This application relates to the field of wireless communication, and in particular, to an external wideband antenna and a wireless communication device.
Compared with a second generation communication system, a third generation mobile communication system, and a fourth generation communication technology of long term evolution (LTE) system, fifth-generation mobile communication technology (5G for short) has higher wireless transmission speed and higher transmission quality, which can provide richer and faster wireless multimedia services, and enable users to have a better mobile broadband Internet experience.
5G mobile communication devices need to be compatible with fourth-generation mobile communication systems such as frequency division duplex (FDD), time division duplex (TDD), and wireless fidelity (Wi-Fi) communication systems such as Wi-Fi 2.4G and Wi-Fi 5G. As such, as an antenna device for emitting and receiving radio signals in the mobile communication device, it needs to be designed to meet requirements in multi-frequency and operating bandwidth of systems such as Wi-Fi 2.4G, Wi-Fi 5G, FDD, TDD, N77, N78, and N79.
An external wideband antenna includes a radio frequency (RF) coaxial cable, and a first antenna body and a second antenna body which are electrically connected with the RF coaxial cable respectively. An outer contour of the first antenna body and an outer contour of the second antenna body cooperate to define a tapered slot.
A wireless communication device includes the external wideband antenna described in any of the above implementations.
The disclosure is further described hereinafter with reference to implementations, but the disclosure is not therefore limited to the scope of the described implementations.
An external wideband antenna 10 and a wireless communication device 60 are provided in the disclosure to solve a technical problem that multi-band and wide-band performances of antennas in the related art needs to be improved.
The above problem is solved by the disclosure with accordance to technical solutions described hereinafter.
An external wideband antenna is provided in an implementation. Referring to
In this implementation, the first antenna body 1 and the second antenna body 2 are electrically connected with the RF coaxial cable 3, respectively. Referring to
In this implementation, an outer contour of the first antenna body 1 and an outer contour of the second antenna body 2 cooperate to define a tapered slot, which facilitates generation of a strong coupling current, so that a resonant frequency band of the antenna is widened, and thus a larger frequency range can be covered. As an example, in the tapered slot, an interval between the first antenna body and the second antenna body changes smoothly without a sudden change.
Further, in this implementation, the first antenna body 1 may include a tapered outer contour which is beneficial to widening antenna bandwidth, and the second antenna body 2 may also include a tapered outer contour which is beneficial to widening the antenna bandwidth, such that the first antenna body 1 and the second antenna body 2 cooperate to define the tapered slot.
In the external wideband antenna provided the disclosure, the outer contour of the first antenna body 1 and the outer contour of the second antenna body 2 cooperate to define the tapered slot, which facilitates generation of a strong coupling current, and in turn a broadening of antenna bandwidth. As such, multiple frequency bands can be supported, which allows the wireless communication device 60 using the external wideband antenna to compatible with multiple frequency bands of various communication systems.
Further, in this implementation, the outer contour of the first antenna body 1 may be in a shape of ellipse, and part of the outer contour of the second antenna body 2 close to the first antenna body 1 may be in a shape of partial ellipse. In an implementation, an elliptical outer contour of the first antenna body 1 and an elliptical outer contour of the second antenna body 2 cooperate to define the tapered slot. It should be understood that, in this implementation, the outer contours of the first antenna body 1 and the second antenna body 2 are not limited to the above-mentioned elliptical shapes, but may be in any shapes through which a tapered slot can be defined, where the tapered slot is beneficial to widening the antenna bandwidth.
Further, in this implementation, each of the first antenna body 1 and the second antenna body 2 may be in axisymmetric structure. For example, the first antenna body 1 may be elliptical, and the second antenna body 2 may be saddle-shaped. Furthermore, the RF coaxial cable 3 can be arranged on a symmetry axis of the first antenna body 1, or a symmetry axis of the second antenna body 2. As an example, the symmetry axis of the first antenna body 1 can be coincident with the symmetry axis of the second antenna body 2.
Referring to
For example, when the resonant frequency band of the external wideband antenna needs to be shifted towards a low frequency, the Zero-Ohm resistor can be replaced with other components such as an inductor (whose inductance can be customized according to practical applications). When the resonant frequency band of the external wideband antenna needs to be shifted towards a high frequency, the Zero-Ohm resistor can be replaced with other components such as a capacitor (whose capacitance can be customized according to practical applications). For another example, when it needs to adjust the antenna impedance in a specific frequency band to improve antenna efficiency of the external wideband antenna in this specific frequency band, the Zero-Ohm resistor can be replaced with components such as an inductor (whose inductance can be customized according to practical applications) and a capacitor (whose capacitance can be customized according to practical applications).
Referring to
In this implementation, based on the external wideband antenna provided in
In this implementation, a dipole antenna is optimized, where the first antenna body has a tapered outer contour, which is beneficial to widening the antenna bandwidth. In addition, the outer contour of the first antenna body and the outer contour of the second antenna body define the tapered slot, which is beneficial to further widening the antenna bandwidth. As such, multiple frequency bands can be supported, which allows the wireless communication device 60 using the external wideband antenna to compatible with multiple frequency bands of various communication systems.
A wireless communication device 60 is provided in an implementation. The wireless communication device 60 includes a processor 70 and the external wideband antenna provided in any of the above-identified implementations. The external wideband antenna is electrically coupled with the processor 70. The processor 70 is configured to control the external wideband antenna to emit and receive signals.
Since the external wideband antenna provided in above implementations can support multiple frequency bands, the wireless communication device 60 provided in this implementation can be compatible with multiple frequency bands of various communication systems, and can meet requirements for multi-frequency and broadband.
Those skilled in the art should understand that the implementations of the disclosure described above are merely exemplary, and the protection scope of the disclosure is defined by the appended claims. Various improvements and modifications can be made without departing from the principle of the disclosure to those skilled in the art, and the improvement and the modification are also considered as the protection scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202010065923.0 | Jan 2020 | CN | national |
202020143172.5 | Jan 2020 | CN | national |
This application is a continuation-in-part of International Application No. PCT/CN2021/076297, filed Feb. 9, 2021, which claims priority to Chinese Patent Application No. 202010065923.0, filed Jan. 20, 2020, and Chinese Patent Application No. 202020143172.5, filed Jan. 20, 2020, the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/076297 | Feb 2021 | US |
Child | 17868751 | US |