The invention relates generally to a mechanical shutoff device for cylinders and tanks and more specifically to externally-mounted mechanical valve shutoff devices for propane tanks, including, but not limited to, grill tanks and tanks for outdoor heaters and other appliances, oxygen tanks, compressed air tanks, and other pressurized tanks and cylinders having a mechanical shutoff handle.
Tanks and cylinders are used to contain pressurized gasses for use. As an example, propane tanks provide propane gas through a gas supply system for use. Propone tanks may be used for supplying propane gas through a gas supply system, such as a gas line or hose, to gas grills. Propane tanks are relatively easy to use.
The use of propane gas in gas supply systems has its problems. Propane gas may leak from gas supply systems for any number of reasons such as for example misplaced, improperly installed, or dry-rotted gaskets at connection points in the gas supply system. For example, a gasket at a connection point between the valve on the gas tank and a supply line may leak gas. In addition, the gas line or hose may leak for any number of reasons, such as dry rot, improper manufacture, or leaky seals between the gas line or hose and a male or female connection point. Furthermore, gas may leak from a faulty or aged grill burner. All of these problems may exist with a gas system charged with a propane tank. In certain instances, even a slow leak in a gas supply system will quickly deplete the gas in a propane tank. The result of a leak is wasted gas emitted into the air and even an empty tank. Leaking gas also poses a safety hazard in case the gas were to ignite and the tank may explode.
There may be several remedies for fixing a known leak. For example, faulty gaskets, hoses, valves, grill burners, and connection points may be replaced. Sealants may be used to create better seals at connection points. Additionally, an alternative to fixing a leaky gas system would be to manually close the valve on a propane tank after use.
However, and in many cases, this still provides problems. A user of a propane tank may simply forget to close the valve on a propane tank. Furthermore, a user of a propane tank may not be aware of a leak. Thus, even with taking traditional measures to prevent a gas leak, such leak may still occur.
There is a present need for an externally-mounted mechanical valve shutoff device for a propane tank. The externally-mounted mechanical valve shutoff device may have a timer for timing when the device will close a valve handle of a tank when the valve is opened.
There is also a present need for an externally-mounted mechanical valve shutoff device that provides a safety mechanism to prevent hazards posed by leaking gas by a timed preset mechanical closing of valves of pressurized tanks and cylinders.
There is also a further present need for an externally-mounted mechanical valve shutoff device that provides an environmentally beneficial mechanism to prevent potentially harmful effects of leakage of gas into the air by a timed preset mechanical closing of valves of pressurized tanks and cylinders.
A mechanical valve shutoff device is provided with an embodiment of the present invention. The device comprises a non-rotational housing which is configured for attachment with a pivotable and telescoping arm to a cylinder or tank. The device also comprises a rotational housing configured to receive a handle of the cylinder or tank. The device comprises further a torsional spring attached to the non-rotational housing and the rotational housing. The torsional spring is capable of storing rotational force and releasing rotational force when triggered to do so by way of the timer device.
The non-rotational housing comprises a securing top with a timer device, a rotatable timer adjustable handle having a driving arm substantially attached to a driving shaft of the timer device, and a spring base assembly attached to the securing top. Furthermore, the mechanical shutoff device is capable of rotating the rotatable timer adjustable handle about a center axis of the device from a substantially wound configuration to a substantially unwound configuration of the timer device.
The spring base assembly comprises a housing to secure a first end of the torsional spring to the spring base assembly and second end of the torsional spring to a slot of a center post of the rotational housing. The spring base assembly comprises a pawl and ratchet wherein the pawl is pivotally secured by a first post to the spring base assembly. The pawl comprises a second post configured to pivot the pawl about the first post and a second post. An extensible spring connect the first post to the second post to bias pawl in a default configuration to engage ratchet.
The pawl and ratchet is configured to releasably maintain torsional force of the torsional spring in a wound position. The second post of the pawl is configured to facilitate release of the torsional force of a wound torsional spring when the driving arm of the rotatable timer adjustable handle is in a substantially unwound configuration.
The rotational housing is configured to be rotatably driven by release of torsional force of torsional spring when the driving arm of the rotatable timer adjustable handle is in the substantially unwound configuration. The rotational housing comprises projections along a raised annular surface configured to be received in an annular slot of the rotatable timer adjustable handle.
Another embodiment of the present invention is provided as a mechanical device for mechanically closing a pressurized tank or cylinder valve. The device comprises a securing mechanism, a rotatable mechanism having a valve handle recess, and an internal torsional spring. The torsional spring is configured for storage and release of torsional force whereby the release of the torsional force is triggered by a timing device. The securing mechanism comprises a securing device for securing the mechanical device to a tank or cylinder.
The securing mechanism comprises a securing arm and a top housing a timer. The top is substantially attached to a spring assembly housing the torsional spring.
The device further comprises a timer handle having a driver arm configured to wind the timer. The timer is configured to rotate the driver arm from a substantially wound configuration to a substantially unwound configuration.
The driver arm is configured to pivot a pawl rotatably attached to the spring assembly and biased with a extensible spring to a default ratchet engagement position.
A ratchet is attached to a center post of the rotatable mechanism. The pawl is configured to releasably secure the ratchet for a preset time period.
The pawl and ratchet are configured to store torsional force with a substantially wound torsion spring.
The ratchet, the center post, and the rotatable mechanism are configured to rotate about a center axis of the device.
Yet a further embodiment of the present invention comprises a method for timed closure of a pressurized tank or cylinder mechanical valve.
The method comprises the step of placing a valve handle of a pressurized cylinder or tank within a recess of the rotatable mechanism, wherein the valve handle is in a position in which the valve of the pressurized cylinder or tank is closed. The method also comprises substantially attaching a securing arm of securing mechanism to the pressurized tank or cylinder.
The method comprises the further step of setting a timer attached to the securing mechanism by rotating a timer adjustable handle attached with an arm to a drive shaft of the timer. The method comprises the further steps of rotatably winding a torsional spring with a rotatable mechanism rotatably attached to a securing mechanism, wherein a first end of the torsional spring is attached to a center post of the rotatable mechanism and a second end of a torsional spring is attached to a spring assembly of the securing mechanism. Then, the method comprises the step of storing torsional force of wound torsional spring with a pawl of a spring assembly engaging a ratchet attached to the center post of rotatable mechanism.
The method comprises the further step of releasing the stored torsional force of the torsional spring to rotate the cylinder or tank handle within a recess of the rotatable mechanism. The torsional force is released when the drive shaft of the timer turns the arm to actuate the pawl away from the ratchet.
The method comprises the further step of closing the pressurized tank or cylinder valve by mechanical rotation of the valve handle of the tank or cylinder to a closed valve position with the rotatable mechanism driven by the released torsional force of the torsional spring.
In reference to
Referring generally to
Referring now specifically to
Telescoping securing arm 40 may be comprised of plastic, polymers, metal, metal alloys, fiberglass, graphic, or any suitable material capable of securing mechanical shutoff device 10 to a propane tank, or any combination thereof. Telescoping securing arm 40 may also be further adapted to be attached to other forms of pressurized cylinders and tanks.
Referring now to
Referring now to specifically
A non-limiting example of timer device 98 in an embodiment of the invention may comprise a timer mechanism described in U.S. Pat. No. 7,252,113, which is capable of being set by rotational force placed on it. Alternative forms of timer mechanisms may be implemented so long as the timer mechanisms may be mechanically wound and exert sufficient force to rotate timer adjustable handle 120 with its timer driving arm 124 actuate pawl 170 away from its biased position against ratchet 162 as discussed further herein.
Referring now specifically to
Referring now generally to
Timer adjustable handle 120 may be comprised of plastic, polymers, metal, metal alloys, fiberglass, graphic, or any suitable material capable mechanically winding up timer device 98 and also driving timer adjustable handle 120 as timer device 98 unwinds and actuates pawl 170.
Referring now generally to
Referring now generally to
Clock spring 152 may be any configuration that generates enough torsional force when released from a partially or fully wound position to close a valve handle of a pressurized tank or cylinder. As a non-limiting example, clock spring 152 may be provided as part 166 in U.S. Pat. No. 7,252,133. Other non-limiting examples of clock springs comprise Lesjofors Cat. No: SF-SF 0904 capable of producing torque (N-mm, lb-in.): 374,3.31 and Cat. No: SF-DF 3366 with Spring Constant (N/mm, lb/in): 3.75,21.41.
Referring now generally to
Referring now generally to
Referring generally to
Spring base assembly 140 and valve handle cover 200 may also be comprised of plastic, polymers, metal, metal alloys, fiberglass, graphic, or any suitable material, or any combination thereof.
A method of using mechanical shutoff device 10 for a preset, timed mechanical closure of a pressurized tank or cylinder is provided by the present invention.
Mechanical shutoff device 10 is placed on top of pressurized cylinder or tank by way of positioning the handle of the valve of the cylinder or tank within tank handle recess 220. The handle of the cylinder or tank valve should be in a closed position such that the valve is closed. Likewise, telescoping securing arm 40 of mechanical shutoff device 10 may be pivoted about pin 50, which is pivotally positioned within pin receiving communication 52 of second portion of arm 40 and first communication 86 and second communication 88 of first portion of pin receiving mount 82 and second portion of pin receiving mount 84, respectively, of securing top 80. Telescoping securing arm 40 is pivoted in a manner, and also extended or shorted in length by the telescoping feature provided by first portion 42 and second portion 44 so that fork-like securement supports 46 may be positioned to receive collar of tank or cylinder between fork-like securement supports 46. Engagement 48, such as thumb screw, may be tightened to secure telescoping securing arm 40 to collar of tank or cylinder. In this configuration, mechanical shutoff device 10 is secured to the pressurized tank or cylinder.
Next, and with mechanical shutoff device 10 secured to the cylinder or tank and receiving the cylinder or tank valve handle in tank handle recess 220, clock spring 152 of mechanical shutoff device 10 should be in a first position, which comprises a substantially unwound configuration about center Axis A within containment posts 144 and between spring base 142 and spring cover 158 of spring base assembly 140. In order to partially or substantially wind valve handle cover 200 about center Axis A to store torsional force in clock spring 152, timer adjustable handle 120 must first be rotated counterclockwise about center Axis A to, at least, release any contact between timer driving arm 124 and actuating post 146 so that pawl 170 returns to its default position engaging ratchet 162. Clock spring 152 may then be wound from a substantially unwound or, even, a partially wound configuration by rotating valve handle cover 200 about center Axis A in a counterclockwise motion relative to spring base assembly 140, timer adjustable handle 120, and securing top 80, which are not rotated about center Axis A. In rotating valve handle cover 200, torsional force is being stored by clock spring 152 as pawl 170, in its default position, and as biased by spring 174, engages gear teeth of ratchet 162 secured to rotating center post 202 of valve handle cover 200 and preventing the release of torsional force stored by clock spring 152.
Valve handle cover 200 may be rotated until valve of pressurized tank or cylinder is opened sufficient for use. Herein, a torsional force sufficient to rotate the valve handle of a tank or cylinder to a closed position is stored by clock spring 152. With the torsional force stored as potential energy by a substantially wound clock spring 152, the handle of valve of tank or cylinder, with the valve opened, is positioned substantially within tank handle recess 220 of valve handle cover 200 such that mechanical shutoff device 10, with substantially wound clock spring, is resting on the valve handle of the tank or cylinder.
If necessary, and to the extent timer device 98 has not already been wound to a desired countdown time, timer device 98 may be wound to a desired time setting. This countdown time may be any allotted time that the pressurized tank or cylinder must provide a gas through a supply line to a grill, for example, with any additional time. Timer device 98 may be wound by rotating timer adjustable handle 120 counterclockwise about center Axis A from an partially unwound position, or more than 0 minute countdown, to a partially or fully wound position, or desired countdown time, such as, for example, more or less than about 15 up to about 60 minutes or more which depends on the maximum countdown time provided by timer device 98.
With timer device 98 set to a desired countdown time, timer device 98 will count down, as shown specifically in sequence from
Once pawl 170 no longer engages ratchet 162, the potential energy in the nature of torsional force held by clock spring 152 is released. With the release of the torsional force, clock spring 152, which is attached by way of spring slot 208 to center post 202 of valve handle cover 200, forcibly rotates valve handle cover 200, and consequently, valve handle positioned within tank handle recess 220, clockwise about center Axis A. As valve handle cover 200, and its center post 202 and ratchet 162 rotate about center Axis A, telescoping securing arm 40, which is attached to the collar of the pressurized tank or cylinder, maintains itself in a fixed or static position along with securing top 80, along with timer device 98, timer adjustable handle (with any residual movement of timer adjustable handle 120 relative solely to timer device 98 attached to securing top 80), and spring base assembly 140 with the exception any movement of second spring end 156 and unwinding clock spring 152 relative to first spring end 154 attached to a containment post 144 of spring base assembly 140.
Clock spring 152 releases torsional force and rotates valve handle cover 200 clockwise about center Axis A and, consequently, rotates handle of valve of pressurized tank or cylinder, which is positioned within tank handle recess 220, in a clockwise motion, thereby closing the valve of the pressurized tank or cylinder, all while other structural aspects of mechanical shutoff device 10, including, timer securing arm 40, securing top 80, timer adjustable handle 120 (relative to timer device 98), and spring base assembly 140, are maintained in a static position.
Mechanical shutoff device 10 with substantially unwound clock spring 152 may be removed or remain positioned on the valve handle of the pressurized tank or cylinder.
In an alternative embodiment, clock spring 152 and timer device 98 may be set before mechanical shutoff device 10 is attached to the collar of a pressurized tank or cylinder so long as clock spring 152 is set with enough potential torsional force to close an open valve handle, and valve handle cover 200 may be rotated about center Axis A in a clock wise rotation with sufficient degrees of rotation to close valve handle within tank handle recess 220 of valve handle cover 200.
Mechanical shutoff device 10 may also be configured in such a way that any rotation may occur in an inverse manner as disclosed herein. By way of example, mechanical shutoff device 10 may be configured for counterclockwise closure of a valve handle. For example, in instances of clockwise rotation of any of its aspects, mechanical shutoff device 10 could be configured for counterclockwise rotation. Likewise, in instances of counterclockwise rotation of any other of its aspects, mechanical shutoff device 10 could be configured for clockwise rotation.
While preferred embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. The appended claims are intended to cover, therefore, all such changes and modifications as fall within the true spirit and scope of the invention.
This application claims the priority and benefit of U.S. Provisional Patent Application Ser. No. 61/211,711, filed Apr. 2, 2009, entitled “Externally Mounted Mechanical Valve Shutoff Device with Timer,” the entirety of which is incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
5927328 | Nelson et al. | Jul 1999 | A |
6755213 | Lai | Jun 2004 | B1 |
7128191 | Fisher | Oct 2006 | B2 |
7845369 | Atassi | Dec 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20100252767 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
61211711 | Apr 2009 | US |