Externally heated thick belt fuser

Information

  • Patent Grant
  • 6782233
  • Patent Number
    6,782,233
  • Date Filed
    Friday, March 8, 2002
    22 years ago
  • Date Issued
    Tuesday, August 24, 2004
    19 years ago
Abstract
A heat and pressure belt fuser structure having an endless belt and a pair of pressure engageable members between which the endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with the toner images contacting an outer surface of the endless belt, at least one of the pressure engageable members has a deformable layer, and the endless belt has a thickness of from about 1 to about 8 mm; and the fuser structure includes an external source of thermal energy for elevating a pre-nip area of the belt. The thick belt in combination with a deformable layer of at least one of the pressure member(s) cooperate to provide a large nip and adequate creep for intrinsic paper stripping.
Description




BACKGROUND OF THE INVENTION




This invention relates generally to an electrostatographic, including digital, apparatus, and more particularly, it relates to heat and pressure fusing members for fixing images to a final substrate. In embodiments, the invention relates to fuser and pressure members useful in a high-speed color xerographic apparatus.




In a typical electrophotographic copying or printing process, a photoconductive member is charged to a substantially uniform potential so as to sensitize the surface thereof. The charged portion of the photoconductive member is exposed to selectively dissipate the charges thereon in the irradiated areas. This records an electrostatic latent image on the photoconductive member. After the electrostatic latent image is recorded on the photoconductive member, the latent image is developed by bringing a developer material into contact therewith. Generally, the developer material comprises toner particles adhering triboelectrically to carrier granules. The toner particles are attracted from the carrier granules either to a donor roll or to a latent image on the photoconductive member. The toner attracted to a donor roll is then deposited as latent electrostatic images on a charge-retentive photoconductive surface, such as a photoreceptor. The toner powder image is then transferred from the photoconductive member to a copy substrate. The toner particles are heated to permanently affix the powder image to the copy substrate.




In order to fix or fuse the toner material onto a support member permanently by heat, it is necessary to elevate the temperature of the toner material to a point at which constituents of the toner material coalesce and become tacky. This action causes the toner to flow to some extent onto the fibers or pores of the support member or otherwise upon the surface thereof. Thereafter, as the toner material cools, solidification of the toner material occurs causing the toner material to be bonded firmly to the support member.




One approach to thermal fusing of toner material images onto the supporting substrate has been to pass the substrate with the unfused toner images thereon between a pair of opposed roller members, at least one of which is internally heated. During operation of a fusing system of this type, the support member to which the toner images are electrostatically adhered is moved through a nip formed between the rolls with the toner image contacting the heated fuser roll to thereby effect heating of the toner images within the nip. In a Nip Forming Fuser Roll (NFFR), the heated fuser roll is provided with a layer or layers that are deformable by a harder pressure roll when the two rolls are pressure engaged. The length of the nip and process speed determines the dwell time or time that the toner particles remain in contact with the surface of the heated roll.




The heated fuser roll is usually the roll that contacts the toner images on a substrate such as plain paper. In any event, the roll contacting the toner images is usually provided with an adhesive (low surface energy) material for preventing toner offset to the fuser member. Three materials, which are commonly used for such purposes, are fluoropolymers, fluoroelastomers and silicone rubber.




Roll fusers work very well for fusing color images at low speeds since the required process conditions such as temperature, pressure and dwell can easily be achieved. When process speeds approach 100 pages per minute (ppm), roll fusing performance starts to falter. As fusing speed increases, dwell time must remain constant, which means an increase in nip width. Increasing the nip width can be accomplished by either increasing the fuser roll rubber thickness, and/or reducing the modulus and/or the outside diameter of the roll. However, each of these solutions reach their maximum effectiveness at about 100 ppm. Specifically, for an internally heated fuser roll, the rubber thickness is limited by the maximum temperature the rubber can withstand, and the thermal gradient across the elastomer layer. The roll size also becomes a critical issue for reasons of space, weight, cost and stripping.




Following is a discussion of references, the disclosures each of which are hereby incorporated by reference in their entirety.




U.S. Pat. No. 4,242,566 discloses a heat and pressure fusing apparatus that exhibits high thermal efficiency. The fusing apparatus comprises at least one pair of first and second oppositely driven pressure fixing feed rollers, each of the rollers having an outer layer of a thermal insulating material; first and second idler rollers, a first flexible endless belt disposed about the first idler roller and each of the first pressure feed rollers and a second flexible endless belt disposed about the second idler roller and each of the second pressure feed rollers, at least one of the belts having an outer surface formed of a thermal conductive material, wherein there is defined an area of contact between the outer surfaces of the first and second belts located between the first and second pressure feed rollers for passing the copy sheet between the two belts under pressure; and means spaced relative to the belt whose outer surface comprises the thermal conductive material for heating the outer surface thereof, whereby when an unfused copy sheet is passed through the area of contact between the two belts it is subject to sufficient heat and pressure to fuse developed toner images thereon.




U.S. Pat. No. 4,582,416 discloses a heat and pressure fusing apparatus for fixing toner images. The fusing apparatus is characterized by the separation of the heat and pressure functions such that the heat and pressure are effected at different locations on a thin flexible belt forming the toner-contacting surface. A pressure roll cooperates with a stationary mandrel to form a nip through which the belt and copy substrates pass simultaneously. The belt is heated such that by the time it passes through the nip its temperature together with the applied pressure is sufficient for fusing the toner images passing through.




U.S. Pat. No. 4,992,304 discloses a fuser belt for a reproduction machine. The belt may have one of several configurations which all include ridges and interstices on the outer surface which contacts the print media. These interstices are formed between regularly spaced ridges, between randomly spaced particles, between knit threads. These interstices allow the free escape of steam from the media during high-temperature fusing of the reproduction process. As the steam escapes freely, the steam does not accumulate in the media causing media deformations and copy quality deterioration. Additionally, media handling is improved because the ridges and interstices reduce the unwanted but unavoidable introduction of thermal energy into the copy media.




U.S. Pat. No. 5,250,998 discloses a toner image fixing device wherein there is provided an endless belt looped up around a heating roller and a conveyance roller, a pressure roller for pressing a sheet having a toner image onto the heating roller with the endless belt intervening between the pressure roller and the heating roller. A sensor is disposed inside the loop of the belt so as to come in contact with the heating roller, for detecting the temperature of the heating roller. The fixing temperature for the toner image is controlled on the basis of the temperature of the heating roller detected by the sensor. A first nip region is formed on a pressing portion located between the heating roller and the fixing roller. A second nip region is formed between the belt and the fixing roller, continuing from the first nip region but without contacting the heating roller.




U.S. Pat. No. 5,349,424 discloses a heated, thick-walled, belt fuser for an electrophotographic printing machine. The belt is rotatably supported between a pair of rolls. One of the spans of the belt is in contact with a heating roll in the form of an aluminum roll with an internal heat source such as a quartz lamp. The belt is able to wrap a relatively large portion of the heating roll to increase the efficiency of the heat transfer. The second span of the belt forms an extended fusing nip with a pressure roll. The extended nip provides a greater dwell time for a sheet in the nip while allowing the fuser to operate at a greater speed. External heating enables a thick profile of the belt, which in turn allows the belt to be reinforced so as to operate at greater fusing pressures without degradation of the image. The thick profile and external heating of the belt also provides a much more robust design than conventional thin walled belt fusing systems.




U.S. Pat. No. 5,465,146 relates to a fixing device to be used in electrophotographic apparatus for providing a clear fixed image with no offset with use of no oil or the least amount of oil, wherein an endless fixing belt provided with a metal body having a release thin film thereon is stretched between a fixing roller having a elastic surface and a heating roller, a pressing roller is arranged to press the surface of the elastic fixing roller upwardly from the lower side thereof through the fixing belt to form a nip portion between the fixing belt and the pressing roller, a guide plate for unfixed image carrying support member is provided underneath the fixing belt, between the heating roller and the nip portion, to form substantially a linear heating path between the guide plate and the fixing belt, and the metal body of the fixing belt has a heat capacity per cm


2


within the range of 0.001 to 0.02 cal/° C.




U.S. Pat. No. 5,890,047 discloses a combination belt and roll fuser having a pair of pressure engagable rolls with a belt looped or wrapped around one of the pressure engageable rolls such that the belt is sandwiched therebetween. The belt is deformed due to the force exerted by the pressure rolls such that it forms a single fusing nip. An internally heated, thermally conductive roll contacts a portion of the belt externally at a pre-nip location for elevating its temperature. The pressure engageable roll about which the belt is entrained is internally heated during warm-up for minimizing droop.




In order to enable high fusing speeds for color xerographic toner, large fusing nips are necessary, along with a durable fuser surface for gloss maintenance through fuser life. One way to achieve the high fusing nips is to increase the surface area of the fuser by using a thick elastomer belt instead of a fuser roll for the fusing element. Due to poor thermal conductivity, however, it is usually necessary for the thick elastomer belt to be front surface heated through an extended contact zone with a heater roll. To create a large nip for an extended fusing dwell time, it is desired that the belt be as thick as possible. However, belt flexibility can be compromised with relatively large belt thicknesses. Also, additional nip width can be gained by using an elastomer coating on the internal pressure roll. Having both the elastomer on a pressure roll and the fuser belt contribute to the desired characteristics of fusing nip. The thickness and the durometer of both elastomers can be varied to obtain the desired dwell times in the fusing nip. The problem with having elastomers on both the fusing belt and pressure roll is that adequate creep (greater than about 5 percent) needs to be maintained for intrinsic paper stripping. This restricts the practical range of the thickness and the durometer of the two elastomers.




Therefore, it is desired to provide a fuser useful in fusing color toner at high speeds by maximizing the nip while still retaining adequate creep for paper stripping and maintaining belt flexibility.




BRIEF SUMMARY OF THE INVENTION




The present invention provides, in embodiments, a heat and pressure belt fuser structure, said fuser structure comprising: a plurality of members including an endless belt and a pair of pressure engageable members between which said endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with said toner images contacting an outer surface of said endless belt, at least one of said pressure engageable members comprising a deformable layer, wherein said endless belt has a thickness of from about 1 to about 8 mm; and an external source of thermal energy for elevating a pre-nip area of said belt.




Embodiments further include, a heat and pressure belt fuser structure, said fuser structure comprising: a plurality of members including an elastomeric endless belt and a pair of pressure engageable members between which said endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with said toner images contacting an outer surface of said endless belt, at least one of said pressure engageable members comprising an elastomeric deformable layer, wherein said endless belt has a thickness of from about 1 to about 8 mm, and wherein said deformable layer of said at least on pressure engageable member has a thickness of from about 1 to about 15 mm; and an external source of thermal energy for elevating a pre-nip area of said belt.




In addition, embodiments include an image forming apparatus for forming images on a recording medium comprising: a) a charge-retentive surface to receive an electrostatic latent image thereon; b) a development component to apply a developer material to the charge-retentive surface to develop the electrostatic latent image to form a developed image on the charge-retentive surface; c) transfer member for transferring the developed image from the charge-retentive surface to a copy substrate, and d) a heat and pressure belt fuser structure, said fuser structure comprising: a plurality of members including an endless belt and a pair of pressure engageable members between which said endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with said toner images contacting an outer surface of said endless belt, at least one of said pressure engageable members comprising a deformable layer, wherein said endless belt has a thickness of from about 1 to about 8 mm; and an external source of thermal energy for elevating a pre-nip area of said belt.











DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic representation of a heat and pressure belt fuser according to one embodiment of the invention.





FIG. 2

is a schematic representation of another embodiment of the invention illustrated in

FIG. 1

wherein there is provided a deformable layer on the internal pressure roller.





FIG. 3

is schematic representation of yet another embodiment of a heat and pressure belt fuser according to an embodiment of the invention wherein there is provided a two layer fuser belt.





FIG. 4

is an enlarged view of an embodiment of the internal and external pressure rollers, demonstrating a thick fuser belt having 3 layers.





FIG. 5

is a modeling graph of creep percent and nip thickness versus internal pressure roller layer thickness.





FIG. 6

is a graph showing actual test results of creep percent versus belt thickness and internal pressure roller layer thickness and durometer.





FIG. 7

is an experimental graph of creep percent and nip width versus internal pressure roller layer thickness.





FIG. 8

is a Table showing paper stripping results for a belt fuser for high and low creep.





FIG. 9

is a Table showing fusing nip configurations and nip attributes for fusing.











DESCRIPTION OF THE INVENTION




There is provided a heat and pressure belt fuser including a pair of pressure engageable rolls and an externally heated, thick fusing belt. The pressure engageable rolls and belt are supported such that the belt is sandwiched between the two pressure engageable rolls. The belt and roll about which the belt is looped are provided with one or more deformable layers which cooperate to form a single nip through which substrates carrying toner images pass with the toner images contacting the outer surface of the elastomeric belt. An external source of heat is provided, in embodiments, by contacting the outer surface of the belt in a pre-nip area.




The belt may comprise a rubber material, and in embodiments, is externally heated. The external heating allows for maximum rubber temperatures to be attained at the fusing surface without relying on heat transfer through the belt. Externally heating the belt enables larger belt thicknesses allowing for increased nip widths necessary for higher process speeds. Higher fusing surface temperatures also enable the use of higher melting toners. Therefore, the belt can be used with color toner as well as black toner.




Smaller nip pressure rolls can be used in the belt fuser since the belt thickness, not the roll diameter, is increased herein and causes generation of a large nip. Smaller roll diameters also equate to more reliable stripping. Combinations of thicknesses of the pressure roller layers and the fuser belt allow for an increased nip.




Although increasing thicknesses would normally be expected to result in “droop” of the fuser, the present configuration allows for a reduction in the “droop” of the fuser to little or no droop. Droop is defined as the reduction in FR surface temperature over time as a function of contact with ambient media and/or a cooler Pressure Roll (PR). With internally heated roll fusers, especially rolls with thick rubber layers, the droop can be significant because of the time it takes to heat through the bulk of the rubber after the paper and pressure roll (PR) start drawing heat from the FR. The effects of droop are inconsistent fix and gloss within a series of prints. The external heating of the belt replenishes the heat quickly at the belt surface prior to the belt re-entering the fusing nip, thereby eliminating the time lag caused by heating through the rubber, in the case of a roll fuser. However, the present configuration, in embodiments, reduces droop to essentially zero.




The belt also has the potential of being more environmentally friendly since only the rubber needs to be replaced when the fusing surface provided by the belt fails due to poor release. Alternatively, a roll consists of both relatively thick rubber and a metallic core, and therefore, both must be replaced upon end of life.




For a general understanding of the features of the present invention, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to identify identical elements.




As disclosed in

FIG. 1

, one embodiment of the present invention comprises a heat and pressure belt fuser indicated generally by the reference character


10


. An elastic belt


12


is supported for movement in an endless path by a pair of rolls


14


and


16


. The roll


14


is one of a pair of pressure engageable rolls while the roll


16


is an idler roll cooperating with the roll


14


to support the belt


12


for movement in an endless loop or path of movement in the direction of the arrow


18


. Roll


16


is also used to steer and translate the belt by gimbaling the roller. A second pressure engageable roll


20


is supported for pressure engagement with the roll


14


such that the belt


12


is sandwiched therebetween in order to form a fusing nip


50


. Imaged substrates such as a sheet of plain or coated paper


24


carrying toner images


26


move in the direction of the arrow


28


pass through the nip


50


with the toner images contacting an outer surface


30


of the belt


12


. The fusing nip


50


comprises a single nip, in that, the section of belt contacted by the roll


14


is coextensive with the opposite side of the belt contacted by roll


20


. In other words, neither of the rolls


14


and


20


contact a section of the belt not contacted by the other of these two rolls. A single nip insures a single nip velocity and high pressure through the entire nip.




Fusing surface


30


of the belt


12


is elevated to fusing temperature by means of an internally heated roll


40


having a conventional quartz heater


42


disposed internally thereof. The roll


40


is positioned outside the belt


12


. The roll


40


comprises a relatively thin (0.050 to 0.5 inch) walled metal structure chosen for its good heat conducting properties. To this end the roll


40


may be fabricated from metal such as aluminum, stainless steel, or the like and can either be anodized and/or overcoated with a thin (about 1 to about 4 mils) conductive perfluoroalkoxy (PFA).




In embodiments, a heat lamp is not present in roller


14


, because it may impact the servicability of the belt module. Another quartz heating structure


44


can be disposed internally of the roll


20


for providing thermal energy only during fuser warm-up, but it is not essential. By supplying additional heat to roll


20


during extended runs with heavy paper, the phenomena commonly referred to as droop is decreased or eliminated.




A motor


48


operatively connected to the roll


14


through a conventional drive mechanism (not shown) provides for rotation of the roll


14


. The frictional interface between the belt


12


and the roll


14


and between the belt


12


and the rolls


16


and


40


causes those rolls to be driven by the belt. Separate drive mechanisms (not shown) may be provided where necessary for imparting motion to the rolls


16


,


20


and


40


.




As shown in

FIG. 2

, a heat and pressure belt fuser according to another embodiment of the invention may have a nip


50


created by a deformable layer


52


and a fusing belt


54


. The layer


52


is carried by a roll structure. When both the pressure engageable roll


56


and fusing belt


54


are employed, factors such as cost, energy transfer and belt flexibility must be considered.




As shown in

FIG. 3

, a fusing belt


60


may comprise a base layer


62


and an outer layer


64


.




For the purpose of coating the heated belt structure


12


there is provided an optional Release Agent Management (RAM) system generally indicated by reference character


70


. The mechanism


70


may be of numerous configurations and may comprise a donor roll


72


, metering roll


74


, doctor blade


76


and a wick


78


. The metering roll


74


is partially immersed in the release agent material


80


and is supported for rotation such that it is contacted by the donor roll


72


which, in turn, is supported so as to be contacted by the fusing belt. As can be seen, the orientation of the rolls


72


and


74


is such as to provide a path for conveying material


80


from a sump


82


to the surface of the belt. The metering roll is preferably a nickel or chrome plated steel roll having a 4-32 AA finish. The metering roll has an outside diameter of from about 1.0 to about 2.0 inches. As mentioned above, the metering roll is supported for rotation, such rotation being derived by means of friction between the belt and the rotatably supported donor roll


72


. The metering roll can also be driven independently. In order to permit rotation of the metering roll


74


at a practical input torque to the heated roll structure, the donor roll


72


may comprise a deformable layer


84


which forms a first nip


86


between the metering roll and the donor roll and a second nip


88


between the latter and the heated roll. The nips


84


and


88


also permit satisfactory release agent transfer between the rolls and the belt. Suitable nip lengths are from about 0.10 to about 0.2 inch.




Wick


78


is fully immersed in the release agent and contacts the surface of the metering roll


74


. The purpose of the wick is to provide an air seal that disturbs the air layer formed at the surface of the roll


74


during rotation thereof. If it were not for the function of the wick, the air layer would be coextensive with the surface of the roll immersed in the release agent thereby precluding contact between the metering roll and the release agent.




The blade


76


can comprise a fluoroelastomer such as VITON®, available from Dupont. The blade can be ¾×⅛ in cross-section and have a length coextensive with the metering roll. The edge of the blade contacting the metering roll has a radius of from about 0.001 to about 0.03 inch. The blade functions to meter the release agent picked up by the roll


74


to a predetermined thickness, such thickness being of such a magnitude as to result in several microliters of release agent consumption per copy. The donor roll


72


has an outside diameter of about 1.0-inch when the metering roll outside diameter equals 1.0 inch. It will be appreciated that other dimensional combinations will yield satisfactory results. For example, a donor roll diameter of about 1.5-inch has been employed. The deformable layer


84


of the donor roll may comprise silicone rubber. However, other materials may also be employed.




A thin sleeve


90


on the order of several mils constitutes the outermost surface of the roll


72


. The sleeve material comprises TEFLON®, VITON® or any other material that will impede penetration of silicone oil into the silicone rubber. While the donor rolls may be employed without the sleeve


90


, it has been found that when the sleeve is used, the integrity of the donor roll is retained over a longer period and contaminants such as lint on the belt will not readily transfer to the metering roll


74


. Accordingly, the material in the sump will not become contaminated by such contaminants.





FIG. 4

demonstrates an embodiment of the fusing belt, including substrate


62


, intermediate layer


63


, and outer layer


64


. In embodiments, the substrate can be a polyimide such as, in embodiments, polyamide imide woven fabric such as NOMEX®, available from DuPont. The intermediate layer


63


can be silicone bonded to the top of the polyimide and impregnated into it, or can be a fluoropolymer or the like. Outer release layer


64


can be a silicone material such as polydimethylsiloxane or a fluoropolymer such as a fluoroelastomers. A commercially available example of a fluoroelastomer is sold under the name VITON® from DuPont.




The fuser belt has a thickness of from about 1 to about 8 mm, or from about 2 to about 7 mm, or from about 3 to about 6, or from about 3 to about 4 or about 4.5 mm. This thickness is considerably higher than previous belts such as that disclosed in U.S. Pat. No. 5,890,047, which disclosed a thickness of 0.006 to 0.125 inch. In embodiments wherein the fuser belt has two or three or more layers, the outer layer of the fuser belt is from about 10 to about 100 micrometers, or from about 20 to about 40 micrometers thick. The intermediate layer is from about 2 to about 6 mm thick, or from about 3 to about 4.5 mm thick. The durometer of the intermediate layer is from about 35 to about 70, or from about 45 to about 55 Shore A. The deformable belt


12


provides the same function as the deformable layer of a Nip Forming Fuser Roll (NFFR), that is, it is self-stripping. The relatively thick belt allows for a relatively high creep which is advantageous for paper stripping.




The creep can be from about 0 to about 15, or from about 4 to about 9 percent.




The internal pressure roller


14


may comprise a metal roller, or may have an outer elastomeric layer thereon. Examples of suitable elastomers for the internal pressure roller layer include silicone rubbers, fluoroelastomers such as VITON®, and the like. The thickness of the internal pressure roll optional outer layer is from about 1 to about 15 mm, or from about 4 to about 7 mm. The durometer of the outer elastomer layer is from about 35 to about 80, or from about 50 to about 70 Shore A.




The external pressure roller


20


may be a metal roller, and may comprise an outer layer


21


thereon. Such an optional outer layer may comprise a plastic material such as a fluoropolymer, for example, TEFLON®, or the like plastics. The outer layer of the external pressure roller may have a thickness of from about 1 to about 4 mils, or from about 2 to about 3 mils.




The fusing nip


50


, as shown in

FIG. 4

, can be from about 20 to about 28 mm, or from about 12 to about 18 mm. The fusing nip pressure is from about 80 to about 120 psi.




All the patents and applications referred to herein are hereby specifically, and totally incorporated herein by reference in their entirety in the instant specification.




The following Examples further define and describe embodiments of the present invention. Unless otherwise indicated, all parts and percentages are by weight.




EXAMPLES




Example 1




Preparation of Thick Fuser Belt




A belt carcass was obtained from Habisit ABT Company of Middletown, Conn., and was overcoated with a fluoroelastomer (a VITON® such as VITON® GF, from DuPont) by a flow coating process.




Example 2




Velocity Modeling for Thick Belt Fuser




The belt fuser prepared in accordance with Example 1 was modeled by a finite element computational method.




The modeling was carried out to quantify the nip width and creep as a function of internal pressure roll (IPR) and belt rubber thickness and durometer. The modeling results are shown in FIG.


5


. These results demonstrate that the creep in the fusing nip is strongly dependent on the IPR rubber thickness. Maximum creep is obtained with no rubber on the IPR and all the rubber in the belt. A very large nip width is obtained by making the IPR rubber very thick. However, this results in very low creep and makes paper stripping difficult without stripper fingers. For example, the use of 14 mm IPR and 3 mm belt rubber (Shore A of 45) resulted in a calculated creep of about 1 percent. Softer IPR rubber does not significantly change this low level of creep. The most efficient way to increase the creep is to minimize the IPR rubber thickness and increase the belt rubber thickness as much as possible. Alternatively, the same results can be obtained by increasing the internal pressure roll rubber hardness and decreasing the belt rubber hardness as much as possible.




Example 3




Experimental Creep Results for Thick Belt Fuser




Experiments were carried out to determine the creep measurements as a function of belt thickness. The fuser belt prepared in accordance with Example 1 was tested using a belt fuser as shown in FIG.


4


. The total nip load was about 1,000 to about 1,100 pounds. The belts tested had a durometer of about 48 Shore A. The curves were constructed by combining different internal pressure roll and belt rubber thicknesses and measuring the velocity of the belt and external pressure roll and calculating the creep by the equation shown below.






Creep%=((


V


(EPR)−


V


(Belt))/


V


(Belt))×100






The results are shown in FIG.


6


. The results generally confirm the calculated results. One difference between theory and experiment is that measurements do indicate the presence of a larger positive creep for the bare IPR case.





FIG. 7

gives the measured creep and nip as a function of IPR rubber thickness for an IPR durometer of about 45 to about 48 Shore A. The rolls were 4-inch rolls, and the total load was about 1050 pounds. These experimental results in

FIG. 7

confirm the computer modeling results shown in FIG.


5


.




Example 4




Paper Stripping Results for Thick Belt Fuser




Paper stripping experiments confirm the creep model for intrinsic paper stripping. The paper stripping experiments were carried out as follows. The belt fuser was operated at the fusing conditions specified in FIG.


8


. Sheets of paper with unfused toner on them were fed through the engaged nip. A stripping failure manifested itself by a failure of the paper to separate from the fusing belt. The results are shown in FIG.


8


.




A series of stripping tests with high and low creep nip properties using an old (200K) and a new fuser belt and a range of papers, demonstrated that high creep configuration enabled the stripping of all papers from both a new belt and from an old belt. The low creep configuration did not strip light weight paper from the new belt and any paper from an old belt.




Example 5




Fuser Nip Configurations for Thick Belt Fuser




Nip characteristics of IPR and belt rubber combinations are given in FIG.


9


. The first nip design in

FIG. 9

had 15 mm of IPR rubber and a 3 mm thick belt which resulted in a very large nip (about 19 mm). This was shown to be good for high speed fusing, but had essentially no creep (about −1.7%) and consequently would not strip paper. However, paper edge abrasion would have been low.




The second nip design in

FIG. 9

had no IPR rubber and a 3 mm belt. The resulting nip was small (about 12 mm) and had very high creep (about 12 mm). This combination was not applicable for high speed fusing because although paper would strip very well, high paper edge abrasion resulted, along with early belt failure due to high internal strain energy.




The third nip design in

FIG. 9

used a thicker belt of about 4.5 mm, which increased the nip width (about 17 mm), but the creep was too high (about 11.3%) and resulted in early belt failure.




Examples of superior configurations are typified by the last two shown in FIG.


9


. These two configurations (and others with similar rubber dimensions) demonstrated reasonable nip size for speed, reasonable creep for paper stripping, minimal paper edge abrasion, and longer belt life.




While the invention has been described in detail with reference to specific and preferred embodiments, it will be appreciated that various modifications and variations will be apparent to the artisan. All such modifications and embodiments as may readily occur to one skilled in the art are intended to be within the scope of the appended claims.



Claims
  • 1. A heat and pressure belt fuser structure, said fuser structure comprising:a plurality of members including an endless belt and a pair of pressure engageable members between which said endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with said toner images contacting an outer surface of said endless belt, at least one of said pressure engageable members comprising a deformable layer, wherein said endless belt has a thickness of from about 1 to about 8 mm, and has a durometer of from about 35 to about 70 Shore A, and an external source of thermal energy for elevating a pre-nip area of said belt.
  • 2. A heat and pressure belt fuser structure in accordance with claim 1, wherein said thickness of said endless belt is from about 2 to about 7 mm.
  • 3. A heat and pressure belt fuser structure in accordance with claim 2, wherein said thickness of said endless belt is from about 3 to about 4.5 mm.
  • 4. A heat and pressure belt fuser structure in accordance with claim 1, wherein said endless belt has a durometer of from about 45 to about 55 Shore A.
  • 5. A heat and pressure belt fuser structure in accordance with claim 1, wherein said deformable layer of said at least one pressure engageable member has a thickness of from about 1 to about 15 mm.
  • 6. A heat and pressure belt fuser structure in accordance with claim 5, wherein said deformable layer of said at least one pressure engageable member has a thickness of from about 4 to about 7 mm.
  • 7. A heat and pressure belt fuser structure in accordance with claim 1, wherein said deformable layer of said at least one pressure engageable member has a durometer of from about 35 to about 80.
  • 8. A heat and pressure belt fuser structure in accordance with claim 7, wherein said deformable layer of said at least one pressure engageable member has a durometer of from about 50 to about 70 Shore A.
  • 9. A heat and pressure belt fuser structure in accordance with claim 1, wherein said fusing nip is from about 10 to about 28 mm.
  • 10. A heat and pressure belt fuser structure in accordance with claim 9, wherein said fusing nip is from about 12 to about 18 mm.
  • 11. A heat and pressure belt fuser structure in accordance with claim 1, wherein said fusing nip has a pressure of from about 80 to about 120 psi.
  • 12. A heat and pressure belt fuser structure in accordance with claim 1, wherein said endless belt comprises at least one layer comprising an elastomeric material.
  • 13. A heat and pressure belt fuser structure in accordance with claim 12, wherein said endless belt comprises a substrate and an outer elastomeric layer thereon.
  • 14. A heat and pressure belt fuser structure in accordance with claim 1, wherein said toner comprises color toner.
  • 15. A heat and pressure belt fuser structure, said fuser structure comprising:a plurality of members including an endless belt and a pair of pressure engageable members between which said endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with said toner images contacting an outer surface of said endless belt, at least one of said pressure engageable members comprising a deformable layer, wherein said endless belt has a thickness of from about 1 to about 8 mm; wherein said endless belt comprises a substrate having an outer elastomeric layer thereon and an intermediate elastomeric layer positioned between said substrate and said outer elastomeric layer, and an external source of thermal energy for elevating a pre-nip area of said belt.
  • 16. A heat and pressure belt fuser structure in accordance with claim 15, wherein said intermediate elastomeric layer has a thickness of from about 1 to about 8 mm.
  • 17. A heat and pressure belt fuser structure in accordance with claim 15, wherein said intermediate layer has a thickness of from about 2 to about 6 mm.
  • 18. A heat and pressure belt fuser structure, said fuser structure comprising:a plurality of members including an elastomeric endless belt and a pair of pressure engageable members between which said endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with said toner images contacting an outer surface of said endless belt, at least one of said pressure engageable members comprising an elastomeric deformable layer, wherein said endless belt has a thickness of from about 1 to about 8 mm, and has a durometer of from about 35 to bout 70 Shore A, and wherein said deformable layer of said at least one pressure engageable member has a thickness of from about 1 to about 15 mm; and an external source of thermal energy for elevating a pre-nip area of said belt.
  • 19. An image forming apparatus for forming images on a recording medium comprising:a) a charge-retentive surface to receive an electrostatic latent image thereon; b) a development component to apply a developer material to the charge-retentive surface to develop the electrostatic latent image to form a developed image on the charge-retentive surface; c) transfer member for transferring the developed image from the charge-retentive surface to a copy substrate, and d) a heat and pressure belt fuser structure, said fuser structure comprising: a plurality of members including an endless belt and a pair of pressure engageable members between which said endless belt is sandwiched for forming a fusing nip through which substrates carrying toner images pass with said toner images contacting an outer surface of said endless belt, at least one of said pressure engageable members comprising a deformable layer, wherein said endless belt has a thickness of from about 1 to about 8 mm, and has a durometer of from about 35 to about 70 Shore A, and an external source of thermal energy for elevating a pre-nip area of said belt.
US Referenced Citations (19)
Number Name Date Kind
4791447 Jacobs Dec 1988 A
5250998 Ueda et al. Oct 1993 A
5716714 Chen et al. Feb 1998 A
5724628 Sano Mar 1998 A
5758245 Matsuura et al. May 1998 A
5778294 Hiraoka et al. Jul 1998 A
5873020 Matsuura et al. Feb 1999 A
5890047 Moser Mar 1999 A
5895153 Aslam et al. Apr 1999 A
5927189 Jones et al. Jul 1999 A
5974294 Tange Oct 1999 A
5999764 Okabayashi et al. Dec 1999 A
6070045 Hara et al. May 2000 A
6091926 Yamada Jul 2000 A
6096427 Chen et al. Aug 2000 A
6198902 Vaughan et al. Mar 2001 B1
6263183 Schlueter et al. Jul 2001 B1
6272309 Kitazawa et al. Aug 2001 B1
6282398 Higashi Aug 2001 B1