The invention relates to recovery of catalyst and ligand from a hydrocyanation reaction product mixture comprising organic dinitriles using liquid-liquid extraction.
It is well known in the art that complexes of nickel with phosphorous-containing ligands are useful as catalysts in hydrocyanation reactions. Such nickel complexes using monodentate phosphites are known to catalyze hydrocyanation of butadiene to produce a mixture of pentenenitriles. These catalysts are also useful in the subsequent hydrocyanation of pentenenitriles to produce adiponitrile, an important intermediate in the production of nylon. It is further known that bidentate phosphite and phosphinite ligands can be used to form nickel-based catalysts to perform such hydrocyanation reactions.
U.S. Pat. No. 3,773,809 describes a process for the recovery of Ni complexes of organic phosphites from a product fluid containing organic nitriles produced by hydrocyanating an ethylenically unsaturated organic mononitrile such as 3-pentenenitrile through extraction of the product fluid with a paraffin or cycloparaffin hydrocarbon solvent. Similarly, U.S. Pat. No. 6,936,171 to Jackson and McKinney discloses a process for recovering diphosphite-containing compounds from streams containing dinitriles.
U.S. Pat. No. 4,339,395 describes the formation of an interfacial rag layer during extended periods of continuous extraction of certain phosphite ligands. The '395 patent notes that the interfacial rag hinders, if not halts, the phase separation. Because the process is operated continuously, the rag must be removed continuously from the interface as it accumulates to avoid interrupting operation. To solve this problem for the disclosed components, the '395 patent discloses the addition of minor amounts of substantially water-free ammonia.
This process recovers diphosphite-containing compounds from a mixture comprising diphosphite-containing compounds, organic mononitriles and organic dinitriles.
Disclosed is a process for recovering diphosphite-containing compounds from a feed mixture comprising diphosphite-containing compounds, organic mononitriles and organic dinitriles in a multistage countercurrent liquid-liquid extractor with extraction solvent comprising aliphatic hydrocarbon, cycloaliphatic hydrocarbon or a mixture of aliphatic and cycloaliphatic hydrocarbon, comprising:
wherein the first stage of the multistage countercurrent liquid-liquid extractor comprises a mixing section and a settling section, wherein a light phase separates from a heavy phase in the settling section, wherein the light phase comprises extraction solvent and extracted diphosphite-containing compounds, wherein the heavy phase comprises organic mononitriles and organic dinitriles, wherein a first portion of the light phase is withdrawn from the settling section and treated to recover diphosphite-containing compounds extracted into the light phase, and wherein a second portion of the light phase is withdrawn from the settling section and recycled to the mixing section of the first stage of the multistage countercurrent liquid-liquid extractor.
The mixing sections of the stages of the multistage counter current liquid-liquid extractor form an intimate mixture of unseparated light and heavy phase. This intimate mixture comprises an emulsion phase. The emulsion phase may or may not comprise particulate solid material. This emulsion phase separates into a light phase and a heavy phase in the settling sections of the stages, including the first stage. Accordingly, the settling sections of the stages will contain at least some emulsion phase located between the upper light phase and the lower heavy phase. This emulsion phase tends to reduce in size over time. However, in some instances settling takes longer than desired or the emulsion phase never fully separates into a light phase and a heavy phase. This separation problem may be particularly troublesome in the first stage of a multistage countercurrent liquid-liquid extractor.
Recycle of light phase from the separation section of the first stage to the mixing section of the first stage has been found to result in enhanced settling of the emulsion phase. For example, this recycle may result in the reduction of the size of the emulsion phase in the settling section, wherein the size of the emulsion phase is based upon the size of the emulsion phase in the absence of recycle of the light phase. Enhanced settling in the settling section may also be measured as an increased rate of settling, based upon the rate of settling in the absence of recycle of the light phase.
Another problem, which may be solved by recycle of light phase is formation of rag and build-up of a rag layer the settling section. Rag formation is discussed in U.S. Pat. Nos. 4,339,395 and 7,935,229. Rag comprises particulate solid material, and may be considered to be a form of an emulsion phase, which is particularly stable in the sense that it does not dissipate in a practical amount of time for conducting an extraction process. Rag may form in the mixing section or the settling section of an extraction stage, particularly the first stage of a multistage countercurrent liquid-liquid extractor. In the settling section, the rag forms a layer between the heavy phase and the light phase. The formation of a rag layer in the settling section inhibits proper settling of the heavy phase and the light phase. The formation of a rag layer may also inhibit the extraction of diphosphite-containing compounds from the heavy phase into the light phase. In a worst case scenario, rag can build up to extent of completely filling a separation section, necessitating shut down of the extraction process to clean out the settling section. It has been found that recycle of light phase from the settling section to the mixing section may reduce or eliminate the size of a rag layer or reduce its rate of formation, based upon the size and rate of formation of the rag layer in the absence of recycle of the light phase.
Accordingly, recycle of light phase from the settling section to the mixing section of the first stage of a multistage countercurrent extractor may achieve at least one of the following results: (a) a reduction in the size of an emulsion phase in the settling section, based upon the size of the emulsion phase in the absence of recycle of the light phase; (b) an increase in the rate of settling in the settling section, based upon the rate of settling in the absence of recycle of the light phase; (c) an increase in the amount of diphosphite-containing compounds in the light phase, based upon the upon the amount of diphosphite-containing compounds in the light phase in the absence of recycle of the light phase; (d) a partial or total reduction in the size of a rag layer in the settling section, based upon the size of a rag layer in the settling section in the absence of recycle of the light phase; and (e) reduction in the rate of formation of a rag layer in the settling section, based upon the rate of formation of a rag layer in the settling section in the absence of recycle of the light phase.
The second portion of the light phase, which is recycled in the first stage, may be recycled to the mixing section in the absence of an intervening step to remove diphosphite-containing compounds from the light phase.
The second portion of the light phase, which is recycled in the first stage, may be recycled to the mixing section in the absence of passing through another liquid-liquid extraction stage.
The extraction solvent feed from the second stage of the multistage countercurrent liquid-liquid extractor to the first stage of the multistage countercurrent liquid-liquid extractor may comprise at least 1000 ppm, for example, from 2000 to 5000 ppm, of diphosphite-containing compounds. The extraction solvent feed from the second stage may comprise at least 10 ppm, for example, from 20 to 200 ppm, of nickel.
An extraction solvent recycle ratio (ESRR) may be between 0.1 and 0.9, for example, between 0.2 and 0.8, wherein ESRR is defined by the ratio of X to Y, wherein X is the mass per unit time of the second portion of the light phase recycled to the mixing section of the first stage of the multistage countercurrent liquid-liquid extractor, and wherein Y is the mass per unit time of all extraction solvent charged to the mixing section of the first stage of the multistage countercurrent liquid-liquid extractor.
The diphosphite-containing compound may be a Ni complex with a diphosphite ligand selected from the group consisting of:
wherein in I, II and III, R1 is phenyl, unsubstituted or substituted with one or more C1 to C12 alkyl or C1 to C12 alkoxy groups; or naphthyl, unsubstituted or substituted with one or more C1 to C12 alkyl or C1 to C12 alkoxy groups; and wherein Z and Z1 are independently selected from the group consisting of structural formulae IV, V, VI, VII, and VIII:
and wherein
R2, R3, R4, R5, R6, R7, R8, and R9 are independently selected from the group consisting of H, C1 to C12 alkyl, and C1 to C12 alkoxy;
X is O, S, or CH(R10);
R10 is H or C1 to C12 alkyl;
and wherein
R11 and R12 are independently selected from the group consisting of H, C1 to C12 alkyl, and C1 to C12 alkoxy and CO2R13,
R13 is C1 to C12 alkyl, or C6 to C10 aryl unsubstituted or substituted with C1 to C4 alkyl;
Y is O, S, or CH(R14);
R14 is H or C1 to C12 alkyl;
wherein
R15 is selected from the group consisting of H, C1 to C12 alkyl, and C1 to C12 alkoxy and CO2R16,
R16 is C1 to C12 alkyl, or C6 to C10 aryl, unsubstituted or substituted with C1 to C4 alkyl,
and wherein
for structural formulae I through VIII, the C1 to C12 alkyl, and C1 to C12 alkoxy groups may be straight chain or branched.
At least one stage of the extraction may be carried out above 40° C.
At least one stage of extraction may contain a Lewis base.
If at least one stage of extraction contains a Lewis base, the Lewis base may be a monodentate triarylphosphite, wherein the aryl groups are unsubstituted or substituted with alkyl groups having 1 to 12 carbon atoms, and wherein the aryl groups may be interconnected.
The Lewis base may optionally be selected from the group consisting of:
If the Lewis base is a polyamine, the polyamine may comprise at least one selected from hexamethylene diamine, and dimers and trimers of hexamethylene diamine, for example, bis-hexamethylene triamine.
The Lewis base may optionally comprise a basic ion exchange resin, for example, Amberlyst 21® resin.
One example of a suitable cyclic alkane extraction solvent is cyclohexane.
At least a portion of the process may be carried out in an extraction column or a mixer-settler.
The feed mixture may be an effluent stream from a hydrocyanation process, for example, a process for hydrocyanating 3-pentenenitrile, a process for the single hydrocyanation of 1,3-butadiene to pentenenitriles or a process for the double hydrocyanation of 1,3-butadiene to adiponitrile.
The processes of the present invention involve methods for recovering diphosphite-containing compounds from a mixture comprising diphosphite-containing compounds and organic dinitriles, using liquid-liquid extraction.
Three stages are depicted in
In
A feed comprising diphosphite-containing compounds is fed into the stage 1 mixer and settler via line 20. The feed further comprises a mixture comprising organic mononitriles and dinitriles, which is immiscible with the extraction solvent. In stage 1, a portion of the diphosphite-containing compounds is extracted into the extraction solvent which exits stage 1 via line 18. The immiscible dinitrile and mononitrile mixture or the heavy phase is removed from the stage 1 mixing and settling section by line 22 and is passed into the stage 2 mixing and settling section. A portion of the diphosphite-containing compounds is extracted into the light phase in the stage 2 mixing and settling section. The heavy phase exits the stage 2 mixing and settling section by line 24. Similarly, if there are additional stages in gap 30 shown in
After the heavy phase passes through the first stage and any intermediate stages, it passes through the final stage mixing and settling section 3. In particular, the heavy phase is introduced into mixing and setting section 3 through line 26. After passing through the final stage mixing and settling section 3, the heavy phase exits via line 28.
A two-stage multistage countercurrent liquid-liquid extractor is represented in
Thus, it can be seen that the multistage countercurrent liquid-liquid extractor comprises two or more stages with countercurrent flow of extraction solvent and heavy phase.
Line 48 represents the flow of emulsion phase 46 from the mixing section 40 into the settling section 50. As depicted in
Although not shown in
The heavy phase 82 settles into collection section 74 and passes out of the column 70 through line 96. Light phase 86 settles in collection section 76 and passes from the column through line 92. A portion of this separated light phase is taken as a side stream through line 94 and is passed into line 80 for recycle into column 70. Alternatively, line 94 may be taken directly from collection section 76, instead of as a side stream from line 92. In another alternate embodiment, line 94 may flow directly into column 72 at a point near the bottom of the mixing section 72, instead of into line 80.
The mixed phase 140 flows into the settling section 112 as an overflow from the mixing section 110. This emulsion phase 140 is prevented from flowing directly into the light phase 144 by baffle plate 142. As settling occurs in settling section 112, the emulsion phase 140 decreases in volume, the volume of the light phase 144 increases, and the volume of the heavy phase 146 increases. Heavy phase 146 is removed from settling section 112, in particular from chamber 118, via line 152 and light phase 144 is removed from settling section 112, in particular from chamber 118, via line 150. A portion of the light phase removed through line 150 is taken as a side stream through a line not shown in
It is desirable for both a mononitrile and a dinitrile to be present in the countercurrent contactor. For a discussion of the role of monodentate and bidentate ligand in extraction of hydrocyanation reactor effluent streams, see U.S. Pat. No. 3,773,809 to Walter and U.S. Pat. No. 6,936,171 to Jackson and McKinney.
For the process disclosed herein, suitable ratios of mononitrile to dinitrile components include 0.01 to 2.5, for example, 0.01 to 1.5, for example 0.65 to 1.5.
Maximum temperature is limited by the volatility of the hydrocarbon solvent utilized, but recovery generally improves as the temperature is increased. Examples of suitable operating ranges are 40° C. to 100° C. and 50° C. to 80° C.
The controlled addition of monophosphite ligands may enhance settling. Examples of monophosphite ligands that may be useful as additives include those disclosed in Drinkard et al U.S. Pat. Nos. 3,496,215, 3,496,217, 3,496,218, 5,543,536, and published PCT Application WO 01/36429 (BASF).
The addition of Lewis base compounds to a mixture comprising diphosphite-containing compounds, organic mononitriles and organic dinitriles may enhance settling, especially when the mixture comprises a Lewis acid, such as ZnCl2. The addition may take place either before or during an extraction process in a multistage countercurrent extractor. Examples of suitable weak Lewis base compounds include water and alcohols. Suitable stronger Lewis base compounds include hexamethylene diamine, and dimers and trimers of hexamethylene diamine, ammonia, aryl- or alkyl amines, such as pyridine or triethylamine, or basic resins such as Amberlyst 21°, a commercially available basic resin made by Rohm and Haas. The addition of Lewis base may reduce or eliminate any inhibiting effect of Lewis acid on catalyst recovery.
The diphosphite-containing compounds extracted by the processes described herein are also referred to herein as bidentate phosphorus-containing ligands. These extracted ligands comprise free ligands (e.g., those which are not complexed to a metal, such as nickel) and those which are complexed to a metal, such as nickel. Accordingly, it will be understood that extraction processes described herein are useful for recovering diphosphite-containing compounds which are metal/ligand complexes, such as a complex of zero valent nickel with at least one ligand comprising a bidentate-phosphorus containing ligand.
Suitable ligands for extraction are bidentate phosphorous-containing ligands selected from the group consisting of bidentate phosphites, and bidentate phosphinites. Preferred ligands are bidentate phosphite ligands.
Diphosphite Ligands
Examples of bidentate phosphite ligands useful in the invention include those having the following structural formulae:
wherein in I, II and III, R1 is phenyl, unsubstituted or substituted with one or more C1 to C12 alkyl or C1 to C12 alkoxy groups; or naphthyl, unsubstituted or substituted with one or more C1 to C12 alkyl or C1 to C12 alkoxy groups; and Z and Z1 are independently selected from the group consisting of structural formulae IV, V, VI, VII, and VIII:
and wherein
R2, R3, R4, R5, R6, R7, R8, and R9 are independently selected from the group consisting of H, C1 to C12 alkyl, and C1 to C12 alkoxy;
X is O, S, or CH(R10);
R10 is H or C1 to C12 alkyl;
and wherein
R11 and R12 are independently selected from the group consisting of H, C1 to C12 alkyl, and C1 to C12 alkoxy; and CO2R13,
R13 is C1 to C12 alkyl or C6 to C10 aryl, unsubstituted or substituted. with C1 to C4 alkyl;
Y is O, S, or CH(R14);
R14 is H or C1 to C12 alkyl;
wherein
R15 is selected from the group consisting of H, C1 to C12 alkyl, and C1 to C12 alkoxy and CO2R16;
R16 is C1 to C12 alkyl or C6 to C10 aryl, unsubstituted or substituted with C1 to C4 alkyl.
In the structural formulae I through VIII, the C1 to C12 alkyl, and C1 to C12 alkoxy groups may be straight chain or branched.
Another example of a formula of a bidentate phosphite ligand that is useful in the present process is that having the Formula X, shown below
Further examples of bidentate phosphite ligands that are useful in the present process include those having the Formulae XI to XIV, shown below wherein for each formula, R17 is selected from the group consisting of methyl, ethyl or isopropyl, and R18 and R19 are independently selected from H or methyl:
Additional examples of bidentate phosphite ligands that are useful in the present process include a ligand selected from a member of the group represented by Formulae XV and XVI, in which all like reference characters have the same meaning, except as further explicitly limited:
wherein
R41 and R45 are independently selected from the group consisting of C1 to C5 hydrocarbyl, and each of R42, R43, R44, R46, R47 and R48 is independently selected from the group consisting of H and C1 to C4 hydrocarbyl.
For example, the bidentate phosphite ligand can be selected from a member of the group represented by Formula XV and Formula XVI, wherein
R41 is methyl, ethyl, isopropyl or cyclopentyl;
R42 is H or methyl;
R43 is H or a C1 to C4 hydrocarbyl;
R44 is H or methyl;
R45 is methyl, ethyl or isopropyl; and
R46, R47 and R48 are independently selected from the group consisting of H and C1 to C4 hydrocarbyl.
As additional examples, the bidentate phosphite ligand can be selected from a member of the group represented by Formula XV, wherein
R41, R44, and R45 are methyl;
R42, R46, R47 and R48 are H; and
R43 is a C1 to C4 hydrocarbyl;
or
R41 is isopropyl;
R42 is H;
R43 is a C1 to C4 hydrocarbyl;
R44 is H or methyl;
R45 is methyl or ethyl;
R46 and R48 are H or methyl; and
R47 is H, methyl or tertiary-butyl;
or the bidentate phosphite ligand can be selected from a member of the group represented by Formula XVI, wherein
R41 is isopropyl or cyclopentyl;
R45 is methyl or isopropyl; and
R46, R47, and R48 are H.
As yet another example, the bidentate phosphite ligand may be represented by Formula XV, wherein R41 is isopropyl; R42, R46, and R48 are H; and R43, R44, R45, and R47 are methyl.
It will be recognized that Formulae X to XVI are two-dimensional representations of three-dimensional molecules and that rotation about chemical bonds can occur in the molecules to give configurations differing from those shown. For example, rotation about the carbon-carbon bond between the 2- and 2′-positions of the biphenyl, octahydrobinaphthyl, and or binaphthyl bridging groups of Formulae X to XVI, respectively, can bring the two phosphorus atoms of each Formula in closer proximity to one another and can allow the phosphite ligand to bind to nickel in a bidentate fashion. The term “bidentate” is well known in the art and means both phosphorus atoms of the ligand are bonded to a single nickel atom.
Further examples of bidentate phosphite ligands that are useful in the present process include those having the formulae XX to LIII, shown below wherein for each formula, R17 is selected from the group consisting of methyl, ethyl or isopropyl, and R18 and R19 are independently selected from H or methyl:
Additional suitable bidentate phosphites are of the type disclosed in U.S. Pat. Nos. 5,512,695; 5,512,696; 5,663,369; 5,688,986; 5,723,641; 5,847,101; 5,959,135; 6,120,700; 6,171,996; 6,171,997; 6,399,534; the disclosures of which are incorporated herein by reference. Suitable bidentate phosphinites are of the type disclosed in U.S. Pat. Nos. 5,523,453 and 5,693,843, the disclosures of which are incorporated herein by reference.
Extraction Solvent
Suitable hydrocarbon extraction solvents include paraffins and cycloparaffins (aliphatic and alicyclic hydrocarbons) having a boiling point in the range of about 30° C. to about 135° C., including n-pentane, n-hexane, n-heptane and n-octane, as well as the corresponding branched chain paraffinic hydrocarbons having a boiling point within the range specified. Useful alicyclic hydrocarbons include cyclopentane, cyclohexane and cycloheptane, as well as alkyl substituted alicyclic hydrocarbons having a boiling point within the specified range. Mixtures of hydrocarbons may also be used, such as, for example, mixtures of the hydrocarbons noted above or commercial heptane which contains a number of hydrocarbons in addition to n-heptane. Cyclohexane is the preferred extraction solvent.
The lighter (hydrocarbon) phase recovered from the multistage countercurrent liquid-liquid extractor is directed to suitable equipment to recover catalyst, reactants, etc. for recycle to the hydrocyanation, while the heavier (lower) phase containing dinitriles recovered from the multistage countercurrent liquid-liquid extractor is directed to product recovery after removal of any solids, which may accumulate in the heavier phase. These solids may contain valuable components which may also be recovered, e.g., by the process set forth in U.S. Pat. No. 4,082,811.
In the following examples, values for extraction coefficient are the ratio of weight fraction of catalyst in the extract phase (hydrocarbon phase) versus the weight fraction of catalyst in the raffinate phase (organonitrile phase). An increase in extraction coefficient results in greater efficiency in recovering catalyst. As used herein, the terms, light phase, extract phase and hydrocarbon phase, are synonymous. Also, as used herein, the terms, heavy phase, organonitrile phase and raffinate phase, are synonymous.
To a 50 mL, jacketed, glass laboratory extractor, equipped with a magnetic stirbar, digital stir-plate, and maintained at 65° C., was charged 10 grams of the product of a pentenenitrile-hydrocyanation reaction, and 10 grams of the extract from the second stage of a mixer-settler cascade, operated in counter-current flow. The extract from the second stage contained approximately 50 ppm nickel and 3100 ppm diphosphite ligand.
The reactor product was approximately:
85% by weight C6 dinitriles
14% by weight C5 mononitriles
1% by weight catalyst components
360 ppm by weight active nickel.
The laboratory reactor was then mixed at 1160 rotations-per-minute, for 20 minutes, and then allowed to settle for 15 minutes. After settling for 15 minutes, a stable emulsion was present throughout the extract phase. Samples were obtained of the extract and raffinate phases of the extractor and analyzed to determine the extent of catalyst extraction. The ratio of active nickel present in the extract phase vs. the raffinate phase was found to be 14.
Using the same hydrocyanation reactor product and 2nd stage settler extract as Example 1, a 50 mL, jacketed, glass laboratory extractor, equipped with a magnetic stirbar, digital stir-plate, and maintained at 65° C., was charged 5 grams of the product of a pentene-hydrocyanation reaction, and 15 grams of the extract from the second stage of a mixer-settler cascade, operated in counter-current flow.
The laboratory reactor was then mixed at 1160 rotations-per-minute, for 20 minutes, and then allowed to settle for 15 minutes. After settling for 15 minutes, no emulsion was present in the extractor. Samples were obtained of the extract and raffinate phases of the extractor and analyzed to determine the extent of catalyst extraction. The ratio of active nickel present in the extract phase vs. the raffinate phase was found to be 14.
Using the same hydrocyanation reactor product and 2nd stage settler extract as Example 1, a 50 mL, jacketed, glass laboratory extractor, equipped with a magnetic stirbar, digital stir-plate, and maintained at 65° C., was charged 6 grams of the product of a pentene-hydrocyanation reaction, and 12 grams of the extract from the second stage of a mixer-settler cascade, operated in counter-current flow.
The laboratory reactor was then mixed at 1160 rotations-per-minute, for 20 minutes, and then allowed to settle for 15 minutes. After settling for 15 minutes, no emulsion was present in the extractor. Samples were obtained of the extract and raffinate phases of the extractor and analyzed to determine the extent of catalyst extraction. The ratio of active nickel present in the extract phase vs. the raffinate phase was found to be 18.
Examples 1-3 illustrate the beneficial effect of increasing extract-to-dinitrile ratio on the extraction, and provide a practical simulation of the effect of recycle of the light phase in continuous operation.
These Examples 4-8 illustrate that effective catalyst recovery occurs for a mononitrile to dinitrile ratio greater than 0.65.
Five different mixtures comprised of a Ni diphosphite complex, with the diphosphite ligand shown in Structure XX (where R17 is isopropyl, R18 is H, and R19 is methyl), ZnCl2 (equimolar with Ni) and differing in the ratio of mononitrile to dinitrile, were separately liquid-liquid batch extracted with an equal weight of cyane (i.e. cyclohexane). The molar ratio of organic mononitrile to organic dinitrile and the resulting extraction coefficients are shown in the Table 2 below. A compound may be effectively recovered if it has an extraction coefficient of 1 or greater at solvent to feed ratios greater than 1 using a countercurrent multistage extractor.
This Example demonstrates the effect of hold-up time on the extractability of the diphosphite ligand catalyst.
A mixture comprised predominantly of organic dinitriles and a Ni diphosphite complex, the structure of the diphosphite ligand being shown in Structure XX (where R17 is isopropyl, R18 is H, and R19 is methyl) and ZnCl2 (equimolar with Ni) was divided into two portions. Both portions are liquid-liquid extracted in a three-stage contactor at 40° C., with an equal weight of cyclohexane. Both portions were sampled with time and the progress of the catalyst recovery into the extract phase is shown in Table 3 as the percent of the final steady state value achieved at a given time.
This Example illustrates the effect of temperature on the extractability of catalyst with last-stage extraction solvent recycle.
A mixture comprised predominantly of organic dinitriles and a Ni diphosphite complex, the structure of the diphosphite ligand being shown in Structure XXIV (where R17 is methyl, R18 is methyl and R19 is H) and ZnCl2 (equimolar with Ni) was divided into three portions. The portions were batch liquid-liquid extracted at 50° C., 65° C. and 80° C., respectively, with an equal weight of n-octane and monitored with time. The results are shown in Table 4.
This Example demonstrates the effect of adding water in three-stage extraction with cyclohexane recycle in the last stage.
Fifteen grams of a mixture comprised predominantly of organic dinitriles and a Ni diphosphite complex, the structure of the diphosphite ligand being shown in Structure XXIV (where R17 is methyl, R18 is methyl and R19 is H) and ZnCl2 (equimolar with Ni), was extracted in a three-stage continuous extractor at a temperature of 50° C. with an equal weight of cyclohexane for one hour resulting in an catalyst extraction coefficient of 4.3, as measured by the amount of catalyst in the extract of the first stage divided by the amount of catalyst in the feed of the reaction mixture fed to the last stage of the three-stage countercurrent extractor.
To this mixture, 100 microliters of water was added. After continuing to heat and agitate for another hour, the diphosphite Ni extraction coefficient was measured as 13.4 —a threefold increase.
These Examples demonstrate the effect of adding hexamethylene diamine (HMD) to the extraction zone.
Example 1 was repeated except that hexamethylene diamine was added to the product of a pentene-hydrocyanation reaction. To a 50 mL, jacketed, glass laboratory extractor, equipped with a magnetic stirbar, digital stir-plate, and maintained at 65° C., was charged 10 grams of the product of pentene-hydrocyanation reactor product, and 10 grams of the extract from the second stage of a mixer-settler cascade, operated in counter-current flow.
The reactor product was approximately:
85% by weight C6 dinitriles
14% by weight C5 mononitriles
1% by weight catalyst components
360 ppm by weight active nickel.
The laboratory reactor was then mixed at 1160 rotations-per-minute, for 20 minutes, and then allowed to settle for 15 minutes. A stable emulsion was present throughout the extract phase in the absence of the addition of HMD. After 15 minutes of settling, essentially no emulsion phase was present when HMD was added. Samples were obtained of the extract and raffinate phases of the extractor and analyzed to determine the extent of catalyst extraction.
A three stage counter-current liquid-liquid extractor, in continuous operation, utilizing the same two feed streams described in Example 1 was operated for a duration of 20 days. Samples were obtained of the extract and raffinate phases of the settling section of the extractor and analyzed to determine the extent of catalyst extraction. The ratio of active nickel present in the extract phase vs. the raffinate phase was found to be 5.6±2. A stable emulsion and rag was present throughout the extract portion of the settling section of the first stage of the extractor. The emulsion and rag was also present to a lesser extent in the settling sections of the second and third stages of the extractor.
Example 14 was replicated except that a light-phase was recycled from the settling section back to the mixing section of the first stage of the countercurrent liquid-liquid extractor for a duration of 14 days.
The ratio of active nickel present in the extract phase vs. the raffinate phase was found to be 8.6±2. Less stable emulsion and rag was present throughout the extract portion of the settling section of the first stage of the extractor than in Example 14.
Example 14 was replicated except that both light-phase recycle and heavy-phase were recycled in the first stage of the countercurrent liquid-liquid extractor for a duration of 60 days. Recycle of the light phase took place from the settler to the mixer in the manner described in Example 4. Recycle of the heavy phase took place from the settler and back to the settler in a manner which provided mild agitation to the mixed phase in the settler. The benefits of this type of recycle of a heavy phase are described in International Publication Number WO 2013/095849.
The ratio of active nickel present in the extract phase vs. the raffinate phase was found to be 10.8±2. Less stable emulsion and rag was present throughout the extract portion of the settling section of the first stage of the extractor than in Example 15.
Results of Examples 14-16 are summarized in Table 6.
Examples 14-16 illustrate the beneficial effect of recycling the light phase from the settler to the mixer, and the heavy phase from the settler back to the settler, of the settling section of the first stage of a multistage countercurrent liquid-liquid extractor while in continuous operation.
These Examples demonstrate the effect of feeding pentenenitriles to the extraction zone.
To a 10 mL, glass laboratory extractor, equipped with a magnetic stirbar, digital stir-plate, and maintained at 65° C., was charged 2.5 grams of the product of pentene-hydrocyanation reactor product, 2.5 grams of the extract from the second stage of a mixer-settler cascade, operated in counter-current flow, and an additional 2.5 grams of stable-emulsion/rag removed from the first settling stage of the same mixer-settler cascade. The composition of the reactor product was the same as that given in Example 1.
Results of Examples 17-19 are summarized in Table 7.
Examples 17-19 illustrate the beneficial effect of feeding pentenenitriles in the pentenenitrile-hydrocyanation reactor product on decreasing the stability of emulsions and rags during catalyst extraction.
This application claims benefit to Provisional Application No. 61/578,508 filed Dec. 21, 2011 which is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/065972 | 11/20/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/095851 | 6/27/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3325255 | Treybal | Jun 1967 | A |
3374988 | Eckert | Mar 1968 | A |
3479378 | Orlandini et al. | Nov 1969 | A |
3496215 | Drinkard et al. | Feb 1970 | A |
3496217 | Drinkard | Feb 1970 | A |
3496218 | Drinkard | Feb 1970 | A |
3773809 | Walter | Nov 1973 | A |
4080374 | Corn | Mar 1978 | A |
4082811 | Shook, Jr. | Apr 1978 | A |
4290880 | Leonard | Sep 1981 | A |
4290980 | Leonard et al. | Sep 1981 | A |
4339395 | Barnette et al. | Jul 1982 | A |
4385007 | Shook | May 1983 | A |
4387056 | Stowe | Jun 1983 | A |
4539302 | Leyendecker | Sep 1985 | A |
4551314 | Beckstead et al. | Nov 1985 | A |
4990645 | Back | Feb 1991 | A |
5512695 | Kreutzer et al. | Apr 1996 | A |
5512696 | Kreutzer et al. | Apr 1996 | A |
5523453 | Breikss | Jun 1996 | A |
5543536 | Tam | Aug 1996 | A |
5663369 | Kreutzer et al. | Sep 1997 | A |
5688986 | Tam et al. | Nov 1997 | A |
5693843 | Breikss et al. | Dec 1997 | A |
5723641 | Tam et al. | Mar 1998 | A |
5847101 | Okayama et al. | Dec 1998 | A |
5879556 | Hein | Mar 1999 | A |
5959135 | Garner et al. | Sep 1999 | A |
6120700 | Foo et al. | Sep 2000 | A |
6171996 | Garner et al. | Jan 2001 | B1 |
6171997 | Foo et al. | Jan 2001 | B1 |
6262145 | Winjngaarden et al. | Jul 2001 | B1 |
6294700 | Kanel | Sep 2001 | B1 |
6303829 | Kanel et al. | Oct 2001 | B1 |
6310260 | Argyropoulos et al. | Oct 2001 | B1 |
6399534 | Bunel et al. | Jun 2002 | B2 |
6469194 | Burattin | Oct 2002 | B2 |
6478965 | Holtzapple et al. | Nov 2002 | B1 |
6770770 | Baumann et al. | Aug 2004 | B1 |
6924345 | Gagne et al. | Aug 2005 | B2 |
6936171 | Jackson et al. | Aug 2005 | B2 |
7084294 | Jungkamp | Aug 2006 | B2 |
7528275 | Bartsch | May 2009 | B2 |
7541486 | Scheidel | Jun 2009 | B2 |
7612223 | Rosier | Nov 2009 | B2 |
7659422 | Foo | Feb 2010 | B2 |
7705171 | Haderlein et al. | Apr 2010 | B2 |
7709673 | Foo | May 2010 | B2 |
7709674 | Foo | May 2010 | B2 |
7781608 | Scheidel | Aug 2010 | B2 |
7816551 | Jungkamp | Oct 2010 | B2 |
7880028 | Foo | Feb 2011 | B2 |
7897801 | Rosier | Mar 2011 | B2 |
7935229 | Deckert et al. | May 2011 | B2 |
20060264651 | Bartsch | Nov 2006 | A1 |
20080076944 | Bartsch | Mar 2008 | A1 |
20080083607 | Deckert et al. | Apr 2008 | A1 |
20080207645 | Dee-Noor et al. | Aug 2008 | A1 |
20080281119 | Scheidel et al. | Nov 2008 | A1 |
20080281120 | Jungkamp | Nov 2008 | A1 |
20090182164 | Foo | Jul 2009 | A1 |
20090259034 | Kerr et al. | Oct 2009 | A1 |
20090270645 | Haderlein | Oct 2009 | A1 |
20100125151 | Amey | May 2010 | A1 |
20140316153 | Tenn | Oct 2014 | A1 |
20140350280 | Tenn | Nov 2014 | A1 |
20140364638 | Tenn | Dec 2014 | A1 |
20140378693 | Tenn | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
102004045036 | Mar 2006 | DE |
835282 | May 1960 | GB |
Entry |
---|
International Search Report and Written Opinion issued in related PCT/US2014/043134 on Sep. 12, 2014. |
International Search Report and Written Opinion issued in related PCT/US2014/043125 on Sep. 12, 2014. |
International Search Report and Written Opinion issued in related PCT/US2014/043132 on Sep. 12, 2014. |
International Search Report and Written Opinion issued in related PCT/US2014/04394 on Sep. 10, 2014. |
Number | Date | Country | |
---|---|---|---|
20140350280 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61578508 | Dec 2011 | US |