External tube extraction device with a cylindrical collapsing wedge

Information

  • Patent Grant
  • 7146716
  • Patent Number
    7,146,716
  • Date Filed
    Tuesday, June 8, 2004
    20 years ago
  • Date Issued
    Tuesday, December 12, 2006
    18 years ago
Abstract
The invention is related to a tube extracting device for removing a tube from a conventional drum of a boiler or heat exchanger. The device includes a wedge which is driven into a tube hole between the tube outer wall and the hole in the drum that the tube is in. The wedge has longitudinal ridges on its internal surface and inwardly tapered edges at its end which is driven into the zone between the tube hole and the outer wall of the tube such that the tube may be readily inwardly collapsed. Upon retracting the wedge from the tube hole, the tube is removed from the drum inside the wedge.
Description
FIELD AND BACKGROUND OF INVENTION

The present invention relates generally to the field of tube extracting devices, and more particularly to an improved tube extracting device for facilitating the removal of tubes from different types of structures, such as boilers, condensers, evaporators, and the like.


A typical heat exchanger comprises a pair of parallel tube sheets, a plurality of baffle plates, and a plurality of heat exchanger tubes. The tube sheets are located at the ends of the heat exchanger. The baffle plates are positioned between the tube sheets and generally parallel thereto. The tubes extend between the tube sheets and through the baffle plates and are supported by the tube sheets. The tube sheets and baffle plates have a series of aligned holes formed therein, and the tubes are inserted through these holes and then expanded in the areas of the tube sheets into fluid-tight pressure contact therewith.


Because of malfunctions or normal preventive maintenance, it may be necessary to remove one or all of the tubes from the structure. To replace the tubes they are generally cut between the tube ends and the expanded ends of the tubes forcibly withdrawn from the tube sheets an inch or two until they can be withdrawn by hand.


Various tools have been suggested for removing these tubes by using wedges that are driven inside a bore of a structure, expanded for engaging the inside wall of a tube and retracted for pulling the tube out of the bore.


U.S. Pat. No. 4,355,450 to Miller discloses a tube extracting mechanism having a wedge with expandable circumferential gripping teeth.


U.S. Pat. No. 3,791,011 to Keys shows a tube pulling device with longitudinally fixed radially expanding gripping means which engages the tube wall for withdrawal of the tube from the tube sheet.


U.S. Pat. No. 3,507,028 to Stellatella shows a hydraulic tube puller with radial expansion of an inner end portion of a tube gripping member into the tube wall.


The primary problem with all these prior art structures is that they impose an expansion force on the tube precisely at the point where it is engaged with the tube sheet which can damage the metal between adjacent holes and cause the holes in the tube sheet to enlarge and not properly grip a new tube when it is expanded. Moreover, the prior art devices require additional moving parts which increase the likelihood of malfunctions and breakage of the device, which results in an increase of down-time of the structure for repairs.


The apparatus of the instant invention does not expand the tube ends radially but securely grips the tubes by longitudinal movement of the wedge for withdrawal, and possesses many other advantages.


SUMMARY OF INVENTION

It is an object of the invention to provide a tube extractor that is simple to use and does not cause damage to the tube sheet upon tube withdrawal.


A further object of the invention is to provide a tube extractor which has a long service life.


A further object of the invention is to provide a tube extractor which is safe in use.


A further object of the invention is to provide a tube extractor which is fast in operation and light weight.


Accordingly, an object of the invention is to provide a tube extraction device which has a wedge having a cylindrical member with a top end and a bottom end, a plurality of longitudinal ridges formed on the interior surface of the cylindrical member and a plurality of tapered edges formed at the bottom end of the cylindrical member. A mounting means mounts the wedge substantially concentric with the tube hole. A ram connected to the wedge moves the bottom end of the wedge into the tube hole so that the tube collapses therein and is removed with the wedge upon retracting the wedge from the tube hole.


It will be seen that use of the device is very rapid and removal of a tube from its secured connection in the drum opening is materially facilitated, thereby materially reducing the costs involved in retubing a structure or replacing a tube. The tool is light and portable enough so that a single workman utilizing the tool can readily and rapidly accomplish the job of removing the tubes from a structure. In the past, such a retubing operation normally required several workmen.


The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a front elevational view of the tube extracting device of the invention;



FIG. 2 is a side elevational view of the wedge of the invention; and



FIG. 3 is a bottom view of the wedge of the invention.



FIG. 4 is a side view of the wedge cylindrically encompassing and collapsing a tube within a tube hole





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, in which like reference numerals are used to refer to the same or similar elements, FIG. 1 shows a device 100 in position to extract a tube 300 from a typical drum 200. The device 100 is positioned on the exterior surface 202 of the drum 200, generally above a tube hole 201 and the tube 300. The device 100 includes a housing 10 with legs 11 that extend to the drum's exterior surface 202. The housing 10 and the legs 11 are preferably a unitary structure. The legs have feet 12 which stabilize the device 100 during operation so that the housing 10 does not slip or fall out of position. A band 13 is preferably wrapped around the exterior surface 202 of the drum 200 and connected to opposite sides of the housing 10, as shown in FIG. 1.


The force required for tube extraction is generated in a conventional ram 30, preferably hydraulically operated, as shown in FIG. 1. The ram 30 includes an outer wall 31 and typical internal components (not shown), such as a piston, a cylinder, control valves and a hydraulic return. The ram 30 is preferably coupled to a typical hydraulic pump (not shown) which powers the ram 30. The hydraulic pump provides hydraulic fluid to the cylinder, causing an outward extension of the piston. Port 32 is connected by pipes (not shown) to the hydraulic pump. When the pressurized fluid is admitted through the port 32, it will force the piston in a direction toward the tube hole 201. A wedge 20 can be attached to the piston by conventional means. Shown are fingers 43 which reach around the wedge to stabilize it and to retract it from the whole when the job is done.


A wedge 20, as shown in FIGS. 2 and 3, is connected to or driven by the ram 30. The wedge 20 has a cylindrical body 21 having a top end 22 and a bottom end 23. A plurality of longitudinal ridges 24 are provided on the interior surface of the cylindrical body 21. The longitudinal ridges 24 are preferably parallel to the center axis of the cylindrical body 21. As each of the longitudinal ridges 24 approach the bottom end 23 they taper down or outwardly toward the tube hole 201, away from the center. The end of the wedge 26 preferably has a lateral dimension that is equal to the diameter of the tube 300. As the tapered edges 25 come to the bottom end 23 they come to a point which will be the edge/point that will be forced between the tube 300 and the tube hole 201. The end of the tube 300 will also need to be tapered 400 to allow the wedge 20 to begin between the tube 300 and the tube hole 201. The top end 22 of the wedge 20 is preferably provided with a circular flange 27 having a wider diameter than the cylindrical body 21.


The wedge 20 is to be in alignment with the tube hole 201, preferably so that the cylindrical body 21 and the tube hole 201 are concentric and once the wedge 20 engages the tube hole 201, this then becomes the guide.



FIG. 1 illustrates the position of the structure prior to the operation of the actuating pressure. A pump (not shown) pumps fluid under pressure through the pipe into port 32 and into the cylinder. The pressurized fluid causes the piston to enter into a forward stroke, which, in turn, causes the ram 30 to move axially toward the tube hole 201. The ram 30 inserts the wedge 20 into the tube hole 201. The tapered edges 25 of the wedge 20 allow for a smooth initial interface with the tube 300. The wedge 20 engages the outer wall of the tube 300 as it moves through the tube hole 201, as seen in FIG. 4. Since the diameter of the wedge 20 is about equal to the diameter of the tube 300, the tube 300 readily collapses inwardly within the tube hole 201 by the radial force exerted by the wedge 20 as the wedge moves longitudinally down the path. Upon reversing the stroke of the piston, as is well-known in the prior art, the wedge 20 is retracted from the tube hole 201. The wedge 20 removes the collapsed tube 300 from the tube hole 201 upon retraction. When the extraction of the tube 300 is completed, the operator shuts off the pump and the pressure behind the piston drops. The ram 30 is again stationary, and in its starting position.


While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.

Claims
  • 1. A tube extraction device for removing a tube from a tube hole in a drum, the tube extraction device comprising: a wedge having a cylindrical member with a top end and a bottom end, a plurality of longitudinal ridges formed on the interior surface of the cylindrical member, and a plurality of tapered edges formed at the bottom end of the cylindrical member;a means for mounting the wedge substantially concentric with the tube hole; anda ram connected to the wedge for moving the bottom end of the wedge into the tube hole so that the tube collapses therein and is removed with the wedge upon retracting the wedge from the tube hole.
  • 2. The tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 1, wherein the means for mounting the wedge comprises a housing connected to the ram and at least two legs extending from the housing to surfaces of the drum at opposite sides of the tube hole, the legs having feet that stabilize the device on the surfaces of the drum during operation of the device.
  • 3. The tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 2, further comprising a flexible band having at least two ends, each end connected to opposite sides of the frame, the band being wrapped around a peripheral surface of the drum.
  • 4. The tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 1, wherein the cylindrical member has a center axis and the longitudinal ridges are parallel the center axis.
  • 5. A tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 1, wherein the ram is hydraulically powered.
  • 6. A tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 1, wherein the housing and the legs form a unitary structure.
  • 7. A tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 1, wherein the top end of the wedge comprises a circular flange.
  • 8. A tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 1, further comprising a clamping mechanism for clamping the top end of the wedge to the ram.
  • 9. The tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 8, wherein the clamping mechanism comprises at least two members extended from the ram, each member having an extension for clamping the top end of the wedge.
  • 10. The tube extraction device for removing a tube from a tube hole in a drum as claimed in claim 1, wherein the bottom end of the wedge has a flat face parallel the tube hole.
  • 11. A tube extraction device for removing a tube from a tube hole in a drum, the tube extraction device comprising: a housing having at least two legs extended to surfaces of the drum at opposite sides of the tube hole, the legs having feet that stabilize the device on the surfaces of the drum during operation of the device;a ram mounted to the housing; anda wedge having a cylindrical member with a top end and a bottom end, a plurality of longitudinal ridges formed on the interior surface of the cylindrical member and a plurality of tapered edges formed at the bottom end of the cylinder, the wedge being mounted to the ram so that the cylindrical body of the wedge is concentric with the tube hole.
US Referenced Citations (39)
Number Name Date Kind
1598458 Sullivan Aug 1926 A
1753677 Andresen Apr 1930 A
3057631 LaFleur Oct 1962 A
3104461 Nieglos Sep 1963 A
3245247 Valente Apr 1966 A
3507028 Stellatella Apr 1970 A
3613489 Randich Oct 1971 A
3791011 Keys Feb 1974 A
3857158 Costello Dec 1974 A
3979816 Green Sep 1976 A
4000556 Ciminero Jan 1977 A
4053062 Travis Oct 1977 A
4180903 Hannigan, Jr. Jan 1980 A
4231246 Gorenc et al. Nov 1980 A
4233730 Godbe Nov 1980 A
4280274 Filer Jul 1981 A
4283826 Miller Aug 1981 A
4312124 Calhoun Jan 1982 A
4355450 Miller Oct 1982 A
4369569 Armstrong, Jr. et al. Jan 1983 A
4406856 Wilkins et al. Sep 1983 A
4471516 Godbe Sep 1984 A
4586695 Miller May 1986 A
4627155 Mancabelli Dec 1986 A
4643247 Tomasula Feb 1987 A
4670975 Dettinger Jun 1987 A
4776072 Jaquier Oct 1988 A
4959899 Martin Oct 1990 A
5168623 Rabe Dec 1992 A
5276965 Hahn et al. Jan 1994 A
5621966 Kvenvold et al. Apr 1997 A
5826334 Weeks et al. Oct 1998 A
5893209 Weeks et al. Apr 1999 A
5974642 Weeks et al. Nov 1999 A
6182354 Weeks Feb 2001 B1
6205632 Weeks et al. Mar 2001 B1
6209181 Weeks Apr 2001 B1
6216326 Ritter et al. Apr 2001 B1
6430790 Haycook Aug 2002 B1
Related Publications (1)
Number Date Country
20050268452 A1 Dec 2005 US