The present invention relates generally to the purification of any fluid streams. More particularly, the invention relates to an apparatus used for the removal of particulate contamination from the referenced stream. Most particularly, the invention relates to an externally centering filter element or cartridge and housing system utilizing the same.
There are many filter elements or cartridges, and associated housings available for the purification or filtration of fluid streams. However, they are usually of limited versatility because they utilize a centering rod or end cap(s), and have the limitation that the flow through the housing is designed to be in one direction.
In order to solve the above-mentioned problems in the prior art, the present invention, in one of its embodiments, provides for a housing which can be made of any metal and/or any polymer, wherein externally centering elements for particulate removal or adsorptive removal can be placed within. In another of its embodiments, it provides for such a housing where the elements can be installed from both ends of the housing. The inlets are close to the two ends, with the outlet in the center. Because elements can be installed in this housing from both ends, this system can have twice the flow capability of the conventional “unidirectional” housing. The bidirectional flow is a novelty in the industry. The use of such housings for adsorptive purification is a novelty in the industry.
Nozzles (inlets or outlets) can be on the shell of the vessel, or on the closures, although it is preferred to have them on the shell of the vessel.
In the case of inside-to-out flow known to the market, the tubesheet assembly can be retained without glue, through the use of a sealing elastomer and a retaining spiral ring. This allows for the tubesheet and cage to be repaired if needed.
The invention can also be used for outside-to-inside flowing elements. In this configuration, the tubesheet is set further back in the housing, but is still retained in place by means of the same seal and retaining spiral ring.
The outside to inside filter elements needs to have an internal core that resists differential pressure. This core can be inherent to the filter element, or attached to the vessel itself.
Outside to inside flowing filter elements generally need to have a guide mechanism, particularly in a horizontal configuration, to facilitate installation on a sealing surface. This is usually accomplished by a guide post of some kind. Since the guide post can accumulate contaminant during change-out, this is not desired. Consequently, we have proposed an external guide mechanism for these elements. For single element housings, this mechanism involves tabs on the element that self center against the ID of the vessel. For multi-element housings, these tabs may ride on external guide assemblies and the ID of the vessel wall.
The centering mechanism may be a tongue-and-groove arrangement, with either the tongue or groove a part of the element. It is preferred to have the groove part of the element, to prevent accumulation of contaminant within the groove during change-out.
The inside to outside flowing element comprises a retaining member or cage that is either inherent to the element, or extrinsic to it within the housing.
The elements to be used within these housings may include conventional fibrous porous media in a pleated or blown configuration, adsorbent canisters, cartridges, or blocks comprised of such materials as carbon. The elements may be configured in the form of a single element with two end-caps, or as an element jointed together with multiple joint pieces. The elements may be generally cylindrical, although there may be advantages to having them tapered for certain kinds of flow configurations. For an inside to out flowing element seated within a retaining cage, a taper can be advantageous in the retrieval of the element out of the housing.
If the element is comprised of pleated media, there is a need to maintain pleat spacing to allow maximal contaminant loading within the external surface of the pleats. This is generally done by depositing epoxy in circular, or helical bands around the element, or by the use of a wrap of media that is bonded to the pleats. If the element flows in-to-out, there is a need to protect the media from billowing out.
We are proposing a novel way of addressing either concern, through the use of pre-impregnated tows or fiber wraps that are bonded to the tips of the pleat. The bonding mechanism may involve heat, or a curing agent. It is preferred, but not necessary, that the tows or fiber wraps be helically wound around the element and sufficiently spaced to bond to the tips of the pleats, and thus, keep the pleats fixed. The pre-impregnated tows or fiber wraps may be thermoset or thermoplastic impregnated. The advantage of this is that the media is not lost, or hidden to flow by the bonding mechanism, and is accomplished at a lower cost than by the use of epoxy or adhesive being dripped into the spaces between the pleats.
The pre-impregnated tows or fiber wraps may be wrapped multiple times over each other at each of the endcaps to prevent unwinding or they may be fixed in the endcap.
Housings for these purposes have usually had closures that are fully detachable from the vessel because the vessels rarely need to be accessed on an ongoing basis, since they are used primarily for membrane enclosures. If they are to be used for particle filtration, they may have to be accessed every week to every month, rather than on a yearly type basis with membranes. This invention provides for a closure that is attached to the vessel that can be swung out of the way, without having to be completely detached from the vessel.
Vertical or horizontal installations are acceptable, although horizontal is preferred.
The following is a brief description of the drawings, wherein like parts have like numbers in the various views.
For purposes of the description to follow the following terms shall have the following meanings.
A “twin filter assembly” is a filter assembly comprising two externally centering filtration elements or cartridges in a metal and/or or polymer housing.
A “single filter assembly” is a filter housing comprising one externally centering filtration element or cartridge in a metal and/or polymer housing.
Each “externally centering filtration element or cartridge” may contain a single filter and be referred to as a “single filter element or cartridge”, or it may contain at least two, preferably three, filters and be referred to as a “multiple filter element or cartridge”.
A “filter” may comprise, but is not limited to, a pleated filter, melt-blown, spun-bonded, or formed porous media constructed by means known to those skilled in the art. The media may comprise fibers, or particles. Examples would be a filter comprised of polypropylene fibrous media, inorganic fibrous media, a porous block, cartridge or canister of carbon or other adsorbent material.
Referring to
The single filter assembly 30 comprises an axially extending, hollow, generally tubular shaped, single element housing, generally designated by the numeral 42, which is closed at its inlet end by an inlet closure member 44, and at its outlet end by an outlet closure member 45.
In order to provide for removal of any air or other gas present during startup, a vent 44V is provided in either the inlet closure member 44, or the outlet closure member 45. The vent 44V is shown in the inlet closure member in
Each closure member (44, 45) may have one or more handles 46 to aid in removing the closure member. Retaining spiral rings 52, which fit in retaining grooves 54, hold the closure members (44, 45) in place during operation, and are removable when it is desired to change the single filter element or cartridge 35.
The single element housing 42 will have at least one single element inlet 48, and at least one single element outlet 50 for the out-to-in version of the invention illustrated. It is well within the scope of the present invention that the number of inlets 48 and outlets 50 may vary depending on the application, as well as the positioning thereof. Also, since the invention may also be used for in-to-out flow, the inlets 48 may function as outlets, and the outlets 50 may function as inlets.
Referring to
At the other end of the porous media is the outlet end cap 62. In the out to in flow version of the invention being illustrated, the fluid must enter the interior of the cylindrical, pleated, porous media through the pleats thereof, travel the length thereof, and exit out the other end. To facilitate this, the outlet end cap again has tabs 56 to center the endcap in the interior of the single element housing 42. Preferably, but not necessarily, the diameter of the inlet end cap 60, and the outlet end cap 62, are substantially equal.
Since the outlet end cap must permit flow therethrough, while inner retaining wall 66 and outer retaining wall 68 are present, instead of solid end wall 64, an aperture 70 is provided to permit flow through the outlet end cap 62,
Aperture 70 is in fluid communication with the outlet 72. One or more annular grooves 74 are provided therein to accept one or more O-rings 76 or other sealing means known in the art. This permits the outlet 72 of the outlet endcap 62 to sealingly engage the plenum inlet 78 of outlet plenum 80. The outlet tube 82 is in fluid communication with the interior of outlet plenum 80, and sealingly engages the outlet aperture 84 in the outlet closure member 45.
With the outlet closure member 45 held in place by retaining spiral ring 52, and the perforated spacer 86 provided on the inlet closure member 44, which is also held in place by a retaining spiral ring 52, providing pressure against the single filter element 35, a non-salty stream will enter inlet 48, proceed along the interior wall 42A of single element housing 42, be forced to flow through the pleats 58A of cylindrical pleated porous media 58, through the aperture 70 in the outlet end cap 62, through the outlet plenum 80 and out the outlet tube 82, thereby removing the particulates from the non-salty stream.
Depending on the application, it may be desirable to have a perforated, inner, support core 88, having a plurality of apertures 89, to prevent implosion of the porous media 58.
With reference to
The inlet endcap 60 of the tapered filter element or cartridge may be the same as used in the construction shown in
Referring to
Inlet end cap 60 remains the same as before, however, the diameter of outlet endcap 62TT is smaller, as is the diameter of outlet plenum 80TT to permit the diameter of the tapered single element housing 42TT to be smaller. The diameter of the tapered filter media 58TT, and the perforated inner support core 58TT will change accordingly. The diameter of the plenum inlet 78TT and the circular outlet 72TT may also change.
While
Referring now to
The construction of the single filter elements or cartridges 35 may be identical to that described hereinabove. A pair of inlets 48 are provided, one at each end of the twin element housing 92. A pair of inlet closure members 44 hold the filter elements 35 in place. They, in turn, are held in place by a pair of retainer springs 52 which fit in a like pair of retaining grooves 54.
In this modification of the invention, the outlet closure member 45 is not needed. The two single filtration elements or cartridges are placed into the twin element housing 92 in a 180° opposed relationship. In other words, the outlet endcaps 62 are facing each other. Each of the outlet endcaps 62 has its respective outlet 72 in sealing fluid communication with one of the inlets (94A,94B) of the twin element outlet plenum 96, which is interposed between the two single filter elements or cartridges 35 in the twin element housing 92.
The outlet plenum 96 has a pair of vertically axially aligned plenum apertures 100, which are placed in alignment with a pair of housing apertures 102, and then the outlet tube 98 is passed through the apertures (102, 100, 100, 102) to fix the twin element outlet plenum 96 in place. Suitable O-rings 104 which fit into outlet tube O-ring grooves 106 seal the outlet tube 98 in place, while a pair of lock rings 110, which are retained in ring grooves 112, secure the outlet tube 98 in place. This construction provides a pair of outlets 50 for the fluid stream.
In operation, a fluid stream which is to have particulates removed therefrom is introduced into each inlet 48. This will cause flow through the apparatus to be in opposing directions as indicated by the flow arrows. The fluid stream will enter inlet 48, pass from the outside to the inside of the single filter element or cartridge 35, exit through the outlet 72, enter the twin element outlet plenum 96, pass through outlet apertures 114 into outlet tube 98, and out through both outlets 50.
It will be understood by those skilled in the purification and/or filtration art that the size of the various components may vary depending on the application, as may the various sealing mechanisms, and this is well within the scope of the present invention.
Referring now to
However, since there are now three circular outlets 72 instead of one, it is necessary to provide the triple inlet plenum 120 having first inlet 122, second inlet 124 and third inlet 126. The rest of the triple inlet plenum 120 may be the same as the outlet plenum 80. The inlet closure member 44 may have the same perforated spacer 86, and the outlet closure member 45 may have the same arrangement for accepting the outlet tube 82. Of course, it is well within the scope of the present invention that the dimensions of these parts vary according to the particular application they are being used in. Also, it is well within the scope of the present invention that the single inlet housing may have an outlet out the side of the housing, as it is within the skill of the art to make the necessary changes given the foregoing.
Referring to
Since there are now six outlets 72 from the six single filter elements or cartridges, the outlet plenum must be a six inlet plenum, which is designated by the numeral 128 for purposes of clarity. There will be a first inlet 122A, a second inlet 124A, a third inlet 126A, a fourth inlet 130, a fifth inlet 132 and a sixth inlet 134.
The remainder of the six inlet plenum is preferably constructed in the same manner as the triple inlet plenum, with the outlet tube 82 passing through the apertures (100, 102, 102, 100) to hold the six inlet plenum 128 in place in the twin element housing 92, and with the closure members 44 (with vent 44V), and perforated spacers 86 holding the single elements or cartridges 35 in place, together with the filter frames 118. Suitable O-rings and lock washers are provided, as before.
Referring to
Each filter frame 118 comprises one or more, preferably three, central spacer members 136. Each central spacer member 136 will have a first leg 138, a second leg 140, and a third leg 142. Each leg (138,140,142) is of a unique three part construction. A first portion 144 of each leg (138,140,142) is of equal length as measured from a central point C. Each portion 144 is radially extending toward the inner wall of the single element housing 42 or the twin element housing 92, and is spaced an equal distance from each other first portion. In the filter frame illustrated, which is to hold three single elements 35, this equal distance would be 360° (the number of degrees in a circle) divided by the number of legs (3), or 120°. The upper end 144A of first portion 144 is connected to or integral with, each other first portion 144.
The other end 144B is provided with a groove 146 which accepts a first tongue 148 formed on rail 150, which also is the second portion 153 of the first leg 138. A second tongue 152 is formed on the bottom of rail 150, and also extends axially the entire length of the rail.
The first leg is completed by the third portion 154, which is bifurcated. Third portion 154 has a top portion 156 which has a second groove 158 to accept the second tongue 152 formed on the rail. Thus, third portion 154 “snaps” on to rail 150.
Third portion 154 also has a first leg portion 159 and a second leg portion 160. First leg portion 159 terminates with a first foot portion 161, and the second leg portion 160 terminates with a second foot portion 162. First foot portion 161 and second foot portion 162 will be dimensioned to fit against the inner wall of the housing (42, 92). The second leg 140 and the third leg 142 will be constructed in the same manner to complete central spacer member 136.
A desired number of central spacer members 136 may be constructed in the same manner. The preferred number is three, but more or less central spacer members 136 may be used depending on such factors as the length of the housing (42,92) operating pressures, etc.
The filter frame 118 will keep the filter cartridges 35 properly oriented in the housing (42, 92). As shown in
In turn, the filter cartridges (35) will be held in place in the housing (42, 92) by the closure members (44, 45) and perforated spacers 86.
With reference to
Referring now to
The tow 166 is made up of strands of material impregnated with an adhesive. The tow 166 may be thermoset or thermoplastic impregnated. The strands can be made of materials such as, but not limited to, metal, cotton, plastic and glass. The adhesive can be made of a material such as, but not limited to, epoxies, hot melts and glues. It is preferred that the helically wound tow 166 be sonically, or otherwise, bonded to the endcaps (60, 62) to prevent its unwinding during service.
Referring to
Aside from the change in nomenclature, there is virtually no difference in construction between the single filter assembly 30 with out to in flow, and the single filter assembly 30A with in to out flow. This allows the same housing to be used interchangeably for in to out and out to in flow with a simple change of filter element or cartridge.
The in to out flow single filter element or cartridge 35A may be made identical in size to the out to in flow single filter element or cartridge 35 so as to be directly interchangeable any time it is desired to change the flow direction, or it may be made in any desired size. Since the multiple filter element or cartridge 116 includes at least two, and preferably three, of the single elements or cartridges 35, the flow direction through a multiple filter element or cartridge 116 can easily be changed.
Referring now to
When it is desired to change a filter cartridge, the spiral retaining ring 52 is removed, and the closure member 44 is pulled outward along the axis of the housing 42, which causes like movement of the slideable hinge member 172A, until the closure member 44 clears the housing 42. Once this occurs, the closure member 44 can be swung open and the filter element or cartridge (35,116) can be removed for inspection or replacement.
With reference to
The single filter element or cartridge, now designated 35C for purposes of clarity, has an inlet end cap 60C, which may be identical to inlet end cap 60 shown in
With reference to
With reference to
This application is a continuation-in-part of application Ser. No. 12/234,965, filed on Sep. 22, 2008, for Method and Apparatus for the Purification of Salty Streams. Application Ser. No. 12/234,965 claims the benefit, under 35 U.S.C. §119(e), of the provisional application filed Oct. 20, 2007 under 35 U.S.C. §111(b), which was granted Ser. No. 60/981,488. This provisional application is hereby incorporated by reference in its entirety. Application Ser. No. 12/234,965 is pending as of the filing date of the present application.
Number | Date | Country | |
---|---|---|---|
60981488 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12234965 | Sep 2008 | US |
Child | 12400889 | US |