1. Field of the Invention
This invention relates to extraction cleaning. In one of its aspects, the invention relates to extraction cleaning with enhanced cleaning performance. In another of its aspects, the invention relates to an extraction cleaning machine wherein the dwell time for cleaning fluid applied to a surface to be cleaned is constant regardless of the direction of movement of the cleaning machine. In another of its aspects, the invention relates to a method for cleaning a carpet or other floor surface wherein a cleaning module with a suction nozzle is moved forwardly and rearwardly along the surface to be cleaned and cleaning fluid is applied to the surface after suction is applied to the surface to equalize the dwell time of the cleaning fluid regardless of the direction of movement of the cleaning module along the surface to be cleaned.
2. Description of the Related Art
Extraction cleaning machines have been used for removing dirt from surfaces such as carpeting and hard surface floors. The extraction cleaning machines can be in the form of a canister-type unit, as disclosed in U.S. Pat. No. 5,237,720 to Blase et al., or an upright unit, as disclosed in U.S. Pat. No. 6,131,237 to Kasper et al.
Either type of unit contains a fluid delivery system for depositing a quantity of cleaning solution on the surface through a spray dispenser assembly. The cleaning solution dissolves the dirt, removes the dirt from the surface to be cleaned, and places the dirt in suspension, which aids in the vacuum removal of the dirt from the surface. After a period of time, the cleaning solution is removed through a vacuum process. The longer the cleaning solution remains on the surface, the more effective the cleaning solution is in cleaning the surface.
Conventional extraction cleaning machines have a spray dispenser assembly which is typically adjacent to and to the rear of the suction nozzle. As the extraction cleaning machine is moved in a forward direction, the cleaning fluid will be deposited on the surface to be cleaned behind the suction nozzle, leaving a wetted surface behind it. When the extraction cleaning machine is moved rearwardly, the suction nozzle trails the spray dispenser and removes the cleaning fluid almost as soon as it is applied to the surface. Consequently, the cleaning solution has a different dwell time on the surface between the forward and rearward stroke of the machine. Further, the surface is scrubbed with a brush in the forward direction after the cleaning solution is deposited and is scrubbed with a brush before application of the cleaning solution on the rearward stroke. Accordingly, the cleaning fluid may not remain on the surface to be cleaned a sufficient time to most effectively clean the surface on the rearward stroke of the machine.
U.S. Pat. No. 4,014,067 to Bates discloses a carpet cleaner having a pair of spray dispensers on either side of a scrubbing brush and behind the suction nozzle.
U.S. Pat. No. 6,681,442 to Coates et al., issued Jan. 27, 2004, discloses an extractor having a spray dispenser for depositing different liquids to a surface wherein the liquid delivery is controlled by the direction of movement of the extractor.
A method for treating a surface upon which a body can be supported according to the invention includes the steps of applying a first quantity of fluid to the surface along a first direction, subsequently applying a second quantity of fluid to the surface along a second direction generally opposite the first direction, extracting only the first quantity of fluid from the surface along the second direction contemporaneously with applying the second quantity of fluid and leaving the second quantity of fluid on the surface along the second direction, and extracting only the second quantity of fluid from the surface along the first direction contemporaneously with applying of the first quantity of fluid and leaving the first quantity of fluid on the surface along the first direction.
Further according to the invention, a method for cleaning a surface upon which a body can be supported of dirt and debris includes the steps of sequentially moving a cleaning module along the surface in a first direction and along the surface in a second direction generally opposite the first direction, sequentially applying first and second volumes of cleaning fluid directly to a portion of the surface while the cleaning module sequentially moves along the portion of the surface in the first and second directions, respectively, allowing the dirt and debris to be treated with the first and second volumes of cleaning fluid to facilitate removal of the dirt and debris from the portion of the surface, while the cleaning module moves along the portion of the surface in the first direction, recovering dirt, debris, and only the second volume of cleaning fluid previously applied to the portion of the surface during the movement of the cleaning module in the second direction, and while the cleaning module moves along the portion of the surface in the second direction, recovering dirt, debris, and only the first volume of cleaning fluid previously applied to the portion of the surface during the movement of the cleaning module in the first direction.
Further according to the invention, a method for treating a surface upon which a body can be supported includes the steps of traversing a portion of the surface along a first direction while applying a first volume of fluid to the portion of the surface, subsequently traversing the portion of the surface along a second direction generally opposite the first direction while applying a second volume of fluid to the portion of the surface, while traversing the portion of the surface along the first direction and applying the first volume of fluid to the portion of the surface, contemporaneously extracting only fluid applied to the portion of the surface while traversing along the second direction, and while traversing the portion of the surface along the second direction and applying the second volume of fluid to the portion of the surface, contemporaneously extracting only fluid applied to the portion of the surface while traversing along the first direction.
In the drawings:
Referring now to the drawings and to
As illustrated in
The base module 12 includes a housing 20 having a front portion 16. The housing 20 forms an enclosure for a motor 24 operating a well-known liquid vacuum system (not shown), an agitation assembly 26, a liquid delivery system comprising a plurality of outlet dispensers 40, 42 for applying liquid to the carpet, liquid reservoirs, and the like.
As illustrated in
Immediately forward of the suction nozzle 28 is a second assembly of outlet dispensers 42 for spraying cleaning solution onto the surface to be cleaned. The number of outlet dispensers 42 can be selected upon, for example, the pattern of liquid delivery from each dispenser, the width of the cleaning machine 10, and the desired coverage of the spray pattern from each dispenser 42. The dispensers 42 are fluidly connected in a well-known manner to the fluid delivery system of the extraction cleaning machine 10. The dispensers 40, 42 are positioned relative to the suction nozzle 28 so that when the base module 12 is moved in a forward direction, fluid from the first dispenser assembly 40 remains on the surface to be cleaned until the suction nozzle 28 passes over the wetted area during a rearward pass of the base module 12. Similarly, fluid from the second dispenser assembly 42 when the base module 12 is moved in a rearward direction will remain on the surface until the suction nozzle 28 passes over the wetted area during a forward pass of the base module 12.
The valve 48 is operably connected to a suitable control device 54 through a control connection 56. The control device 54 is capable of operating the valve 48 in response to an input signal corresponding to the selection of the nozzle assembly 40, 42 through which cleaning fluid is to be delivered. The control device 54 is operably connected through a switch connection 60 to a switch 58 which is used to select the dispenser assembly 40, 42 through which cleaning fluid is to be delivered. The switch 58 can comprise a well-known hand-operated toggle switch which can toggle between a first actuating position, a second actuating position, and an off position. The switch 58 can also comprise a mechanism tied to the movement of the base module 12, such as a magnet-based sensor to generate an actuation signal indicating the direction of rotation of the wheels 22 such as a magnet attached to the wheels that moves past a sensor during rotation of the wheels. Similarly, a switch similar to that described in U.S. Pat. No. 6,681,442 to Coates et al. can automatically generate a first control signal when the handle assembly 14 is telescopically moved in a first direction corresponding to forward movement of the base module 12, and a second control signal when the handle assembly 14 is telescopically moved in a second direction corresponding to rearward movement of the base module 12.
As illustrated in
The use of dual alternating dispenser assemblies for delivery of cleaning solution to the surface being cleaned can facilitate the cleaning of the surface by leaving cleaning solution on the surface for a longer period of time than with a conventional single fluid dispensing mechanism. Cleaning fluid can be discharged through the rear spray dispensers onto the surface to be cleaned during forward travel of the extraction cleaning machine, to be scrubbed by the agitation assembly. Rearward travel of the extraction cleaning machine will result in the cleaning fluid deposited during the forward pass being extracted through the suction nozzle in a well-known manner. However, additional cleaning fluid will be deposited through the forward spray dispensers during the rearward travel of the extraction cleaning machine, thereby increasing the period of time during which cleaning fluid is applied to the surface being cleaned. This additional time enables the cleaning fluid to more effectively clean the surface.
The use of an automatic dispensing selection switching device can deliver the cleaning solution to the selected dispensing assembly without the necessity of operator input. The use of the switching device will ensure that the cleaning fluid is properly applied to the surface to be cleaned.
With a canister-type cleaning machine having a canister base module and a wand, the liquid vacuum system, the cleaning fluid reservoir 44, the control device 54, and the valve 48 can be housed in the canister. The suction nozzle 28 and the outlet dispensers 40, 42 can be housed in the wand head in a configuration similar to that described and illustrated for the upright extraction cleaning machine 10. The switch 58 can be placed at a suitable position on the wand. Supply lines extending from the wand head to the canister fluidly interconnect the outlet dispensers 40, 42 with the cleaning fluid reservoir 44, the control device 54, and the valve 48.
The switch 58 would be tied to the movement of the wand, rather than the base module. A magnet-based sensor could be tied to the direction of rotation of wheels in the head, such as a magnet attached to the wheel that moves past a sensor during rotation of the wheel. Alternatively, a switch similar to that described in U.S. Pat. No. 6,681,442 to Coates et al. could generate signals corresponding to telescopic movement of the wand in a forward or rearward direction.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. For example, the invention has been described with respect to the delivery of cleaning fluid to a floor surface through spray dispensers wherein the cleaning fluid is typically pressurized by a pump. It is within the scope of the invention to deliver the cleaning fluid to the surface to be cleaned by other means, such as a gravity-fed system with distribution bars instead of spray nozzles and a pump.
Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the invention which is defined in the appended claims.
This application is a continuation of U.S. application Ser. No. 11/275,472, filed Jan. 6, 2006, now U.S. Pat. No. 7,904,990, issued Mar. 15, 2011, which claims the benefit of U.S. provisional application Ser. No. 60/593,360, filed Jan. 7, 2005, both of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4014067 | Bates | Mar 1977 | A |
4167799 | Webb | Sep 1979 | A |
4295243 | King | Oct 1981 | A |
5237720 | Blase et al. | Aug 1993 | A |
6131237 | Kasper et al. | Oct 2000 | A |
6453506 | Sumner | Sep 2002 | B1 |
6513188 | Zahuranec et al. | Feb 2003 | B2 |
6681442 | Coates et al. | Jan 2004 | B2 |
7392566 | Gordon et al. | Jul 2008 | B2 |
20020092115 | Zahuranec et al. | Jul 2002 | A1 |
20030159232 | Hekman et al. | Aug 2003 | A1 |
20050091782 | Gordon et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60593360 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11275472 | Jan 2006 | US |
Child | 12389948 | US |