This invention relates to transformers and, in particular, to methods, systems and devices for a transformer with wet wound transformer coils encapsulated with a resin material and having corrugated insulating material as cooling ducts to produce a transformer that is capable of withstanding extreme mechanical stresses in an underground mining environment.
The current technology that is used in underground mining transformer coil design is primarily conventional open wound and epoxy vacuum cast. Cooling transformers during operation has been a long standing problem and a variety of solutions have been used including use of coolant fluids, cooling tanks surrounding the transformer; transformers submerged in transformer oil; and the use of spacers in dry-type transformers that separate sections or layers of the transformer. A primary difference between the type of transformer and thus transformer cooling used, is the environment in which the transformer is used.
The typical operating environment of an underground mining transformer is such that it subjects the transformer to environmental contaminants such as moisture and coal dust which reduces the dielectric performance of the transformer over time. The expected load duty cycle is also very severe in underground mining environment subjecting the mine duty transformer to extreme swings in thermal loading as well as frequent short circuits. Another environmental challenge in the underground mining environment is real estate, resulting in reduced spacing between adjacent transformer coils which increases the environmental temperature surrounding the transformers.
The current industry accepted transformer construction is dry type (not oil filled or gas filled) non cast open wound construction that uses duct sticks to create air cooling ducts. This construction has always been problematic for the expected operating environment because it does not adequately prevent coil distortion when subjected to the mechanical stresses of a short circuit.
During a short circuit event, the magnetic forces tend to cause the primary winding to repel the secondary winding resulting in coil distortion. The coil tends to change shape such that the primary winding is forced outward causing the overall outside diameter of the coil to increase in physical size. This distortion of adjacent transformer coils combined with the reduced spacing between adjacent transformer coils can cause phase-to-phase failure. This phase-to-phase failure is extremely undesirable since it tends to decrease the electrical clearance between adjacent phases and can result in a phase-to-phase fault. The phase-to-phase failure also changes the impedance of the transformer. If the forces are large enough, the windings can also be forced out of the ends of the coils toward the core and clamping structure resulting in a phase to ground failure.
Another issue that frequently results from coil distortion is that the duct sticks used to create air ventilation passages will often loosen and fall out of the bottom of the coil reducing the air flow and efficiency of the cooling ducts. Thus, cooling ducts created using ducts sticks fail to solve the problems associated with reduced transformer spacing and harsh operating environments.
What is needed in this environment is a transformer with environmentally sealed transformer coils that incorporates rigid cooling ducts that are capable of withstanding extreme mechanical stresses.
A primary objective of the present invention is to provide methods, systems and devices for a transformer with environmentally sealed transformer coils that are capable of withstanding extreme mechanical stresses in the underground mining environment.
A secondary objective of the present invention is to provide methods, systems and devices for a transformer with wet wound transformer coils encapsulated with a resin and having corrugated insulating material as cooling ducts to produce a transformer for extreme duty.
A third objective of the present invention is to provide a methods for producing a wet wound transformer coil that results in a mechanically robust construction preventing winding displacement and sealing out environmental contaminants.
A fourth objective of the present invention is to provide methods for producing a wet wound transformer coil that utilizes corrugated insulating material to form cooling ducts in place of the conventionally used duct stick method.
A first embodiment provides an extreme duty transformer coil that includes a winding form, a secondary winding layer formed by winding alternating layers wire wound around the winding form a distance from a top and a bottom of the winding form with an insulating collar between the top of the winding form and the layer of secondary wire and the bottom of the winding form and the layer of secondary wire and a corrugated ducting layer extending the full circumference and width of the coil between each next layer of secondary magnet wire to form cooling ducts, then a barrier insulating layer is wound to separate the secondary winding from a primary winding. The primary winding includes primary wire layers wound around the barrier insulating layer and insulation layer extending the full circumference and width of the coil between each next layer of primary wire, then a resin impregnated outer layer covering the circumference of the transformer coil to produce an oval mechanically robust construction preventing winding displacement and sealing out environmental contaminants. The extreme duty transformer coil is rotated during the curing cycle to prevent sagging of the resin impregnated layers and runoff of the resin.
The winding form can include a resin impregnated rectangular winding form and or a layer of resin impregnated fiberglass mesh wet wound around the outer surface of the winding form, and or a layer of wet wound resin impregnated insulation wound around the outer surface of the winding form.
The barrier insulating layer separating the secondary winding from a primary winding can include one or more layers of corrugated insulating duct material wound around the circumference and width of the coil to form cooling ducts and can include a deformable resin impregnated insulation layer wet wound around a full or partial circumference and width of the coil to prevent displacement of the layers of corrugated insulating duct material. The resin impregnated deformable layer can be a resin saturated felt.
The corrugated ducting layer can be made from an insulating material selected from a range of approximately 0.0001 volts per mil to approximately 100,000 volts per mil to meet operational requirements and eliminate the need for additional layers of insulation between windings and have a thickness within a range from approximately 0.000001 of an inch to approximately 10 inches in thickness.
The barrier insulation layer can include a fiber resin impregnated insulating material such as a resin impregnated adaptable felt material and or a woven resin impregnated fiberglass mesh.
The resin impregnated outer layer can include a resin impregnated fiberglass rope wound as an outer layer around the circumference of the transformer coil to prevent outward distortion of the coil and a resin saturated felt layer and or a layer of woven resin impregnated fiberglass mesh.
A second embodiment provides a method for producing an extreme duty transformer coil that includes providing a winding form, forming a secondary winding by alternately winding a layer of secondary magnet wire layer around the winding form a distance from the top and bottom of the winding form with a wet wound insulating collar between the top of the winding form and the layer of magnet wire and the bottom of the winding form and the layer of magnet wire and winding a secondary corrugated duct insulating layer in a single sheet to form cooling ducts between adjacent layers of secondary magnet wire, the corrugated duct insulating layer extending the full circumference and width of the coil; winding a barrier layer to separate the secondary winding from a primary winding by winding a barrier corrugated duct insulating layer extending the full circumference and width of the coil over the secondary winding, forming the primary winding by alternately winding a primary magnet wire layer a distance from the top and bottom of the winding form between the top and the bottom of the winding form and the layer of magnet wire and winding one or more of a primary corrugated duct insulating layer and a primary insulation layer between adjacent primary magnet wire layers, and winding an outer layer covering the circumference and width of the primary winding for mechanical strength to prevent winding displacement and to seal out environmental contaminants.
The rectangular winding form step can include wet winding a resin impregnated mesh around the winding form to strengthen the winding form to prevent distortion of the coil and or resin impregnating the rectangular winding form.
The secondary winding step includes wet winding a top and a bottom collar to fill an area between the top of the winding form and the secondary magnet wire layer and the bottom of the winding form and the secondary magnet wire layer to prevent exposure of the secondary magnet wire layer. Winding a secondary corrugated duct insulating layer can include the step of winding a secondary corrugated duct layer around a circumference and width of the secondary magnetic wire layer and applying a wet wound layer of insulating material around a circumference and width of the secondary corrugated duct layer.
The barrier corrugated duct insulating layer step can include winding one or more barrier corrugated duct layers around a circumference and width of the secondary magnetic wire layer and applying one or more wet wound layers of barrier insulating material around a circumference and width of the barrier corrugated duct layer. The wet winding barrier insulating material step can be a layer of resin impregnated insulation material or a layer of resin saturated felt material.
The step of winding a resin impregnated outer layer can include covering the outer circumference and width of the coil with a resin impregnated mesh layer in a single sheet and or winding a resin impregnated fiberglass rope as an outer layer around the circumference of the coil covering the resin impregnated mesh to prevent outward distortion of the coil, and or applying a wet fiber-resin material to the resin impregnated fiberglass rope layer to fill in the gaps.
The method further includes rotating the extreme duty transformer coil while curing to prevent sagging of the resin impregnated layers and runoff of the resin from the resin impregnated insulation and resin impregnated insulating felt.
Further objects and advantages of this invention will be apparent from the following detailed description of preferred embodiments which are illustrated schematically in the accompanying drawings.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
The following is a list of reference numerals used throughout the description to identify elements shown in the drawings:
This invention is intended to address the previously outlined problems specific to the underground mining environment. These problems are solved by producing a wet wound transformer coil that incorporates rigid cooling ducts that result in a mechanically robust construction preventing winding displacement and sealing out environmental contaminants. This is achieved by applying resin in conjunction with various fiberglass reinforcing materials throughout the winding process to eliminate voids within the wound coil, thus preventing corona development. The outside layer of the coil is specifically reinforced with resin impregnated fiberglass mesh and resin impregnated fiberglass rope applied to the circumference of the coil to prevent outward coil distortion.
The dielectric performance of the coil is improved as a result of the glass-resin which has excellent insulation characteristics. Another characteristic of this coil design is that it utilizes corrugated insulating material to insulate windings and form rigid cooling ducts in place of the duct sticks used in the prior art transformers.
The corrugated ducting layer is made from an insulating material selected to meet operational requirements can range from approximately 0.0001 volts per mil to approximately 100,000 volts per mil., thus eliminating the need for additional layers of insulation between windings. The thickness of the corrugated ducting material can range from approximately 0.000001 of an inch to approximately 10 inches thick. The corrugated ducting layer is applied as a continuously fed sheet that extends the full circumference and width of the coil in a single sheet to prevent the corrugated ducting material from becoming displaced.
The method of the present invention uses a winding technique where fiberglass resin is applied in conjunction with various reinforcing materials throughout the winding process to produce a transformer coil with a mechanically robust construction that prevents winding displacement, eliminates voids which prevents corona development and seals out environmental contaminants. A variety of different resin reinforcing materials can be used for encapsulating the coil according to the present invention. For example, the resin materials used in construction of the extreme duty transformer can include one or more of a fiber resin impregnated insulating material, a resin impregnated adaptable insulation material such as a felt and a woven resin impregnated fiberglass mesh, or any combination thereof.
An example of the construction of the extreme duty transformer is shown in
Each coil is designed to meet customer specifications. One skilled in the art should realize that the particularities in the number of winding in each of the primary and secondary windings of the transformer are dependent on the voltage and current requirement of the extreme duty transformer. Likewise, the number of insulation and corrugated ducting layers applied and the thickness of the insulation layers and corrugated ducting layer can be varied according to voltage and current requirements.
The example shown in
One skilled in the art should realize that the particularities in the resin and corrugated insulation material should not be construed as limitation of the preferred embodiment. Various configurations and corresponding material compositions may be chosen and optimized for a particular application to achieve a desired performance and other materials, configurations and spacing can be substituted.
A next layer of winding wires and top and bottom collar are wound in step 564 with the corrugated duct layer and insulation layer separating the first winding layer from the second winding layer. When required by customer specifications, additional layers of insulation, corrugated ducting and winding wires are wound in steps 565 and 567. As shown in
Referring back to
Alternating layers of magnet wire and wet wound impregnated insulation are wound around the coil in step 562, 563, 564 and 565. After one or more alternating layers of primary wire and wet wound saturated felt, a layer of corrugated ducting material is wound in step 566 for cooling followed by another layer of wet wound resin impregnated insulation in step 563. According to design specification to meet customer requirements, additional alternating layers of magnet wire and resin impregnated insulation layers and saturated felt are wound.
The last magnet wire layer is wound in step 567 with the bus bar finish lead 160 protruding from the side of the coil.
The outer layer of the coil is specifically reinforced with resin impregnated fiberglass rope, ranging from 0.0001″ diameter to 10″ diameter, applied to the circumference to prevent outward coil distortion. The mesh 115 resembles a basket weave and is applied for strength. The combination of the resin impregnated mesh 115 and the resin impregnated fiberglass rope 180 are applied as an outer layer to prevent distortion of the transformer that would cause the outside diameter of the coil to increase in physical size. Thus reducing or eliminating the decrease of the electrical clearance between adjacent phases.
The last step is curing the wet wound transformer while rotating the coil to prevent sagging of the layers and runoff of the resin from the resin impregnated wet wound layers. The transformer of the present invention has environmentally sealed transformer coils that are capable of withstanding extreme mechanical stresses when operated in extreme environments.
An important characteristic of the coil design of the present invention is that it is oval shaped, wound around a rectangular winding form for use with a rectangular core cross section. This aspect of the design provides the superior short circuit strength of a round coil with the reduced overall height profile of rectangular core construction needed to meet the low profile height requirement of the underground mining environment.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
This application claims the benefit of priority to U.S. Provisional Application No. 61/681,377 filed on Aug. 9, 2012.
Number | Name | Date | Kind |
---|---|---|---|
1563426 | Marbury | Dec 1925 | A |
2424973 | Edmonds | Aug 1947 | A |
3246271 | Ford | Apr 1966 | A |
3252117 | Fischer | May 1966 | A |
3263196 | Reber | Jul 1966 | A |
3302149 | Forsha | Jan 1967 | A |
3585276 | Beckett | Jun 1971 | A |
3710293 | Lazor | Jan 1973 | A |
3713061 | Weber | Jan 1973 | A |
3748616 | Weber et al. | Jul 1973 | A |
3934332 | Trunzo | Jan 1976 | A |
4335367 | Mitsui | Jun 1982 | A |
4449111 | Nakajima | May 1984 | A |
4649640 | Ito et al. | Mar 1987 | A |
5566443 | Allan | Oct 1996 | A |
6160464 | Clarke | Dec 2000 | A |
8181334 | Weber | May 2012 | B2 |
20080223517 | Kaltenborn | Sep 2008 | A1 |
20090212897 | Schaal | Aug 2009 | A1 |
20110140821 | Gruettner | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
61681377 | Aug 2012 | US |