1. Field of the Invention
The invention relates to an upright extraction cleaning machine incorporating a flexible tank for holding a liquid. In one of its aspects, the invention relates to an upright extraction cleaning machine incorporating multiple collapsible or flexible tanks for holding clean water, dirty water, detergent, oxidizing solution and carpet protectant.
2. Description of the Related Art
An upright extraction cleaning machine incorporating a single flexible bladder for holding clean water in a rigid recovery tank is disclosed in U.S. Pat. No. 6,230,362. Other prior art references that disclose extraction cleaning machines with a flexible bladder forming a clean water tank or a recovery tank in a rigid recovery tank or clean water tank, respectively, include the U.S. Pat. No. 4,156,952 to Lynch, Jr., U.S. Pat. No. 5,735,017 to Barnes et al., U.S. Pat. No. 3,426,381 to Segesman and U.S. Pat. No. 3,491,398 to Segesman.
According to the invention, an extraction cleaning machine comprises a housing, a cleaning solution dispensing system mounted to the housing for depositing a cleaning solution on a surface to be cleaned, and a fluid recovery system mounted to the housing for recovering expended cleaning solution from the surface to be cleaned. The dispensing system includes a dispensing tank for holding solution to be dispensed. The recovery system also includes a recovery tank for recovered solution. The recovery tank is flexible to expand as recovered fluid is received therein. The dispensing tank comprises a flexible bladder that is collapsible as cleaning fluid is dispensed therefrom. The dispensing tank and the recovery tank are adjacent to one another in a common space and positioned so that the dispensing tank collapses as the recovery tank expands.
In one embodiment, the cleaning solution dispensing system further comprises additional tanks for detergent and carpet treatment. Preferably, the additional tanks for detergent and carpet treatment each comprise a flexible bladder that collapses as solution therein is dispensed therefrom.
In a further embodiment, the tanks are mounted in a confined shell in the housing. In one embodiment, the tanks are both located in a base module of an upright deep cleaner. In another embodiment the tanks are both located in an upright handle in an upright deep cleaner.
The tanks can be arranged side by side in horizontal alignment or in vertically stacked alignment.
In the drawings:
Referring now to
The cleaning solution dispensing system 110 includes at least one and preferably a plurality of flexible supply tanks or bladders 112, 116, 120 for holding any of the number of desired fluids for dispensing onto a surface to be cleaned. The fluids can include water or other cleaning or protecting agents such as detergent, anti-allergens, carpet protectant, an oxidizing solution and other commonly known carpet and upholstery treatment solutions.
Each of the supply tanks or bladders 112, 116, 120 is fluidly connected to a solution pump 124 through respective adjustable valves 114, 118 and 122. The pump 124 is further fluidly connected to a dispensing nozzle 128 through an actuation trigger valve 126.
Upon actuation of the trigger 126, the fluids released to the pump 124 by the valves 114, 118, 122 are sprayed onto the surface being cleaned through the dispensing nozzle 128. As the various fluids are dispensed, the supply tanks 112, 116, 120 will tend to collapse. The volume occupied by the supply tanks 112, 116, 120 will tend to decrease in proportion to the decrease in the volume of fluid in the tanks. Each of the supply tanks 112, 116 and 120 has an opening 125, typically, covered by a cap for filling the tanks.
The fluid recovery system 130 shown in
The liquid separated from the exhaust air flow is retained in a flexible recovery tank or bladder 138. The recovery tank 138 can be fluidly connected to a separately formed air/liquid separator 136, or, in some embodiments, the recovery tank 138 and air/liquid separator 136 can be integrally formed with the recovery tank. Typically, the recovery tank can have a removable drain plug 139 for draining the tank.
As the fluid recovery system 130 draws dirty solution from a surface being cleaned, the liquid separated from the air flow is deposited in the recovery tank 138. The flexible recovery tank 138 will increase in volume in proportion to the volume of liquid deposited therein. The volume of liquid deposited in the recovery tank 138 will be equal to or less than the volume of liquid dispensed by the solution tanks 112, 116, 120. Some volume of the liquid dispensed generally remains on the surface being cleaned or evaporates. The recovery tank is preferably biased into the expanded condition. In one embodiment, the natural resilience of the material that forms the recovery tank 138 biases the recovery tank into the expanded condition. In another embodiment, a spring can be placed inside the recovery tank to bias the recovery tank into the expanded condition.
In the extraction cleaning system 100 of
Referring now to
A suction nozzle 142 placed proximate to a surface to be cleaned is fluidly connected to an air/liquid separator 146. The air/liquid separator 146 is further fluidly connected to a suction source 144 and to a flexible recovery tank or bladder 148. An exhaust of the suction source 144 is vented to the atmosphere.
As recovered fluid is drawn through the suction nozzle 142 and into the air/liquid separator 146, liquid contained in the recovered fluid is separated from the air and deposited into the recovery tank 148. The air, now substantially devoid of liquid, is drawn to the suction source 144 and exhausted to atmosphere.
As discussed with respect to the extraction cleaning system 100 of
Referring now to
The flexible tanks/bladders 112, 116, 120, 148 each have a substantially horizontal orientation so that they can be stacked one upon the other and carried within the rigid housing 200. In this arrangement, the recovery tank 148 presses down upon the other bladders as it fills with recovered liquid. It is also anticipated that the assembly 150 further comprises a weight or spring (not shown) bearing upon the solution dispensing tanks 112, 116, 120 to encourage their collapse upon dispensing their solution and to facilitate expansion of the uppermost bladder 148.
Referring now to
The assembly 160 further comprises flexible tanks/bladders 112, 116, 120, 148, each having a substantially vertical orientation and arranged side by side within rigid housing 200. The assembly 160 can include spring elements (not shown) bearing upon the solution dispensing bladders 112, 116, 120 to encourage their collapse upon dispensing the solution and to facilitate expansion of the recovery tank/bladder. For instance, the spring elements are biased against the bladders 112, 116, 120 away from bladder 148. It is also anticipated that air pressure developed by the suction source, particularly the exhaust of the suction source, can be directed into the housing 200 or the recovery bladder 148 to aid in expansion of the recovery bladder and/or collapse of the solution dispensing bladders. This pressure on the solution dispensing bladders by the spring elements can be sufficient to pressurize the cleaning solution so that it can flow to the dispensing nozzle 128 without the need for the pump 124. Thus, the pump 124 is optional in this embodiment.
Referring now to
Referring to
In the embodiments illustrated in
Each of the tanks 112, 116, 120 and 148 includes inlet openings and outlet ports for filling and emptying the tanks, respectively. The inlet openings of each solution dispensing tank 112, 116, 120 and 148 is for the user to fill the solution dispensing tank with the appropriate fluid. The outlet ports of the dispensing tanks are fluidly connected to the solution dispensing system. The inlet port of the recovery tank 148 is fluidly connected to the recovery system, while the outlet port is accessible for emptying the recovery tank by the user. An air/liquid separator 24 that can be, but need not be, the separator disclosed in U.S. Pat. No. 6,167,586 is mounted in the lid 210 for separation of the soiled liquid from air.
Referring to
Each of the tanks 112, 116, 120 and 148 includes inlet openings and outlet ports (not shown) for filling and emptying the tanks respectively. The inlet openings of each solution dispensing tank enable the user to fill the solution dispensing tank with the appropriate fluid. The outlet ports of the dispensing tanks are fluidly connected to the solution dispensing system. The inlet opening of the recovery tank 148 is fluidly connected to the recovery system, while the outlet port is accessible for emptying the recovery tank 148 by the user. Referring to
In the various embodiments depicted in
In a preferred embodiment, each of the flexible bladder assemblies previously described is in communication with a socket formed in the portable upright extraction cleaning unit. A plurality of receivers corresponding to the fittings on outlet openings of the flexible bladders are located along the bottom wall of the socket. In operation, the flexible bladder assembly is lifted by the operator such as by the handle 212 and carried to a convenient workspace where the bladders are filled with desired liquids, cleaning agents, or upholstery protectants through respective fill openings in each flexible bladder. The recovery tank can also be emptied at this time. Once filled, the flexible bladder assembly is carried by the handle 212 and placed in the socket area of the upright extraction cleaner so that the fittings on the outlet openings correspond with and communicate with receivers in the extraction cleaner to fluidly connect the tanks with a respective dispensing or recovery system in the same manner as described in U.S. Pat. No. 6,167,586.
Although the invention has been described with respect to an upright extractor in which a handle is pivotally mounted to a base, the invention is equally applicable to other types of extractors, including hand held extractors and canister extractors, the later of which is disclosed, for example, in U.S. Pat. No. 5,735,017.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible within the scope of the forgoing description of the drawings and the specification without departing from the spirit of the invention, which is defined in the accompanying claims.
This application claims the benefit of U.S. Provisional Application No. 60/326,322, filed on Oct. 1, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3426381 | Segesman | Feb 1969 | A |
3491398 | Segesman | Jan 1970 | A |
4156952 | Lynch, Jr. | Jun 1979 | A |
4741069 | Helm et al. | May 1988 | A |
5526547 | Williams et al. | Jun 1996 | A |
5735017 | Barnes et al. | Apr 1998 | A |
5761763 | McAllise et al. | Jun 1998 | A |
5839159 | Karr et al. | Nov 1998 | A |
5983448 | Wright et al. | Nov 1999 | A |
6073300 | Zahuranec et al. | Jun 2000 | A |
6158081 | Kasen et al. | Dec 2000 | A |
20020116783 | Giddings et al. | Aug 2002 | A1 |
20030070249 | Lehman et al. | Apr 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
60326322 | Oct 2001 | US |