 to vary a total length 240 of the second support extension beam 185. Wherein the second telescoping cantilever beam 205 has intermittent contact 245 with the surface 105, wherein the first 125 and second 190 proximal end portions have a primary pivotal couple 250 to one another, wherein the first 120 and second 185 support extension beams are limited to have a primary pivotal movement 255 relative to one another in a single primary radial plane 260, see
Also included in the external structural brace apparatus 50 is a mechanism 265 affixed therebetween the first 125 and second 190 proximal end portions that causes the primary pivotal movement 255 to be symmetrical 270 as between the first 130 and second 195 distal end portions in equal and opposite directions 275, wherein a single primary pivotal movement 260 initiated at the first distal end portion 130 causes an automatic equal and opposite primary pivotal movement 275 of the second distal end portion 195 and a single primary pivotal movement 260 initiated at the second distal end portion 195 causes an automatic equal and opposite primary pivotal movement 275 of the first distal end portion 130, see in particular
Further included in the external structural brace apparatus 50 is an attachment element 335 structure that has a secondary pivotal connection 345 to the first 125 and second 190 proximal end portions, allowing a secondary pivotal movement 350 that is limited to a single secondary pivotal movement plane 355 that is oriented in a perpendicular 360 manner to the primary radial plane 260, wherein the attachment element structure 335 is sized and configured 365 to removably engage an upper torso portion 65 of the user 60, see
Also included in the external structural brace apparatus 50 is a first handle structure 375 that has a first slidable engagement 380 on the first proximal end portion 125, wherein the first slidable engagement 380 has movement 390 along the first longitudinal axis 135, as shown in
Further included in the external structural brace apparatus 50 is a first means 605 for facilitating same direction movement 405 of the first handle structure 375 and the first telescoping cantilever beam 140, wherein there is a decreasing mechanical advantage 550 as between the first handle structure 375 and the first telescoping cantilever beam 140, as the first handle structure 375 is manually pushed downward 410 toward the first telescoping cantilever beam 140 to accommodate an arm 85 of the user 60 gaining strength as the arm 85 is extended toward the first telescoping cantilever beam 140. Further the first means 605 includes an increasing speed of retraction movement 440 of the first telescoping cantilever beam 140 as the first handle structure 375 is manually pulled away 415 from the first telescoping cantilever beam 140 to help the first telescoping cantilever beam 140 better clear obstacles 110 on the surface 105 for the user 60 to ambulate 115 along the surface 105, as best shown in
In addition, included in the external structural brace apparatus 50 is a second means 665 for facilitating same direction movement 505, 520 of the second handle structure 485 and the second telescoping cantilever beam 205, wherein there is a decreasing mechanical advantage 550 as between the second handle structure 485 and the second telescoping cantilever beam 205, as the second handle structure 485 is manually pushed toward 525 the second telescoping cantilever beam 205, to accommodate an arm 85 of the user 60 gaining strength as the arm 85 is extended toward the second telescoping cantilever beam 205. Further there is an increasing speed of retraction movement 555 of the second telescoping cantilever beam 205 as the second handle structure 485 is manually pulled away 530 from the second telescoping cantilever beam 205 to help the second telescoping cantilever beam 205 better clear obstacles 110 on the surface 105 for the user 60 to ambulate 115 along the surface 105, as best shown in
Wherein operationally, the user 60 is engaged to the attachment element structure 335 at the user's 60 upper torso portion 65, further the user 60 utilizes each one of their hands 90 to manually grasp 725 each one of the first 375 and second 485 handle structures wherein the user 60 while standing with their hands 90 manually moves the first 120 and second 185 support extensions that are connected via the mechanism 265 in the primary pivotal movement 275 to place the first 140 and second 205 telescoping cantilever beams in contact with the surface 105 for user 60 stability in the single primary radial plane 260, see
The attachment element structure 335 further comprises framework 340 that is sized and configured 370 to removably engage the hip portion 70 of the user 60 to add stability and comfort for the user 60 in sitting and standing with the attachment element 335 through the secondary pivotal connection 345 to the first 120 and second 185 support extension beams, see
Further on the mechanism 265 it is preferably constructed of a first finger extension 280 affixed to the first proximal end portion 125 and a second finger extension 285 affixed to the second proximal end portion 190, wherein the first 280 and second 285 finger extensions are oppositely disposed from one another, further a linkage 290 is pivotally connected between the first 280 and second 285 finger extensions to operationally cause the primary pivotal movement 275 between the first 120 and second 185 support extension beams to be oppositely symmetric for increased stability of the user 60 suspended via the attachment element 335 in relation to the surface 105, see
Additionally on the mechanism 265 it can be optionally constructed of a first toothed segment extension 295 affixed to the first proximal end portion 125 and a second toothed segment extension 300 affixed to the second proximal end portion 190, wherein the first 295 and second 300 toothed segment extensions are rotatably engaged 305 to one another via meshing teeth to operationally cause the primary pivotal movement 275 between the first 120 and second 185 support extension beams to be oppositely symmetric for increased stability of the user 60 suspended via the attachment element 335 in relation to the surface 105, as best shown in
Further on the mechanism 265 it can also be optionally constructed of a first pulley 310 affixed to the first proximal end portion 125 and a second pulley 315 affixed to the second proximal end portion 190, wherein the first 310 and second 315 pulleys are rotatably engaged 330 to one another via a flexible element 320 that is configured in a crossover X pattern 325 between the first 310 and second 315 pulleys to operationally cause the primary pivotal movement 275 between the first 120 and second 185 support extension beams to be oppositely symmetric for increased stability of the user 60 suspended via the attachment element 335 in relation to the surface 105, as best shown in
Looking at
Also for the first means 605 the first telescoping cantilever beam 140 includes a first retraction connection 165 and a first extension connection 170, a first flexible retraction component 650 is engaged to the first eccentric periphery retraction segment 640 and to the first retraction connection 165, a first flexible extension component 655 is engaged to the first eccentric periphery extension segment 645 and to the first extension connection 170. Wherein operationally the first eccentric periphery retraction 640 and extension 645 segments vary an effective moment arm 660 in converting the first handle 375 rotational extension 400 and retraction 395 movement 635 into the first telescoping cantilever beam 140 decreasing mechanical advantage 435, 550 extension movement 145 when the first handle 375 is going from a retracted state 420, to a midpoint state 425, and to an extended state 430, from a decreasing moment arm 660 caused by the first eccentric extension segment 645, see in particular in going from
Further, the first flexible component 610, the first flexible retraction component 650, and the first flexible extension component 655 are all preferably constructed of cable. Also on the first arm 460 further includes a first flexible retraction component guide 470 and a first flexible extension component guide 475 to operationally extend a range of the extension 145 and retraction 150 movement of said first telescoping cantilever beam 140, see
Looking at
Wherein operationally the second eccentric periphery retraction 705 and extension 710 segments vary an effective moment arm 660 in converting the second handle 485 rotational 700 extension 515 and retraction 510 movement into the second telescoping cantilever beam 205 decreasing mechanical advantage 550 extension movement 210 when the second handle 485 is going from a retracted state 535, to a midpoint state 540, and to an extended state 545 from a decreasing moment arm 660 caused by the first eccentric extension segment 710 and increasing speed of retraction movement 555 when the second handle 485 is going from an extended state 545, to a midpoint state 540, and to a retracted state 535 from an increasing moment arm 660 caused by the second eccentric retraction segment 705.
Further, the second flexible component 670, the second flexible retraction component 715, and the second flexible extension component 720 are all preferably constructed of cable. Also on the second arm 575 further includes a second flexible retraction component guide 585 and a second flexible extension component guide 590 to operationally extend a range of the extension 210 and retraction 215 movement of the second telescoping cantilever beam 205.
Due to the nature of
Broadly in focusing in
Additionally, what is unique to the external structural brace apparatus 55, is a third handle structure 755 that has a first pivotal engagement 760 on the first proximal end portion 125, wherein the first pivotal engagement 760 has movement 765 along the first longitudinal axis 135 and a fourth handle structure 825 that has a second pivotal engagement 830 on the second proximal end portion 190, wherein the second pivotal engagement 830 has movement 835 along the second longitudinal axis 200, all as best shown in
Continuing, the external structural brace apparatus 55 includes a third means 890 for facilitating same direction movement 770, 795 of the third handle structure 755 and the first telescoping cantilever beam 140, wherein there is a decreasing speed of relative movement 855 of the first telescoping cantilever beam 140 in relation to the third handle structure 755 movement 765, as the third handle structure 755 is manually pushed toward 800 the first telescoping cantilever beam 140, to accommodate the user 60 being able to more precisely position the first telescoping cantilever beam 140 on the surface 105 as the user's 60 arm 85 is extended toward 800 the first telescoping cantilever beam 140. Further the third means 890 accommodates an increasing speed of retraction movement 780 of the first telescoping cantilever beam 140 as the third handle structure 755 is manually pulled away 805 from the first telescoping cantilever beam 140 to help the first telescoping cantilever beam 140 better clear 480 obstacles 110 on the surface 105 for the user 60 to ambulate 115 along the surface 105, see
Further, the external structural brace apparatus 55 includes a fourth means 895 for facilitating same direction movement 850 of the fourth handle structure 825 and the second telescoping cantilever beam 205, wherein there is a decreasing speed of relative movement 855 of the second telescoping cantilever beam 205 in relation to the fourth handle structure 825 movement 835, as the fourth handle structure 825 is manually pushed toward 865 the second telescoping cantilever beam 205, to accommodate the user 60 being able to more precisely position the second telescoping cantilever beam 205 on the surface 105 as the user's 60 arm 85 is extended toward 845 the second telescoping cantilever beam 205. Further the fourth means accommodates an increasing speed of retraction movement 860 of the second telescoping cantilever beam 205 as the fourth handle structure 825 is manually pulled away 870 from the second telescoping cantilever beam 205 to help the second telescoping cantilever beam 205 better clear 480 obstacles 110 on the surface 105 for the user 60 to ambulate 115 along the surface 105, see
In
Wherein operationally, in looking at
Further, on the external structural brace apparatus 55, looking specifically at
Wherein operationally when the third handle 755 is going from a retracted state 810, to a midpoint state 815, and to an extended state 820 the first telescoping cantilever beam 140 experiences a decreasing speed 775 of extension movement 145 from the first link 935 pivotal connection 945 to the first primary pivotal member 910, to allow for an easier surface 105 positional placement of the extended 155 first telescoping cantilever beam 140 by the user 60 for ambulation 115. Further, there is an increasing speed of retraction movement 780 of the first telescoping cantilever beam 140 as the third handle structure 755 is manually pulled away 805 from the first telescoping cantilever beam 140 in going from an extended state 155, to a midpoint state, to a retracted state 160, to help the first telescoping cantilever beam 140 better clear 480 obstacles 110 on the surface 105 for the user 60 to ambulate 115 along the surface 105, as shown in
Further, on the external structural brace apparatus 55, looking specifically at
Also, the fourth means 895 includes a second link 985 that is pivotally connected 990 to the second telescoping cantilever beam 205 and to the second primary pivotal member 995 positioned therebetween on the second primary pivotal member 960 and between the fourth handle structure 825 second primary pivotal connection 965 and said fourth arm 970 pivotal connection 980.
Wherein operationally, when the fourth handle 825 is going from a retracted state 875, to a midpoint state 880, and to an extended state 885 the second telescoping cantilever beam 205 experiences a decreasing speed of extension movement 855 from the second link 985 pivotal connection 995 to the second primary pivotal member 960, to allow for an easier surface 105 positional placement of the extended 220 second telescoping cantilever beam 205 by the user 60 for ambulation 115, further there is an increasing speed of retraction movement 860 of the second telescoping cantilever beam 205 as the fourth handle structure 825 is manually pulled away 870 from the second telescoping cantilever beam 205 in going from an extended state 220, to a midpoint state, to a retracted state 225, to help the second telescoping cantilever beam 205 better clear 600 obstacles 110 on the surface 105 for the user 60 to ambulate 115 along the surface 105.
Due to the nature of
Due to the nature of
Referring to
Fourth, a step of grasping manually 725, 1010 by hands 90 of the user 60 on each one of the third 755 and fourth 825 handle structures while the user 60 is standing 730, see
Seventh, a step of pulling 785, 840, the third 755 and fourth 825 handle structures away from the first 140 and second 205 telescoping cantilever beams via the user's 60 hands 90 on the third 755 and fourth 825 handle structures in going from the extended state 820, 885, to the midpoint state, 815, 880, and to the retracted state 810, 875, resulting in the first 140 and second 205 telescoping cantilever beams lifting away 1020 from the surface 105 with the user 60 then momentarily balancing on their foot 95 on the surface 105. Eighth, a step of initiating movement manually of the first 140 and second 205 support extension beams by the user 60 via grasping 725 the third 755 and fourth 825 handle structures for using the secondary pivotal movement 350 to selectively reposition in a direction of an ambulation 115 the first 140 and second 205 telescoping cantilever beams on the surface 105, as best shown in
Ninth, a step of pushing 790, 845 the third 755 and fourth 825 handle structures toward the first 140 and second 205 telescoping cantilever beams with the user's 60 hands 90 on the third 755 and fourth 825 handle structures in going from the retracted state 810, 875, to the midpoint state 815, 880, and to the extended state 820, 885 that pushes downward on the first 140 and second 205 telescoping cantilever beams as the user's 60 arms 90 are extended for the first 140 and second 205 telescoping cantilever beams to contact the surface 105. Tenth, a step of repositioning of the foot 95 of the user 60 on the surface 105 for balance.
Optionally a step of on the external structural brace apparatus 55 wherein the eighth initiating movement manually step further includes using the primary pivotal movement 255 of the first 120 and second 185 support extension beams combined with the secondary pivotal movement 350 manually 740, see
Accordingly, the present invention of an external structural brace apparatus 50 and 55 has been described with some degree of particularity directed to the embodiments of the present invention. It should be appreciated, though; that the present invention is defined by the following claims construed in light of the prior art so that modifications or changes may be made to the exemplary embodiments of the present invention without departing from the inventive concepts contained therein.