The described technology is directed to the field of tools for interacting with electronic documents.
A web browser is an application for displaying documents, such as web pages represented in HTML. Such web pages can include a wide variety of content, different portions of which are of interest to different users.
A few different conventional approaches are available to a user who wishes to retain a portion of a web page that is of interest to the user. For example, the user can issue a save command to the browser, which causes the browser to persistently store a complete copy of the web page, including all of its HTML source, as well as associated resources of various types. As another example, the user can use a bookmarking function of the browser to save in a bookmark the URL that was used to retrieve the web page. Additionally, the user can use a clipboard provided by the operating system to select the portion of the web page of interest within the browsers; copy that portion to the clipboard; paste the portion from the clipboard into a word processing document; and save the word processing document.
The inventor has recognized significant disadvantages in conventional approaches to retaining a portion of a web page. For example, the conventional approach involving causing the browser to save the web page has the disadvantages that portions of the page not of interest to the user are retained along with the portion of interest; the files produced by the browser save operation can be large and unwieldy; and the retained portion cannot be easily associated with retained portions of other pages. The conventional approach involving creating a bookmark containing the page's URL fails to identify the portion of the page that was of interest to the user; and is vulnerable to the removal of the page, a change in the URL with which it can be retrieved, or its alteration to remove, relocate, or alter the portion of interest. The conventional approach involving using the clipboard to copy the portion of interest to a word processing document has the disadvantages that the portion may not look or behave in the same ways that it does in the web page.
In order to overcome these disadvantages of conventional approaches, the inventor has invented a software and/or hardware facility for extracting a portion of a document, such as a web page represented in HTML or another tag language. The document from which the facility extracts a portion is referred to herein as “the page,” irrespective of this document's type.
In some embodiments, the facility makes use of executable code within the page, such as javascript code. In some embodiments, this code is included as a native part of the page; in some embodiments, the code is injected into the page, such as after retrieval by a bookmarklet or a toolbar.
In some embodiments, the facility adds to the page a user interface that enables the user to select a portion of the page, such as by selecting within a hierarchical representation of the page such as a Document Object Model (“DOM”) structure one or more nodes of the hierarchy each defining a subtree of the nodes of the hierarchy. In some embodiments, as part of the selection of the portion of the page, the user interface displays a visual indication of the portion, such as a rectangle surrounding the portion.
In some embodiments, when the portion has been selected, the facility constructs a copy of the portion that is local to the page. In particular, the facility at least partially copies each of the selected nodes of the page and its descendants to descend from a “reset” node added to the page by the facility. In general, a node of the page can have particular values for style attributes either by virtue of these attributes being explicitly specified for the node in the source for the page (“inline attributes”), and/or by inheriting these attributes from ancestor nodes in the page hierarchy (“inherited attributes”), and/or by being specified via a CSS selector, which is effectively a pattern that can match on an element's type, id, class, or context. When there are multiple style rules that could be applied to an element that are in conflict, the general approach to resolving the conflict is to apply the most specific specification. Thus, CSS selectors trump inherited attributes, more specific CSS selectors (like an id) trump generic selector (like a class name or type name), and inline CSS trumps everything. The reset node specifies a stylesheet, such as a CSS stylesheet that (1) cuts off inheritance of style attribute values from ancestors of the resent node to descendants of the reset node, and (2) establishes, for inheritance by descendents of the reset node, a standard set of style attribute values. When the facility copies the selected nodes and the nodes that descend from them into the local copy, the facility initially copies only a limited subset of the inline attributes along with the copied node, in some cases none. As part of or after performing this copy operation, the facility performs a parallel root-to-leaves traversal of each selected subtree and the corresponding subtree in the local copy. For each pair of nodes visited in these traversals (one in the selected subtree and one in the local copy), the facility queries the browser for the computed attribute values of the node. The computed attribute values of a node are those used by the browser in rendering that node within the rendered version of the page, determined by first determining the set of attribute values the node inherits from its ancestors, then overriding these in any ways specified by the node's inline attributes. For each computed attribute value of the node of the pair in the selected subtree that differs from the computed value of the same attribute of the node of the pair in the local copy, the facility establishes an inline attribute for the node of the pair in the local copy that specifies the computed attribute value of the node of the pair in the selected subtree. Accordingly, the local copy ends up with all of the nodes of the selected subtree(s), with the same computed attribute values in each node of the copy, and with an inline attribute in a node of the copy only where the computed value of the corresponding node of the selected subtree differs from the value of the same attribute inherited by the node of the copy form the reset node and the node's ancestors in the copied subtree.
After the local copy is generated, the facility exports the local copy to a location outside the page. For example, in various embodiments, the facility appends tag language source representing the local copy to a destination page of page portions extracted by the same user, or adds tag language source representing the local copy to a table of page portions all extracted by the same user that may be used to dynamically generate a destination page of page portions extracted by the same user. In some embodiments, as part of exporting the copy, the facility applies one or more compression techniques, in some embodiments including a compression technique specifically adapted to the tag language.
When the facility includes an exported portion copy in the destination page, it both (1) reverses any applied compression techniques to recover the uncompressed tag language representation of the portion copy, and (2) establishes the portion copy as the child(ren) of a reset node in the destination page. In the rendered destination page, the portion copy typically appears in a manner that is largely or completely visually identical to the portion as selected in its original page, including parts of the portion corresponding to each native and external resources. Controls in the portion copy typically operate in the same way they do in the portion as selected in its original page.
In some embodiments, the destination page generated by the facility includes controls for sorting and/or subsetting the page portions extracted by the same user, such as based on date, category, tags, domain, etc.
By operating in some or all of the ways described above, the facility extracts a high-fidelity, similarly-behaving copy of a page portion having relatively modest storage requirements for future enjoyment of a user.
When the client computer system receives the response to its content request containing the HTML source for a web page, it is stored (113) by the browser, which parses the page source in order to construct the document object model data structure (“DOM”) 114 that the browser uses to display this web page. While the web page is displayed in the browser, the user can activate the facility code injector to inject into the page facility code for selecting and extracting a portion of the page. The user can then use the facility to select and extract a portion of the page. The extracted version of this portion is stored in a portion table 135 in the portion extraction server computer system. The user can subsequently request a destination page from the portion extraction server computer system. When this happens, a page generation engine 133 on the portion extraction server computer system uses a destination page template to retrieve web page portions extracted by the user from the portion table and incorporate them in a destination page generated by the portion extraction server computer system and return to the client computer system in response to the request, where the generated destination page containing the web page portions extracted by the user can be displayed and interacted with in the browser.
While various embodiments are described in terms of the environment described above, those skilled in the art will appreciate that the facility may be implemented in a variety of other environments including a single, monolithic computer system, as well as various other combinations of computer systems or similar devices connected in various ways.
Those skilled in the art will appreciate that the steps shown in
An example in which a user retrieves a web page and uses the facility to extract a portion from it follows. In the example, the user retrieves the web page by typing its URL, “http://example.com/”, into the URL field of the browser. In response, the facility retrieves the HTML source for the sample web page shown below in Table A from a publisher server computer system.
Returning to
Returning to
In some embodiments, as part of the steps performed by the facility when it is enabled for a page (not shown), it monitors for the user clicking on the extraction mode button 731, and, in response, toggles the extraction mode on or off, such that the process of selecting and highlighting a node for extraction is disabled or enabled.
In some embodiments, rather than selecting in step 606 the node under the mouse pointer having the smallest area, the facility uses the following logic to select a node based upon the location of the mouse pointer: The facility initializes a score for each node on the list to be initially set equal to 1. If the mouse pointer coordinates indicate that the mouse pointer is within a node on the list, then the facility reduces the score for the node containing the mouse pointer to the value 0.1. For each node on the list, the facility multiplies the node's score by both (1) the square of the distance from the mouse pointer to the upper-left corner of the node and (2) the square root of the node's area. The facility then selects the node on the list having the lowest score.
Again, the reset class is intended to establish a common set of default CSS style attribute values that correspond to typical browser default values for both the portion copy subtree constructed in the DOM of the page from which the portion is extracted, and the portion copy subtree that is “reconstituted” in the portion destination page. In particular, the attribute values of the reset class are chosen to match, as closely as possible, the attributes with which web pages are most commonly rendered, to minimize the number of inline attributes established in the portion copy subtree by the facility. The sample reset class shown in Table B has the name “clipping”. In some embodiments (not shown), the facility uses a more obscure name, or randomly generates a name, in order to decrease the likelihood that the reset class's name will collide with a class that is native to the page.
In step 802, the facility calls an extract node function for extracting a single node of a webpage portion being extracted. The extract node function has two parameters: source node, i.e., the node of the original portion in the page to copy, and destination parent node, i.e., the node of the portion copy being generated in the DOM that is to be the parent of the copy made of the source node. Details of the extract node function are discussed below in connection with
In step 902, the facility selectively copies inline attribute values from the source node to the destination node. In various embodiments, the selective copying of inline attribute values uses one or more of the rules shown below in Table C.
In step 903, for each style attribute other than the visibility, height, and width style attributes, the facility determines a computed value fir that attribute in both the source node and the destination node, and compares these two computed values for the attribute. If the compared values do not match, the facility adds an inline attribute to the destination node setting the value of the attribute to the value computed for the attribute in the source node. Table D below shows the results of this comparison between destination span node 1043 shown in
It can be seen in line 45 that the values computed for the font-style attribute in the source and destination nodes do not match. Accordingly, in step 903, the facility establishes for destination span node 1043 an inline attribute value of font-style=“italic” to match the value computed for this attribute in the source node.
In steps 904-908, the facility loops through each of the children of the source node in the order in which they occur in the DOM. For example, where the extract function is called for source node 543, in steps 904-908, the facility loops through children nodes 571, 572, and 573 of source node 543 in this order. In step 905, if the child node is a text node, then the facility continues in step 906, else a facility continues in step 907. For example, child node 571 is a text node, while child node 572 is not a text node. In step 906, the facility copies the text node to be a child of the destination node. For example, where the current child node is text node 571, the facility creates a copy of text node 571 as a child of destination span node 1043, shown in
Returning to
In step 803, the facility generates html corresponding the subtree of the DOM defined by the child of the reset node. In the case of the example, the child of the reset node that is the root of this subtree is p node 1032. Table E below shows the html generated by the facility in step 803 in the example.
It can be seen that a <p> tag from lines 5-13 corresponds to p node 1032, the root of the copy subtree. The facility has established inline attributes for this node for several different attributes: font-family, line-height, margin-bottom, margin-top, width, padding, and border. As every other node in the copy subtree descends from p node 1032, these inline attributes are inherited by most of the other nodes in the copy subtree, and need not be repeated there. The text on lines 7-8 corresponds to text node 1142. The span tag from line 8 to line 12 corresponds to span node 1043, and has the inline attributes discussed above. The text on lines 9-10 corresponds to text node 1137. The a tag on lines 10-11 corresponds to a node 1172. The text on lines 11-12 corresponds to text node 1173. The text on line 12 corresponds to text node 1144. The b tag on lines 12-13 corresponds to b node 1145. The text inside the b node corresponds to text node 1174. The text on line 13 after the b node corresponds to text node 1146.
In step 804, the facility compresses the html generated for the portion copy in step 803. In various embodiments, the facility uses one or more of the rules shown below in Table F.
In step 805, the facility uploads the compressed html generated in step 804 to the portion extraction server computer system for storage in the portion table maintained on the portion extraction server computer system on behalf of the user of the client computer system. After step 805, these steps conclude.
While
In some embodiments, the facility enables the user to select multiple subtrees within the page for extraction, such as by using user interface techniques such as click-and-drag and shift-click. In such embodiments, the facility constructs multiple copy subtrees, each corresponding to one of the subtree selected in the original, as children of the reset node. In some embodiments, the facility reestablishes and rescores the list of nodes in the page when the page is reflowed by the browser, or when new content streams into the page.
In some embodiments, the facility performs additional analysis to identify nodes in the destination subtree having a particular type to which the facility has assigned or would assign the same inline attributes and values. In these embodiments, the facility establishes a special class for nodes of this type that express these attribute values, so that the inline attributes can be removed from the nodes themselves.
In some embodiments, the facility performs additional analysis to identify outermost layout attributes of the source subtree that are superfluous in the destination subtree. For example, the source subtree may have a large right margin value to make sure that it is visually separated from another part of the source document that is not present in the extracted portion. In this case, the large margin in the source subtree can be reduced or eliminated in the destination subtree.
In some embodiments, the facility enables the author of a page to code the source for the page in a manner that directs aspects of the facility's extraction of portions from the page. In some embodiments, the author of a page is able to explicitly designate which nodes in the page are eligible for extraction. For example, for a recipe page in which each recipe is presented as a stylized index card, the author may wish to designate as candidates for extraction only those nodes corresponding to a whole index card to better preserve the fidelity of portions extracted from this page. In some embodiments, the author performs this explicit designation by attaching a special class to only those nodes that are to be eligible for extraction by the facility. In the case of the sample page shown above in Table A, the author of the page would add “class=clipboard_region” inside the <p> open tags that occur on lines 21, 23, and 31 to limit the facility to extracting only any of the entire paragraphs, rather than nodes corresponding to only a portion of a paragraph.
In some embodiments, the author of a page is able to code a page in a way that specifies metadata to be associated with portions extracted from the page by the facility. For example, the author of a page might wish to ensure that portions extracted from the page have a metadata attribute associated with them that identifies the subject matter category to which the portion relates. This subject matter category can then be used by the facility in the destination page in order to select, subset, sort, etc. extracted portions based upon their subject matter category. As one example, the author of a cinema page may wish to associate the category “movies” with the page as a whole, and more specific categories such as “movies—horror”, “movies—documentary”, etc. with sections of the page directed to individual movies that fall into those categories. In some embodiments, in order to do so, the author adds the inline attribute “clipboard_category=‘movies’” to the body tag for the page, adds the inline attribute “clipboard_category=‘movies—horror’” to the open tag for a node that the author wishes to have this more specific category, etc. The facility, in generating an extracted portion, copies these specialized metadata attributes to the extracted portion along with formatting attributes. Also, in some embodiments, the presence of any of these metadata attributes in an extracted portion causes the facility to add the metadata attribute and its value to the portion table entry for the portion (not shown), enabling the facility to more easily use this additional metadata to select, sort, subset, etc. the extracted portions represented in the portion table. In various embodiments, the author is able to specify values for various metadata attributes in this way, in some cases metadata attributes that are arbitrarily selected by the author.
It will be appreciated by those skilled in the art that the above-described facility may be straightforwardly adapted or extended in various ways. For example, in a variety of embodiments, the facility is capable of extracting portions from documents other than html documents, including both documents in other tag languages and non-tag language documents. In various embodiments, the facility uses a variety of techniques to enable the user to select one or more portions to be extracted, and a variety of techniques to make extracted portions available and usable to this user and/or other users. While the foregoing description makes reference to particular embodiments, the scope of the invention is defined solely by the claims that follow and the elements recited therein.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216133 | Masthoff | Apr 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6236978 | Tuzhilin | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6288717 | Dunkle | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6411949 | Schaffer | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec et al. | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee | Nov 2004 | B1 |
6826745 | Coker | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6907566 | McElfresh et al. | Jun 2005 | B1 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya et al. | Jun 2006 | B1 |
7069497 | Desai | Jun 2006 | B1 |
7100111 | McElfresh et al. | Aug 2006 | B2 |
7181758 | Chan | Feb 2007 | B1 |
7269590 | Hull et al. | Sep 2007 | B2 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7360166 | Krzanowski | Apr 2008 | B1 |
7373599 | McElfresh et al. | May 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7406501 | Szeto et al. | Jul 2008 | B2 |
7412455 | Dillon | Aug 2008 | B2 |
7454509 | Boulter et al. | Nov 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7562287 | Goldstein et al. | Jul 2009 | B1 |
7599935 | La Rotonda et al. | Oct 2009 | B2 |
7603331 | Tuzhilin et al. | Oct 2009 | B2 |
7603483 | Psounis et al. | Oct 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7644122 | Weyer et al. | Jan 2010 | B2 |
7668861 | Steven | Feb 2010 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7730478 | Weissman | Jun 2010 | B2 |
7747648 | Kraft et al. | Jun 2010 | B1 |
7779039 | Weissman et al. | Aug 2010 | B2 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
7827208 | Bosworth et al. | Nov 2010 | B2 |
7853881 | Assal et al. | Dec 2010 | B1 |
7945653 | Zuckerberg et al. | May 2011 | B2 |
8005896 | Cheah | Aug 2011 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8073850 | Hubbard et al. | Dec 2011 | B1 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095531 | Weissman et al. | Jan 2012 | B2 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8103611 | Tuzhilin et al. | Jan 2012 | B2 |
8150913 | Cheah | Apr 2012 | B2 |
8209308 | Rueben et al. | Jun 2012 | B2 |
8209333 | Hubbard et al. | Jun 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510045 | Rueben et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050022115 | Baumgartner et al. | Jan 2005 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20070266342 | Chang et al. | Nov 2007 | A1 |
20080168345 | Becker | Jul 2008 | A1 |
20080243910 | Meadows | Oct 2008 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20080307301 | Decker et al. | Dec 2008 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20090083300 | Wake et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20090210780 | Oshima | Aug 2009 | A1 |
20110218958 | Warshavsky et al. | Sep 2011 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20120005429 | Kalasapur | Jan 2012 | A1 |
20120042218 | Cinarkaya et al. | Feb 2012 | A1 |
20120233137 | Jakobson et al. | Sep 2012 | A1 |
20120290407 | Hubbard et al. | Nov 2012 | A1 |
20130124684 | Zheng | May 2013 | A1 |
20130155463 | Jin | Jun 2013 | A1 |
20130212497 | Zelenko et al. | Aug 2013 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20130247216 | Cinarkaya et al. | Sep 2013 | A1 |
20140359537 | Jackobson et al. | Dec 2014 | A1 |
20150006289 | Jakobson et al. | Jan 2015 | A1 |
20150007050 | Jakobson et al. | Jan 2015 | A1 |
20150095162 | Jakobson et al. | Apr 2015 | A1 |
20150142596 | Jakobson et al. | May 2015 | A1 |
20150172563 | Jakobson et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
WO 9844402 | Oct 1998 | WO |
WO 0217162 | Feb 2002 | WO |
Entry |
---|
Microsoft, “Control the formatting when you paste text”, Office Support, retrieved on Mar. 17, 2014, retrieved from the Internet <URL: http://office.microsoft.com/en-us/word-help/control-the-formatting-when-you-paste-text-HA010215708.aspx>. |
“Google Plus Users”, Google+Ripples, Oct. 31, 2011 [retrieved on Feb. 21, 2012 from Internet at http://www.googleplusers.com/google-ripples.html], 3 pages. |