The subject of the present invention is an extractor hood for a hob.
Another subject of the present invention is an air sanitiser in the form of a stand-alone functional unit.
As is known, an extractor hood is used to extract water and grease vapour (hereinafter commonly indicated only by the term “vapour”) from a hob on which food is prepared in a kitchen; said hood comprises a first part or extractor part which is in the vicinity of this hob, and is associated with a flue or second part which comprises an extractor unit (a fan supplied with electric power), and is connected to an exhaust for the vapour extracted from the hood. This discharge can take place into the kitchen once more, or outside the kitchen through an appropriate duct.
Conventional filters are provided to retain the impurities which are present in the vapour before it is discharged outside the extractor hood.
Extractor hoods are mainly of two types, i.e., placed above the hob (distant from, or close to, a wall of the kitchen), or incorporated in the hob itself, i.e., with the extractor part provided directly on the hob, and the second part with the fan placed below the hob. The present invention applies to the type of hoods placed above the hob, i.e., to wall, island, ceiling and freestanding hoods.
In recent times, the problem of purifying, sterilising or sanitising of the air in domestic environments has become very important, with these terms (purifying, sterilising and sanitising) meaning removal from the ambient air, or rendering inert, of the biological load of viruses, bacteria, spores, fungi, and other biologically active microorganisms. For this purpose, autonomous sanitising devices are known, provided with an extractor unit which extracts the ambient air into a body of the device where this air encounters UV radiation with an appropriate wavelength (in band C, or with wavelengths between 200 and 280 nm, preferably between 250 and 265 nm, indicated as UVC radiation) emitted by an appropriate source (defined by one or more UVC lamps); this air is thus purified or sanitised before being expelled from the device and emitted once more into the environment.
However, these sanitising devices take up space, they must be connected autonomously to the electrical mains network of the environment in which they are used, and they can therefore be an obstacle for the movement of people in this environment. In addition, when they are used, they must be placed on a shelf or on the floor, consequently also being aesthetically unattractive. On the other hand, when they are not being used, they are placed inside a piece of furniture, or in a different environment for storage, which involves the use of other space, and the fact of having to move the sanitising device again, with the risk of damaging the delicate source of UVC radiation and its conventional control electronics.
The objective of the present invention is to provide an extractor hood for hobs of the aforementioned type, which also makes it possible to carry out the function of sanitising the air.
In particular, the objective of the present invention is to provide an extractor hood of the aforementioned type, which makes it possible always to have the possibility of sanitising the air of the environment (kitchen) in which it is placed, and which does not take up further space in this environment, such as to be problematic for the movement of people or for the appearance of the environment itself.
A further objective is to provide an extractor hood of the aforementioned type which is however efficient both in extracting the vapours from the hob and in extracting the air from the environment to be sanitised.
Another objective is to provide an extractor hob of the aforementioned type where the sanitised air is different from the vapour extracted from the hob (wet and carrying grease and particles) which vapour could be deposited on the UVC source and reduce the efficiency thereof in sanitising the air.
Another objective is to provide an air sanitiser as a stand-alone functional unit, which air sanitiser can be used independently from an extractor hood, e.g., in a kitchen environment, especially when an extractor hood without air sanitiser has already been installed.
These objectives and others, which will become apparent to persons skilled in the art, are achieved by an extractor hood having one or more of the features disclosed herein and by means of the air sanitiser having one or more of the features disclosed herein.
In an embodiment of the extractor hood or the air sanitiser, the source of UV radiation can be an UV lamp, which provides a simple a cost-effective way of realisation. Said lamp can be devised as an LED.
In another embodiment of the extractor hood or the air sanitiser, the source of UV radiation is ozone free, which is preferably with respect to a user's health.
In yet another embodiment of the extractor hood or the air sanitiser, the source of UV radiation can emit UVB radiation with wavelengths between 285 and 315 nm, which can be effective against particular types of germs.
In yet another embodiment of the extractor hood said sanitising chamber can be secured on the second part or flue of the extractor hood. This may allow retrofitting of existing extractor hoods with a sanitising chamber.
In still another embodiment of the extractor hood said sanitising chamber is placed inside the second part or flue of the extractor hood or the sanitising chamber is integrated with the second part or flue of the extractor hood. Such embodiments may be preferred from an esthetical point of view.
In still another embodiment of the extractor hood the sanitising chamber is placed transversely to the second part or flue of the extractor hood, such that the air treated moves orthogonally to the exhaust for the vapour extracted by the extractor hood, wherein the aperture for entry of the air into the sanitising chamber and the exhaust aperture of the sanitising chamber are placed on opposite sides with respect to the flue.
This may result in a design which requires only little extra space for the sanitiser chamber and which can efficiently separate the air streams of the hood and the sanitiser, respectively.
In still another embodiment of the extractor hood the sanitising chamber is placed on an upper side of the first part, said upper side facing away from said hob in an installed state of the extractor hood.
This enables a particularly efficient separation of the air streams from the hood and from the sanitiser, respectively.
In yet another embodiment of the extractor hood the aperture for entry of the air into the sanitising chamber and the exhaust aperture of the sanitising chamber are both placed in an upper side of the sanitising chamber, which upper side faces away from said upper side of the first part.
This can help to optimise separation of the air streams from the hood and from the sanitiser, respectively.
In a highly preferred embodiment of the extractor hood, the extractor hood is devised as a ceiling hood and has an underside of said first part or extractor part, which underside is intended to face a cooking hob in an installed state of the extractor hood and presents at least one intake for the vapour, wherein the sanitising chamber is integrated in said first part on at least one side of the intake, such that both an aperture for entry of air to be sanitised and said exhaust aperture are devised in said underside.
Thus can be provided a ceiling hood with additional sanitising functionality, a design of which does not differ from commonly known ceiling extractor hoods.
In another highly preferred embodiment of the extractor hood, a power supply and a functioning of the sanitiser chamber is/are independent from a power supply and a functioning of the extractor hood, wherein preferably simultaneous use of the extractor hood and the sanitiser chamber is prevented by respective control means thereof. Is helps to avoid a disturbance of the air flows between the two apparatuses (hood and sanitiser) and to prevent cooking fumes or vapours from being sucked in by the sanitiser, which may shorten a lifetime of the UV radiation source and/or decrease a sanitising efficiency thereof.
In a further embodiment of the air sanitiser, a mechanical filter is inserted in the air inlet to reduce fouling of the UV lamp and guarantee sanitising effectiveness. The same feature can be present in the extractor hood at said aperture that permits entry of air into the sanitiser chamber.
Preferably, in a further embodiment of the air sanitiser, said cabinet or housing is devised for fixing to a ceiling or wall of a room. This allows easy integration of the air sanitiser into a home environment, in particular in a kitchen.
For better understanding of the present invention, purely by way of non-limiting example, the following drawings are attached, in which:
The said
It will be appreciated that an exhaust pipe, to take the vapour extracted and filtered outside the kitchen in a known manner, can be connected to an inner part 10 of the flue.
A free face 12 of the first (extractor) part 3 is provided with a user interface 13, which can permit command and control of the operation of the extractor hood 1 by means of conventional control electronics 15 inside the first part 3 at the interface 13.
The extractor hood 1 comprises a sanitising chamber 20 provided with an extractor unit 21 to extract ambient air into said chamber and direct it to a source of radiation 22, for example UVC or UVA, inside the chamber 20 itself, and then to at least one aperture 23 for discharge of the air extracted and sanitised (by the UVC source 22).
The air is thus reintroduced into the environment (kitchen) from which it has been extracted.
More particularly, and with reference to
Both the frontal portion 35 and the rear portion 37, which constitute the box-shaped body 32, are made of metal, preferably of stainless steel and/or galvanised metal plate and/or aluminium alloy. In fact, as well as providing better reflectance to the UV, and thus better radiating/germicidal efficiency on the surfaces and on the air which passes through the sanitising chamber, metal materials do not undergo deterioration associated with exposure to the UV rays, in particular the UVC rays, as occurs for example in the case of components made of some types of polymers.
Alternatively, the frontal portion 35 can be secured directly on the face 31 of the second part or flue 4 of the hood, which thus also acts as a functional part of the sanitising chamber (it closes it on one side).
The frontal portion 35 of the sanitising chamber has a hole or aperture 41 on which a grid 42 is placed, and behind which, inside the aforementioned cavity 33, there is placed the extractor unit 21 defined by an electric fan 43 controlled by means of the user interface 13 and the control electronics 15 of the extractor hood 1.
As shown in
Inside the cavity 33 of the sanitising chamber, a divider 46 is preferably placed, which is provided with an aperture 47 through which the electric fan 43 directs the air extracted to the UV source 22 for sterilisation/sanitising thereof. The divider 46 thus subdivides the cavity 33 into two spaces, i.e., an extractor space 48 where the electric fan 43 is placed, and a sanitising space 49 where the UV source 22 is present. This permits better extraction action by the fan, and better efficiency of the UV sources.
By this means, there is separation between the air extracted by the fan from the outside through the apertures or the grid 42 present in the frontal portion 35 of the sanitising chamber, and the area of delivery of the air from the “mouth” of the fan 43, which then exits from the sanitising chamber as will be described hereinafter.
According to one embodiment, the UV source 22 is a UVC source, defined in the example in
This air exits from the exhaust aperture 23 provided on an upper side (i.e., a side which is distant from the extractor part 3) of the sanitising chamber 20. On this aperture there is placed a grid 53 and preferably a filter 54 which can be a further filter for sanitising the air, or an activated charcoal filter, or a perfumed filter, or any other type of filter.
In a preferred embodiment, a type of filter is used with a deposit based on TiO2 (for example, a filter with a ceramic or polymer or metal base) in various forms (such as anatase, rutile, etc.); the action of filters of this type is photocatalytic and therefore germicidal on the surfaces of the filter, and consequently on the air which passes through it. This action is activated by the emissions of UV radiation, in particular by the UVA rays which have an optimum wavelength interval. The filter of the type with a deposit or treatment based on TiO2 can also have a particular geometry with a surface of contact with the air of passage which is increased in order to increase the efficiency thereof. For example, this filter can have a portion 54A at the grid 53, and a portion 54B in the vicinity of the source of radiation (UVC, or preferably UVA) 22, such as to adopt a transverse cross-section in the form of an elongate “T”. This is shown for example in
By this means, thanks to the invention, by intervening on the user interface 13 of the hood 1, it is possible to activate the extractor unit 21 and the UV source 22 such as to extract air into the sanitising chamber 20 and purify it, sterilising it before it is expelled from the aperture 50 of this sanitising chamber.
In the solution in
In the solution in question, the extraction space 48 is placed above the sanitising space 49, which is separated from the space 48 by the divider 46 with the aperture 47; however, the positions of these spaces 48 and 49 can also be inverted.
Inside the lateral walls 36 of the box-shaped body 32 there are present the apertures 23 on which there can be placed filters 54 (similar to the one described above in relation with
As in the solutions of
It is wished to show that the sanitising chamber 20 is an element or component which is inseparable from the extractor hood 1: in fact, this chamber 20 is connected to the control electronics 15 of the hood, and its operation is controlled by these electronics.
The sanitising chamber 20, whether it is inside or outside the second part or flue 4 or is disposed in another position relative to this part or to the first part 3, is always controlled by the interface 13 of the extractor hood 1.
Thus, it is apparent that this sanitising chamber 20 is part of the extractor hood. Consequently, it does not take up space in the environment in which the chamber 20 is placed, and it does not need to be moved away when it is not being used.
As an alternative to the simple on/off button or timer button (which switches the cycle off automatically after a certain amount of time), in order to control the switching on/off of the sanitising chamber 20, the user interface can have a series of push-pull buttons or touch buttons by means of which, using the control electronics 15, it is possible to control various sanitising cycles: each of these cycles is characterised by a specific speed of the fan and by a cycle time with automatic switching off. An example could be constituted by a so-called night cycle corresponding to a reduced air flow rate (fan in silent mode) and a longer sanitising cycle because of the flow rate, and on the other hand a standard cycle could have a greater air flow rate and reduced cycle time.
Thus, the air to be sanitised is always collected outside the flue 4 from the environment (kitchen), and is moved orthogonally to the exhaust for the vapours extracted by the fan 5. This air does not pass via the vapour extraction, which takes place from the lower frontal inclined (area 3) area of the hood (through the aperture 89) via the fan 5. These vapours can be discharged outside the environment by means of a pipe which is connected to the aperture 87, or, the air which is filtered by the hood (including with the assistance of charcoal filters) is readmitted into the room (and in this case the flue 4 is not present above the sanitising chamber 20).
A description has been provided of various embodiments of the invention. However, others are also possible in order to obtain an extractor hood in conformity with the context of protection defined by the following claims.
Essential differences between
Both openings or apertures 23, 41 are located in an upper side 20a of the air sanitiser (or sanitising) chamber 20, which upper side 20a faces away from an upper side 3a of the first part 3. Reference numeral 22 again indicates the source of the (UV) radiation. The opening or aperture 41 for entry of the air into the sanitising chamber 20 and the exhaust aperture 23 of the sanitising chamber 20 are placed on opposite sides with respect to the flue 4, cf.
As can be seen in particular from
The fan 106 comprises an impeller (not visible) that is rotatable around a fan axis (cf.
As can be seen in particular from
Preferably, the air sanitiser unit 100 has, in mechanically operative connection with the bottom wall 105 of the housing, a cover element 110 which is approximately T-shaped in cross-section and covers the openings 108, 109, a distance remaining between the cover element 110 and the bottom wall 105 of the housing which allows the air (to be treated or treated) to pass through. In this way, the cover element 1a shields the inlet 108 and the outlet 109 from the environment while leaving a fluid connection between said inlet 108 and outlet 109, respectively, and the environment. In addition, lateral closing elements 111 and 112 are provided in each case, so that in each case the S-shaped air flow shown in
Further reference may be made to the description of
The dashed arrow in
Reference numeral FA in
Number | Date | Country | Kind |
---|---|---|---|
102021000011711 | May 2021 | IT | national |
This application is a 371 National Phase of International Application No. PCT/EP2022/062000, filed May 4, 2022, which claims priority to Italian Patent Application No. 102021000011711, filed May 7, 2021, both of which are incorporated herein by reference as if fully set forth.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/062000 | 5/4/2022 | WO |