Extra loud low frequency acoustical alarm assembly

Information

  • Patent Grant
  • 6756883
  • Patent Number
    6,756,883
  • Date Filed
    Tuesday, November 12, 2002
    22 years ago
  • Date Issued
    Tuesday, June 29, 2004
    20 years ago
Abstract
The invention is an improved piezoelectric noise-making and audible signaling device which produces a distinctive 2 KHz tone that is more pronounced and significantly easier to perceive, especially in a noisy environment. The volume of the audible tone is amplified by using two or three sound-amplifying chambers or cavities.
Description




BACKGROUND OF THE INVENTION




The present invention relates to an improved noise-making device used to provide audible alarms in a wide variety of devices including, for example, automobiles and trucks, industrial equipment, medical devices, traffic signals, appliances and the like. Such devices can use a piezoelectric transducer and associated circuitry to produce sound at a given frequency. The transducer flexes in response to an applied voltage. If an oscillating voltage is applied to the transducer at an appropriate rate, the flexing of the transducer produces an audible sound of substantial volume. Prior devices produce an audible sound at 3 KHz.




In the invention, the sound produced is not 3 KHz. Instead, the sound produced is at a lower frequency, 2 KHz, that is more easily heard and distinguished, especially in a noisy environment. A sound at 2 KHz is also more likely to be perceived by more persons than is a sound at 3 KHz, due to the loss of hearing as the normal person ages. In another feature of the invention, multiple sound cavities amplify in stages the sound produced by the transducer, making it considerably louder and easier to hear.




U.S. Pat. No. 5,990,784 “Schmitt Trigger Loud Alarm With Feedback,” is incorporated by reference herein and describes an alarm device using a piezoelectric transducer. This patent is owned by the assignee of the present invention.




SUMMARY OF THE INVENTION




According to the invention, there is provided a piezoelectric transducer and associated electrical circuitry to cause the transducer to oscillate at a resonant audible frequency. The transducer is mounted to a proximal tubular housing which is hollow, thus providing a first cavity. A second or distal tubular housing forms a second cavity adjoining the first cavity, and is of larger diameter than the first cavity. A third cavity adjoining the second cavity may optionally be employed. Sound is produced by the transducer and passes through the first cavity, second cavity and, if used, the third cavity. The sound is through a grill on the last cavity. The invention provides an audible sound at 2 KHz by means of an amplifier circuit including feedback from the transducer to the amplifier. The transducer resonates, producing an audible sound at 2 KHz. The cavities cause the sound to be greatly amplified when compared to similar devices not using multiple cavities.











DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-section of the noise-making device.





FIG. 2

is another cross-section of the noise-making device including dimensions that have been determined to optimize the amplification.





FIG. 3

is a graph showing the increase in sound produced by the invention compared to a devices with different configurations, and all using the same electrical circuit.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to

FIGS. 1 and 2

, there is shown a piezoelectric transducer


18


. Transducer


18


is mounted at its nodal diameter to a knife-edge


17


at an end of a housing insert


16


. Adhesive


19


binds the transducer


18


to the knife-edge


17


. Knife-edge


17


supports the transducer


18


while at the same time allowing the transducer to flex when a voltage is applied to it. Mounting the transducer at its nodal diameter minimizes interference with flexing of transducer


18


.




Housing insert


16


is cylindrical in cross-section and hollow, forming a sound-amplifying cavity


15


next to the transducer


18


. One suitable material for housing insert


16


is 6/6 nylon or “ABS. ” A source for 6/6 nylon is Zytel


101


available from Pro Tech Plastic Inc., 1295 West Helena Drive, West Chicago, Ill., 60185. The length “A” of housing


16


is adjusted to maximize the amplification.




A main housing


11


is cylindrical in cross-section and hollow. Main housing


11


is attached to an end of housing insert


16


. A flange


21


on main housing


11


engages and is secured by any convenient means to a flange


22


on insert


16


. Main housing


11


is hollow, and has two cylindrical sections with different diameters. One cylindrical section forms a sound-amplifying cavity


13


, and a second larger cylindrical section forms another sound-amplifying cavity


14


. The diameters of cavities


13


and


15


are typically about the same, whereas the diameter “B” of cavity


14


is larger. A grill


10


may be attached to the end of housing


11


away from the transducer


18


, and allows sound produced by the transducer, and amplified in the cavities, to be emitted and heard.





FIG. 2

shows the invention with dimensions that have been found to produce a sound increase of about 10 to 15 dbA compared to devices using the same transducer and circuitry, but lacking the housing insert


16


and therefore having only one cavity. Dimension “A” is 0.438 inches. Dimension “B” is 1.460 inches. Dimension “C” is 0.088 inches. Dimension “D” is 0.492 inches. The diameters of housing


11


and housing insert


16


are 0.875 inches, approximately the same as the nodal diameter of transducer


18


.





FIG. 3

shows the sound levels produced by devices which all use the circuitry shown in the '784 patent, and the following different variations in structure:




#1—Housing insert


16


is omitted, and the transducer


18


is mounted on a knife-edge


12


on main housing


11


.




#2—Housing insert


16


and main housing


11


are used, with transducer


18


mounted on knife-edge


17


as shown in FIG.


1


.




#3—The same as #2, except that the length of housing insert


16


was reduced by 0.025 inches from the dimension shown in

FIG. 2

, 0.438 inches.




#4—The same as #2, except that the angle of knife-edge


12


has been increased slightly, from about 40 degrees to about 20 degrees.




#5—The same as #2, except that the diameter “B” of sound-amplifying cavity


14


was decreased by 0.100 inches from the dimension shown in

FIG. 2

, 1.460 inches.




Use of housing insert


16


causes a large increase in sound produced, from 89.9 dbA to 98.9 dbA. and As can be seen, elimination of the housing insert causes a very significant drop in emitted sound from approximately 97 to 99 dbA to approximately 90 dbA. The maximum increase in sound is achieved by employing three sound-amplifying chambers or cavities, by choosing dimension “A” to be about one-half of the nodal diameter of transducer


18


, and by choosing dimension “B” to be roughly one to two times the nodal diameter. Optimum dimensions are readily determined by measuring the sound output of different configurations.



Claims
  • 1. A noise-making device comprising:a piezoelectric transducer; a first sound-amplifying chamber attached to the transducer, the sound-amplifying chamber enclosing a space communicating with the transducer for receiving sound waves from the transducer, the first chamber having a diameter approximately equal to the nodal diameter of the transducer; and a second sound-amplifying chamber enclosing a second space in communication with the space in the first chamber for receiving sound waves from the first chamber, the second chamber having a diameter between approximately 1 and 2 times the diameter of the first chamber.
  • 2. The noise-making device of claim 1, wherein the first chamber has a length in a direction substantially perpendicular to the plane of the transducer that is approximately one-half of the nodal diameter of the transducer.
  • 3. The noise-making device of claim 1, wherein the noise emitted is an audible frequency of approximately 2 KHz.
  • 4. A noise-making device comprising:a piezoelectric transducer; a hollow housing attached to the transducer, the interior of the housing forming a first sound-amplifying cavity; a second housing attached to the first housing, the interior of the second housing forming a second sound-amplifying cavity adjacent to the first cavity, and of larger diameter than the first sound-amplifying cavity; and circuitry for causing the transducer to oscillate at an audible resonant frequency.
  • 5. The noise-making device of claim 4 wherein the audible resonant frequency is approximately 2 KHz.
  • 6. A noise-making device comprising:a piezoelectric transducer; a first hollow housing having a diameter equal to the nodal diameter of the transducer and having a knife-edge at one end of the housing attached to the transducer; a second hollow housing attached to the first hollow housing and having a portion larger in diameter than the first hollow housing and surrounding the end of the first hollow housing away from the transducer; and circuitry for causing the transducer to oscillate at an audible frequency.
  • 7. The noise-maker of claim 6, further comprising a second portion on the second hollow housing, the second portion having approximately the same diameter as the first hollow housing.
Parent Case Info

This application is a continuation of Ser. No. 09/488,693 filed Jan. 20, 2000 now U.S. Pat. No. 6,512,450.

US Referenced Citations (7)
Number Name Date Kind
4429247 Feldman Jan 1984 A
4450930 Killion May 1984 A
4555598 Flanagan et al. Nov 1985 A
5675312 Burnett Oct 1997 A
6265965 Lee Jul 2001 B1
6512450 Burnett et al. Jan 2003 B1
6522759 Mori Feb 2003 B1
Continuations (1)
Number Date Country
Parent 09/488693 Jan 2000 US
Child 10/293957 US