All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates generally to systems and devices for treatment of disorders, including chronic inflammation and inflammatory disorders using extremely low duty-cycle stimulation. In particular, described herein are systems, devices and methods for treating disorders such as intestinal inflammatory disorders. Further described herein generally are methods and devices, including an implantable microstimulators, adapted for electrically stimulating the vagus nerve to treat chronic inflammation by extremely low duty cycle stimulation to modulate an inflammatory response (via the nicotinic cholinergic anti-inflammatory pathway). In particular, described herein are systems and method adapted to increase the duration between stimulations (“off time”) while sustaining and even increasing the duration of equivalent inhibition.
Electrical stimulation of the neural cholinergic anti-inflammatory pathway (CAP or NCAP) has been described in the literature, beginning with the seminal work of Kevin Tracey (see, e.g., Tracey, K J “Physiology and immunology of the cholinergic anti-inflammatory pathway.” The Journal of clinical investigation 2007:117 (2): 289-96), who first identified the cholinergic anti-inflammatory pathway and characterized the link between vagus nerve stimulation and inhibition of inflammation by suppressing cytokine production. Since then, research as continued to explore the relationship between stimulation of the CAP and modulation of inflammatory disorders. Typical stimulation parameters have include stimulation by a burst of pulses (e.g., between 10 Hz to 1 GHz for between 30 sec and 20 min), with a slight increase in effect seen at higher frequencies (see, e.g., U.S. Publication No. 2009/0143831 to Huston et al.).
Although this work has suggested that chronic inflammation may be successfully treated by an implantable stimulator, the design and implementation of such a chronically implantable and usable stimulator has proven elusive, in part because of the power demands that a device capable of truly long-term, chronic, usage would face.
Implantable electrical stimulation devices have been developed for therapeutic treatment of a wide variety of diseases and disorders. For example, implantable cardioverter defibrillators (ICDs) have been used in the treatment of various cardiac conditions. Spinal cord stimulators (SCS), or dorsal column stimulators (DCS), have been used in the treatment of chronic pain disorders including failed back syndrome, complex regional pain syndrome, and peripheral neuropathy. Peripheral nerve stimulation (PNS) systems have been used in the treatment of chronic pain syndromes and other diseases and disorders. Functional electrical stimulation (FES) systems have been used to restore some functionality to otherwise paralyzed extremities in spinal cord injury patients.
Recently, implantable vagus nerve stimulations have been developed, including vagus nerve stimulators to treat inflammation. Such implants typically require an electrode and a power source. The size and use-limiting parameters may typically be the power requirements, which either require a long-lasting (and therefore typically large) battery, or require the added complication of charging circuitry and charging devices.
For example, typical implantable electrical stimulation systems may include one or more programmable electrodes on a lead that are connected to an implantable pulse generator (IPG) that contains a power source and stimulation circuitry. Even relatively small implantable neural stimulator technology, i.e. microstimulators, having integral electrodes attached to the body of a stimulator may share some of these disadvantages, as the currently developed leadless devices tend to be larger and more massive than desirable, making it difficult to stably position such devices in the proper position with respect to the nerve.
We herein describe the surprising result that long-lasting, robust inhibition of inflammation may be achieved by on a single (or very few) supra-threshold electrical pulse applied to the vague nerve. This finding is particularly surprising given the extraordinarily robust effect despite the minimal power applied, particularly compared to published data showing effects at much higher applied energy. These findings support various extremely low-power devices, system and methods for treating chronic inflammation. In particular, devices and methods for the treatment of inflammatory disorders, including inflammatory disorders of the intestine (e.g., irritable bowel disorder or IBD) are described, including microstimulators and methods of using them based on the remarkably low power requirements identified.
Described herein are devices, systems and methods for the extraordinarily low duty cycle stimulation of the vagus nerve. An extraordinarily low, extremely low, super low, or ultra low duty cycle refers generally to a duty cycle that provides stimulation using both a low number of electrical pulses per time period and a low stimulation intensity such that power requirements of the duty cycle are very low. The following are examples of various embodiments of extraordinarily low, extremely low, super low, or ultra low duty cycles. In some embodiments, the number of electrical pulses can be between 1 and 5, in one pulse increments, every 4 to 48 hours (or every 48-72 hours, or ever 2-4 days, or every 2-5 days, or every 2-10 days, or every 2-14 days or every 2-18 days, or every 2-20 days or every 2-25 days, etc.), including in 4 hour increments. In some embodiments, the stimulation intensity can be at a supra-threshold level that is capable of effecting the desired physiological response through the vagus nerves. In some embodiments, the supra-threshold level is between about 100 μA and 5000 μA, or between about 100 μA and 4000 μA, or between about 100 μA and 3000 μA, or between about 100 μA and 2000 μA. In some embodiments, the supra-threshold level is less than about 2000 μA, 3000 μA, 4000 μA or 5000 μA.
In some embodiments, the duty cycle is one supra-threshold pulse every 4 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 4 hours, with the pulse amplitude less than about 3000 μA. In some embodiments, the duty cycle is one pulse every 12 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 12 hours, with the pulse amplitude less than about 3000 μA. In some embodiments, the duty cycle is one pulse every 24 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 24 hours, with the pulse amplitude less than about 3000 μA. In some embodiments, the duty cycle is one pulse every 48 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 48 hours, with the pulse amplitude less than about 3000 μA.
In some embodiments the pulse width can be between about 100 to 1000 μS, or can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS. In some embodiments, the frequency can be about or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 Hz. In some embodiments, the IPI can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS.
In some embodiments, a system for treating chronic inflammation and/or an inflammatory disorder in a subject is provided. The system includes an implantable microstimulator configured to apply a low duty-cycle stimulation to a vagus nerve, wherein the low duty-cycle stimulation provides no more than a single supra-threshold pulse every four hours; and a controller configured to set a dose for the microstimulator wherein the dose comprises the single supra-threshold pulse followed by an off-period of at least four hours. In some embodiments, the off-period is at least 24 hours, or at least 48 hours, or between about 4 to 48 hours, or between about 12 to 48 hours, or between about 24 to 48 hours. In some embodiments, the single supra-threshold pulse has a pulse amplitude of less than 5 mA, less than 3 mA, or less than 2 mA. In some embodiments, the single supra-threshold pulse is biphasic. In some embodiments, the chronic inflammation is intestinal inflammation. In some embodiments, the chronic inflammation is inflammatory bowel disease. In some embodiments, the chronic inflammation is Crohn's disease.
In some embodiments, a method of treating chronic inflammation and/or inflammatory disorders in a subject is provided. The method includes implanting a microstimulator; and applying only a single supra-threshold stimulus pulse from the microstimulator to the vagus nerve followed by an off-time of at least 4 hours. In some embodiments, the off-time is at least 24 hours, at least 48 hours, or between about 4 to 48 hours, or between about 12 to 48 hours, or between about 24 to 48 hours. In some embodiments, the single supra-threshold stimulus pulse has a pulse amplitude of less than 5 mA, less than 3 mA, or less than 2 mA. In some embodiments, the single supra-threshold stimulus pulse is biphasic. In some embodiments, the chronic inflammation is intestinal inflammation. In some embodiments, the chronic inflammation is inflammatory bowel disease. In some embodiments, the chronic inflammation is Crohn's disease.
Types of inflammatory disorders that may be treated as described herein include a variety of disease states, including diseases such as hay fever, atherosclerosis, arthritis (rheumatoid, bursitis, gouty arthritis, polymyalgia rheumatic, etc.), asthma, autoimmune diseases, chronic inflammation, chronic prostatitis, glomerulonephritis, nephritis, inflammatory bowel diseases, pelvic inflammatory disease, reperfusion injury, transplant rejection, vasculitis, myocarditis, colitis, etc.
Non-limiting examples of inflammatory disorders which can be treated using the present invention include appendicitis, peptic ulcer, gastric ulcer, duodenal ulcer, peritonitis, pancreatitis, ulcerative colitis, pseudomembranous colitis, acute colitis, ischemic colitis, diverticulitis, epiglottitis, achalasia, cholangitis, cholecystitis, hepatitis, Crohn's disease, enteritis, Whipple's disease, allergy, anaphylactic shock, immune complex disease, organ ischemia, reperfusion injury, organ necrosis, hay fever, sepsis, septicemia, endotoxic shock, cachexia, hyperpyrexia, eosinophilic granuloma, granulomatosis, sarcoidosis, septic abortion, epididymitis, vaginitis, prostatitis, urethritis, bronchitis, emphysema, rhinitis, pneumonitis, pneumoultramicroscopic silicovolcanoconiosis, alvealitis, bronchiolitis, pharyngitis, pleurisy, sinusitis, influenza, respiratory syncytial virus infection, HIV infection, hepatitis B virus infection, hepatitis C virus infection, herpes virus infection disseminated bacteremia, Dengue fever, candidiasis, malaria, filariasis, amebiasis, hydatid cysts, burns, dermatitis, dermatomyositis, sunburn, urticaria, warts, wheals, vasulitis, angiitis, endocarditis, arteritis, atherosclerosis, thrombophlebitis, pericarditis, myocarditis, myocardial ischemia, periarteritis nodosa, rheumatic fever, Alzheimer's disease, coeliac disease, congestive heart failure, adult respiratory distress syndrome, meningitis, encephalitis, multiple sclerosis, cerebral infarction, cerebral embolism, Guillame-Barre syndrome, neuritis, neuralgia, spinal cord injury, paralysis, uveitis, arthritides, arthralgias, osteomyelitis, fasciitis, Paget's disease, gout, periodontal disease, rheumatoid arthritis, synovitis, myasthenia gravis, thyroiditis, systemic lupus erythematosis, Goodpasture's syndrome, Behcet's syndrome, allograft rejection, graft-versus-host disease, Type I diabetes, Type II diabetes, ankylosing spondylitis, Berger's disease, Reiter's syndrome, Hodgkin's disease, ileus, hypertension, irritable bowel syndrome, myocardial infarction, sleeplessness, anxiety and stent thrombosis.
The systems and methods described herein generally relate to systems and devices for treatment of chronic inflammation and inflammatory disorders. In particular, described herein are systems, devices and methods for treating intestinal disorders and rheumatoid arthritis. Further described herein generally are methods and devices, including an implantable microstimulators, adapted for electrically stimulating the vagus nerve to treat chronic inflammation by extremely- or super-low duty cycle stimulation and by extremely low treatment dose schedule to modulate an inflammatory response (via the cholinergic anti-inflammatory pathway).
For example, any of the systems and methods described herein may include or be specifically adapted and/or configured to deliver a treatment regimen in which the delay between stimulation doses (including single bursts and/or single pulses of supra-threshold stimulation) is progressively increased from the start of stimulation so that subsequent (later) stimulation occurs with longer off-times than earlier doses, without substantially decreasing the inhibition of inflammation due to the vagal stimulation. This effect may be referred to herein as ‘training’ the subject or vagus nerve, as the later stimulation (following an initial training period) may achieve the same or even more robust inhibition of inflammation with a longer duration between applied vagal stimulation. In general, the effect of VNS stimulation described herein may be referred to as an inhibition of the inflammatory response, and may include the inhibition of cytokines, or the increase of anti-inflammatory cytokines, or both.
For example, described herein are systems for treating chronic inflammation in a subject that include: an implantable microstimulator configured to apply a low duty-cycle stimulation to a vagus nerve; and a controller adapted to set a dose regimen of progressively delayed supra-threshold stimulus pulses for the microstimulator, wherein the dose regimen comprises a first dose comprising a supra-threshold stimulus pulse followed by a first off-period of at least about 48 hours, a second dose comprising a supra-threshold stimulation pulse followed by a second off-period that is longer than the first off-period, and a series of sequential doses each comprising a supra-threshold stimulation pulse followed by an off-period that is longer than the second off-period, wherein the supra-threshold stimulus pulses are configured to reduce a level of inflammation in the subject.
The first off-period is may be least about 72 hours, or 3.5 days, 4 days, 5 days, 6 days or 7 days, etc., and the second off period may be at least about 1.1 to 3 times the first off period (e.g., 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, etc.). For example, the second and/or subsequent off-periods may be between about 1.1 and 2 times the first off period (e.g., 1.2 and 2.2 times, etc.). In one example, illustrated below, the first off-period is about 7 days and the second off period is at least about 10 days. In general, the off-period is the quiescent period during which no supra-threshold (and/or no stimulation at all) is applied by the implant to the vagus. In general, the time of the first off period may be determined based on the amount of inhibition of inflammation. For example, the duration of the first off period and subsequent off periods may be determined by examining the level of inhibition of inflammation (of an inflammatory response) or of a marker for inflammation and/or the inflammatory response. For example, the off-period may extend until inflammation or a marker for inflammation and/or the inflammatory response (either ongoing or evoked from the subject) is a percentage of the native inflammation level or inflammatory response (e.g., above about 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%), etc. Thus, for example, the off-periods of the sequential doses may each at least about two weeks. In some variations, the off-periods of the sequential doses are ramped up to a predetermined length of time. Thus, for example, the second off-period may be longer than the first off-period and subsequent off-periods may be longer still (progressively longer), but may approach a limit (e.g., of two weeks, 18 days, 3 weeks, 25 days, etc.). The limit may be a maximum delay period. In general, in the methods and apparatuses described herein, the application of the ultra-low duty-cycle stimulation at the progressive off-times described herein may result in a tonic (ongoing) inhibition of inflammation (or of markers for inflammation) at an acceptable level. This may permit remarkably low-power (or low-power consumption) devices that may be operated for many days, weeks or even months, without requiring power replacement or recharging while maintaining efficacy.
As mentioned above, the first dose may comprise a single supra-threshold stimulus pulse, or burst of pulses. A burst of pulses typically has a burst duration of less than about 5 minutes, less than about 4 min, 3 min, 2 min, 1 min, etc.). One or more (including all) of the pulses in the burst may be supra threshold. In some variations, for example, the dose (including the first dose) comprises a single burst of supra-threshold stimulus pulses.
Any of the devices and methods described herein may be configured to sense an indicator of the subject's inflammation or inflammatory response. For example, a system may include an analyte detector configured to measure a level of an inflammatory analyte in the subject's blood or bodily fluids (e.g., the level of a marker of an inflammatory response). Some variations may include a sensor configured to detect a measure of inflammation based on the electrical activity of the vagus nerve; thus any of these systems may include one or more electrodes to sense activity on the vagus nerve. In any of these systems, the system (e.g., the controller) may be configured to adjust the doses (e.g., the second dose and/or subsequent doses) based on the level of inflammation in the subject, e.g., the level of inhibition of inflammation in the subject. For example, a controller may be configured to adjust the second dose and subsequent doses based on the level of an inflammatory analyte, and/or the controller may be configured to adjust the second off-period based on the level of inflammation in the subject (e.g. the level of the inhibition of the inflammatory response).
The controller may be configured to adjust the second off period based on the level an inflammatory analyte, e.g., based on the amount of inhibition of the inflammatory response. As mentioned, the microstimulator may include a sensing electrode configured to monitor vagus nerve activity; this activity may be analyzed (e.g., by the microstimulator or remotely from the microstimulator, which may transmit and receive data and/or command information or instructions). The microstimulator may comprise a sensing electrode configured to monitor vagus nerve activity, and also a processor configured to process the monitored vagus nerve activity to determine a level of inflammation and/or the level of inhibition of inflammation.
Also described herein are methods of treating chronic inflammation in a patient by progressively increasing the off-times between stimulation. For example, a method may include: applying a single supra-threshold stimulus from a microstimulator to a vagus nerve, wherein the delivery of the stimulus is followed by a first off-time of at least about 48 hours during which an inflammatory response is suppressed; and applying subsequent supra-threshold stimuli, wherein each subsequent stimulus is followed by an off-time of longer than 48 hours.
The step of applying the single supra-threshold stimulus may include applying a single burst of pulses, or a single supra-threshold pulse. As mentioned above, the off-times may be predetermined as part of the dosing regimen (e.g., the first off-time may at least about 72 hours, 4 days, 5 days, 6 days, 7 days, etc.). The first off-time may be, for example, at least about 7 days. The subsequent off-times may be predetermined and/or may be modified by one or more subject-specific parameters, including, for example, the level of inhibition of the inflammatory response for the subject. For example, after the first or second stimulation doses are applied, the subsequent off-times may be at least about one to two weeks. As mentioned, the subsequent off times may be ramped up from the first off-time to a longer predetermined length of time (e.g., up to two weeks, 2.5 weeks, three weeks, 3.5 weeks, four weeks, etc.).
In any of these variations, the method may include a step of determining the level of inflammation (or the level of inhibition of the inflammatory response) and adjusting the off-times following the subsequent supra-threshold stimuli based on the level of inflammation and/or the level of inhibition of the inflammatory response. For example, the level of inflammation and/or inhibition of inflammation may be estimated by monitoring vagus nerve activity; the off-times following the subsequent supra-threshold stimuli may be adjusted based on the level of inflammation and/or the level of inhibition of inflammation.
In general, any of these methods may also include determining the level of an inflammatory analyte in the subject's blood or bodily fluids and adjusting the off-times following the subsequent supra-threshold stimuli based on the level of analyte. The level of the analyte may be indicative of the level of inflammation and/or the level of inhibition of inflammation. For example, a level of inhibition of inflammation may be determined by comparison to a baseline (e.g., prior to vagus nerve stimulation as described). The level of inhibition of inflammation may be determined as a percentage of inhibition of this inflammatory response. The inflammatory response may be determined by evoking (e.g., ex vivo or in vivo) an inflammatory response and comparing it to a current (or some post-stimulation) time point.
Also described herein are methods of treating chronic inflammation in a subject by progressively increasing the off-times between stimulation. For example, a method may comprise: applying to a vagus nerve from an implanted microstrimulator, a first dose comprising a supra-threshold stimulus, followed by a first off-time of at least about 48 hours, wherein the application of the first dose reduces the level of inflammation in the subject; applying a second dose comprising a supra-threshold stimulus, followed by a second off-time that is longer than the first off-time; and applying subsequent doses comprising supra-threshold stimuli, wherein each does is followed by an off-time that is longer than the second off-time.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
In general, described herein are systems, methods and devices illustrating extraordinarily low duty cycle stimulation of the vagus nerve to treat a disorder. In particular, described herein are systems, methods and devices illustrating extraordinarily low duty cycle stimulation of the vagus nerve to reduce or prevent inflammation and the effects of inflammation in a mammalian model. An extraordinarily low, extremely low, super low, or ultra low duty cycle refers generally to a duty cycle that provides stimulation using both a low number of electrical pulses per time period and a low stimulation intensity such that power requirements of the duty cycle are very low. The methods described herein apply various stimulation protocols that may be used to significantly reduce inflammation and/or the effects of inflammation. Simulation parameters that may be varied include the pulse shape (e.g., sinusoidal, square, biphasic, monophasic, etc.) the duration of stimulation, the on-time, the off-time, the inter-pulse interval, or the like. One key factor examined herein is the number of supra-threshold pulses. As shown herein, the stimulation of the vagus nerve with even a single supra-threshold stimulus results in a significant and long-lasting effect, even when compared to multiple stimulations. This effect was particularly profound when examined using a rodent model for IBD.
The following are examples of various embodiments of extraordinarily low, extremely low, super low, or ultra low duty cycles. In some embodiments, the number of electrical pulses can be between 1 and 5, in one pulse increments, every 4 to 48 hours, in 4 hour increments. In some embodiments, the stimulation intensity can be at a supra-threshold level that is capable of effecting the desired physiological response through the vagus nerves. In some embodiments, the supra-threshold level is between about 100 μA and 5000 μA, or between about 100 μA and 4000 μA, or between about 100 μA and 3000 μA, or between about 100 μA and 2000 μA. In some embodiments, the supra-threshold level is less than about 2000 μA, 3000 μA, 4000 μA or 5000 μA.
In some embodiments, the duty cycle is one supra-threshold pulse every 4 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 4 hours, with the pulse amplitude less than about 3000 μA. In some embodiments, the duty cycle is one pulse every 12 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 12 hours, with the pulse amplitude less than about 3000 μA. In some embodiments, the duty cycle is one pulse every 24 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 24 hours, with the pulse amplitude less than about 3000 μA. In some embodiments, the duty cycle is one pulse every 48 hours, with the pulse amplitude less than about 2000 μA. In some embodiments, the duty cycle is one pulse every 48 hours, with the pulse amplitude less than about 3000 μA.
The examples described herein use a stimulator and stimulation control package that was developed for use in driving vagus nerve stimulation. In some example, the stimulation is controlled by a software package that is configured to run on a microprocessor (e.g., personal computer) and to control output of an emulator/stimulator (which may be referred to as an “ITE” or integrated terminal emulator). Thus, the systems described herein may include logic (e.g., control logic) that may be software, firmware, and/or hardware to control the application of stimulation. For example, in some variations, the parameters controlling stimulation and data acquisition may include: (1) selected stimulating electrode pair including a cathode and anode; (2) frequency in 1 Hz increments; (3) Pulse Width (PW): 20-2,000 uS in 1 uS increments; (4) Pulse Amplitude (PA): ±0-5,000 uA in 3 uA increments; and (5) Inter-Pulse-Interval between phase A & B of waveform (IPI): 20-2,000 uS in 1 uS increments.
In addition to the exemplary parameters provided above, in some embodiments the PW can be between about 100 to 1000 μS, or can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS. In some embodiments, the frequency can be about or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 Hz. In some embodiments, the IPI can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS.
For example, the exemplary waveform shown on
The stimulator may generate a pulse train on a pair of electrodes. In general, a does may include a single pulse (e.g., a single biphasic pulse) or a single burst including multiple pulses. The pulses may be generated using a bipolar current source and can be capacitively isolated with >1 uF ceramic capacitors on both electrodes outputs. Compliance voltage can be set to as high as +/−18.8 volts.
The different experimental examples described herein show that appropriate NCAP stimulation of the vagus nerve can be used to limit or eliminate the effects of intestinal inflammation, in particular in a rat model of colitis and a rat model of Crohn's disorder. Based on this data, a biphasic simulation at the parameters described above may successfully treat intestinal inflammation in humans or other mammals.
In one example, mice (Male, BALB/c) were anesthetized and cuff electrodes (0.3 mm ID, 0.5 mm inter-electrode distance; Microprobes, Gaithersburg, Md.) were placed around the left carotid sheath (containing the cervical vagus nerve) and secured by suture. Supra-threshold pulses (750 μA, 200 μS, 10 Hz) were applied in various numbers (0, 1, 10, 100, 300, 600, 3000). Afterwards, the electrode was removed and the wound stapled closed. Mice recovered for 3 hours, and then were challenged with LPS (5 mg/kg; IP); these mice were sacrificed 90 minutes post-LPS and serum TNF measured by ELISA to measure the effects on inflammatory cytokines. As shown on
A second similar experiment was conducted to examine the long lasting effect of a single supra-threshold pulse on the cholinergic anti-inflammatory pathway (CAP). Mice (Male, BALB/c) were anesthetized and cuff electrodes (0.3 mm ID, 0.5 mm inter-electrode distance; Microprobes, Gaithersburg, Md.) were placed around the left carotid sheath (containing the cervical vagus nerve) and secured by suture. Supra-threshold pulses (750 μA, 204 μS, 10 Hz) were applied in various numbers (0, 1, 600). Afterwards, the electrode was removed and the wound stapled closed. Mice recovered for 24 hours, and then were challenged with LPS (5 mg/kg; IP); these mice were sacrificed 90 minutes post-LPS and serum TNF measured by ELISA to measure the effects on inflammatory cytokines. As shown on
In another example, an experiment was conducted to determine the effectiveness of single pulse suppression of lesion area in a rat model for IBD/Crohn's disease. Rats were anesthetized and were either given a sham stimulation or a single supra-threshold stimulus to the left cervical vagus nerve (1 pulse at 750 μA, 200 μS pulse width, 10 Hz). IBD was induced at 30 minutes post-stimulation by the SC injection of indomethacin (10 mg/kg (5 mg/mL) in 5% sodium bicarbonate). Lesions were stained in-life 23.5 hours post-indomethacin injection by anesthetizing the rats with isoflurane and IV tail injection with Evans Blue (0.3 ml of 1%). Rats were sacrificed via C02 asphyxiation at 24 hours post disease induction, and the small intestines were harvested, cleaned and fixed in 2% formalin overnight. Photographs were taken and digitized of the fixed intestines and lesions were quantified by a blinded scorer. As illustrated in
These results are even more significant, given the data shown in
Although the examples provided above describe methods, systems and devices for treating an inflammatory disorder in a rat model, all the methods, systems and devices described herein can be used and/or adapted for use in other mammals, such as humans. For example, a system and method for treating an inflammatory disorder in a human using a single supra-threshold pulse and/or an extraordinarily low duty cycle stimulation protocol can include an electrode, such as a cuff electrode, that is configured to be implanted around the vagus nerve and deliver electrical stimulation to the vagus nerve of the subject. The system can further include a processor, memory for storing instructions, and/or a controller can include programming to deliver the low duty cycle stimulation protocol, including the single supra-threshold pulse protocol, to the vagus nerve via the cuff electrode. A battery can be provided to provide power for the system, and because the low duty cycle stimulation protocol consumes so little energy, the battery life can be greatly extended, allowing the system to be completely implanted within the subject for a long duration before the battery needs to be replaced or recharged. For an implanted system, this provides a great benefit since it can reduce the frequency of surgical procedures that may be required to change the battery.
The stimulation parameters used in this system can be the same or similar to the parameters disclosed above. For example, the pulse amplitude can be less than about 5, 4, 3, or 2 mA. In addition, the low duty cycle stimulation protocol can deliver a single supra-threshold pulse between off-times of between about 4 to 48 hours, or at least 4, 12, 24, or 48 hours. In some embodiments the pulse width can be between about 100 to 1000 μS, or can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS. In some embodiments, the frequency can be about or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 Hz. In some embodiments, the IPI can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS.
In general, these results suggest that the application of even a single brief supra-threshold stimulus of the vagus nerve may result in a substantial reduction in the effects of inflammation, possibly by inhibition of inflammatory cytokines such as TNF. These results are both surprising, given the prior arts tendency to stimulate for much longer times, and important for the design of future devices and methods. In particular, stimulation of the vagus nerve (or other portions of the inflammatory reflex) may be configured to apply extremely low duty-cycle stimulation. As mentioned briefly, this would allow for much smaller, lighter and more efficient implantable stimulation systems.
Another phenomenon seen in the experiments of
Types of inflammatory disorders that may be treated as described herein include a variety of disease states, including diseases such as hay fever, atherosclerosis, arthritis (rheumatoid, bursitis, gouty arthritis, polymyalgia rheumatic, etc.), asthma, autoimmune diseases, chronic inflammation, chronic prostatitis, glomerulonephritis, nephritis, inflammatory bowel diseases, pelvic inflammatory disease, reperfusion injury, transplant rejection, vasculitis, myocarditis, colitis, etc.
Non-limiting examples of inflammatory disorders which can be treated using the present invention include appendicitis, peptic ulcer, gastric ulcer, duodenal ulcer, peritonitis, pancreatitis, ulcerative colitis, pseudomembranous colitis, acute colitis, ischemic colitis, diverticulitis, epiglottitis, achalasia, cholangitis, cholecystitis, hepatitis, Crohn's disease, enteritis, Whipple's disease, allergy, anaphylactic shock, immune complex disease, organ ischemia, reperfusion injury, organ necrosis, hay fever, sepsis, septicemia, endotoxic shock, cachexia, hyperpyrexia, eosinophilic granuloma, granulomatosis, sarcoidosis, septic abortion, epididymitis, vaginitis, prostatitis, urethritis, bronchitis, emphysema, rhinitis, pneumonitis, pneumoultramicroscopic silicovolcanoconiosis, alvealitis, bronchiolitis, pharyngitis, pleurisy, sinusitis, influenza, respiratory syncytial virus infection, HIV infection, hepatitis B virus infection, hepatitis C virus infection, herpes virus infection disseminated bacteremia, Dengue fever, candidiasis, malaria, filariasis, amebiasis, hydatid cysts, burns, dermatitis, dermatomyositis, sunburn, urticaria, warts, wheals, vasulitis, angiitis, endocarditis, arteritis, atherosclerosis, thrombophlebitis, pericarditis, myocarditis, myocardial ischemia, periarteritis nodosa, rheumatic fever, Alzheimer's disease, coeliac disease, congestive heart failure, adult respiratory distress syndrome, meningitis, encephalitis, multiple sclerosis, cerebral infarction, cerebral embolism, Guillame-Barre syndrome, neuritis, neuralgia, spinal cord injury, paralysis, uveitis, arthritides, arthralgias, osteomyelitis, fasciitis, Paget's disease, gout, periodontal disease, rheumatoid arthritis, synovitis, myasthenia gravis, thyroiditis, systemic lupus erythematosis, Goodpasture's syndrome, Behcet's syndrome, allograft rejection, graft-versus-host disease, Type I diabetes, Type II diabetes, ankylosing spondylitis, Berger's disease, Reiter's syndrome, Hodgkin's disease, ileus, hypertension, irritable bowel syndrome, myocardial infarction, sleeplessness, anxiety and stent thrombosis.
Any of these disorders (e.g., inflammatory disorders) may be treated by, for example, implanting a cuff electrode around the vagus nerve, and using an extraordinarily low duty cycle stimulation protocol as described herein to treat. A processor and memory for storing instructions and/or programming can be used to control the stimulation protocol. The stimulation parameters used in this system and method can be the same or similar to the parameters disclosed above. For example, the pulse amplitude of the single supra-threshold pulse can be less than about 5, 4, 3, or 2 mA. In addition, the low duty cycle stimulation protocol can deliver a single supra-threshold pulse between off-times of between about 4 to 48 hours, or at least 4, 12, 24, or 48 hours. Any of these methods may include a step of determining the efficacy of the treatment. For example, any of these methods may include the step of monitoring the subject before and/or during treatment. For example, in treating an inflammatory disorder, a biomarker for inflammation may be monitored, such as a cytokine or other marker. In some variations, monitoring the subject may include assessing the subject visually (e.g., for swelling, body temperature, etc.). In some variations the systems described herein may include a sensor and/or data processing subsystem for monitoring the subject and/or the effect of the treatment with the system.
Although the examples and description above focuses primarily on inflammatory disorders, in some embodiment, the systems, devices and methods described herein can be used to treat non-inflammatory diseases or disorders. For example, the systems, devices and methods described herein can be used to activate, regulate, and/or modulate the levels of sirtuins by extraordinarily low duty cycle stimulation of the vagus nerve. The modulation of sirtuins by vagus nerve stimulation is also discussed in U.S. patent application Ser. No. 13/338,185, filed Dec. 27, 2011, titled “MODULATION OF SIRTUINS BY VAGUS NERVE STIMULATION,” Publication No. US-2013-0079834-A1 which is hereby incorporated by reference in its entirety for all purposes. As above, a cuff electrode can be implanted around the vagus nerve and a processor and memory for storing instructions and/or programming can be used to control the stimulation protocol. The stimulation parameters used in this system and method can be the same or similar to the parameters disclosed above. For example, the pulse amplitude of the single supra-threshold pulse can be less than about 5, 4, 3, or 2 mA. In addition, the low duty cycle stimulation protocol can deliver a single supra-threshold pulse between off-times of between about 4 to 48 hours, or at least 4, 12, 24, or 48 hours. In some embodiments the pulse width can be between about 100 to 1000 μS, or can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS. In some embodiments, the frequency can be about or less than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 Hz. In some embodiments, the IPI can be about or less than about 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μS.
As mentioned above, in some embodiments, the system, device, and/or method includes monitoring the effects of the stimulation on the disease being treated. For example, inflammation indicators or disease indicators or other indicators can be monitored to evaluate the efficacy of the treatment protocol, allowing the stimulation protocol to be adjusted based on the evaluation. Any one of the parameters described herein can be modulated based on the evaluation. For example, the pulse amplitude and/or the off time can be increased or decreased to optimize the treatment efficacy. Examples of indicators that can be monitored include TNF levels, lesion size, degree or level of inflammation, cytokine levels, pain levels, sirtuin levels, and the like.
Another key factor examined herein is the longevity of effect of a single stimulation as well as the increase in the longevity of effect following a second stimulation that is applied after, for example, seven days later. In other embodiments, the second stimulation is delivered between 1-14 days after the first stimulation. In some embodiments, a third stimulation can be delivered 1-30 days after the second stimulation. More generally, the time period between stimulations can be increased after each stimulation until a desired or predetermined period of time between stimulations is achieved. In some embodiments, the time period between stimulations can be predetermined. The predetermined time period between stimulations may be constant, or can increase over time to a predetermined duration. In embodiments where the time period between stimulations is increased over time, the increase can be gradual, stepwise, or based according to a predetermined schedule. For example, the time period can be increased by 5, 10, 15, 20, or 25 percent, or by about 5-25 percent over the previous time period.
In other embodiments, the time period can be based on a measurement of analyte levels, biomarker levels, an assessment of the level of inflammation, and/or level or pattern or signature of vagus nerve activity, such that the next stimulation is applied when the analyte level, biomarker level, assessment of the level of inflammation, and/or level or pattern or signature of vagus nerve activity either exceeds or falls below a predetermined threshold. The levels or presence of analytes and biomarkers can also be indicators for inflammation. For example, the analyte can be TNF or another inflammatory cytokine or mediator. In some embodiments, the inflammatory analyte or biomarker can be measured ex vivo in a whole blood response assay or in another assay using whole blood or blood plasma. The assessment of the level of inflammation can also be a clinical assessment and/or a patient assessment, and can include a measurement and/or scoring of swelling and/or pain. In some embodiments, the measurements and/or assessments can be performed at predetermined intervals, such as daily, or every two days, which can begin immediately or after a predetermined time has elapsed, such as after 1, 2, 3, 4, 5, 6, or 7 days, for example. The level or pattern or signature of vagus nerve activity can also be correlated with levels of inflammation, allowing level of inflammation to be determined by monitoring of vagus nerve electrical activity, which can be done with a microstimulator with electrical sensing leads and signal processing circuitry and/or software, which can be on the microstimulator or on a computing device in communication with the microstimulator. In some embodiments, various combinations of the above can be used to increase the time period between stimulations.
The examples described herein may use a stimulator and stimulation control package that was developed for use in driving vagus nerve stimulation. In some examples, the stimulation is controlled by a software package that is configured to run on a microprocessor (e.g., personal computer) and to control output of an emulator/stimulator (which may be referred to as an “ITE” emulator stimulator). With reference to
For example, the exemplary waveform shown on
The stimulator may generate a pulse train on a pair of electrodes. The pulses may be generated using a bipolar current source and can be capacitively isolated with >1 uF ceramic capacitors on both electrodes outputs. Compliance voltage can be set to as high as +/−18.8 volts.
The stimulator may use traditional electrode configurations, such as a cuff electrode 800 illustrated in
As illustrated in the experimental example described below, appropriate NCAP stimulation of the vagus nerve can be used to limit the TNF inducibility of leukocytes in ex vivo blood by endotoxin, a reflection of the inflammatory responsiveness of the subject. Based on this data, a biphasic simulation at the parameters described above may successfully treat inflammatory disease, with progressively longer duration of anti-inflammatory effect with each successive stimulation.
As shown on
These data illustrate an extremely persistent anti-inflammatory effect of vagus nerve stimulation on the blood of a large mammal with just a single stimulation dose. In this example, a single brief period of stimulation of the vagus nerve results in a surprisingly long-lasting effect (e.g., up to 7 days). Importantly, the persistence of this effect may be lengthened by training the inflammatory system through infrequent stimulations, potentially allowing for effective stimulations to be delivered weekly, monthly, every two months, quarterly or even annually. This data strongly suggests that stimulation may be provided extremely infrequently, with long (e.g., >48 h, >7 days) “silent” periods without stimulation applied. Such extremely low duty-cycle stimulation for treating IBD or rheumatoid arthritis and other diseases mediated by the inflammatory pathway may be particularly helpful in implantable systems, allowing extremely long battery life while having unexpectedly robust therapeutic benefits.
In general, these results suggest that the application of even a single brief stimulus (or burst of stimulus) of the vagus nerve may result in a substantial long term reduction in the effects of inflammation. Furthermore, these results suggest that the duration of the anti-inflammatory effect of the single stimulation may be increased by applying subsequent stimulations after a relatively lengthy period of time between stimulations. These results are surprising, given the prior arts tendency to stimulate for much longer times, and important for the design of future devices and methods. In particular, stimulation of the vagus nerve (or other portions of the inflammatory reflex) may be configured to apply extremely low duty-cycle stimulation. As mentioned briefly, this would allow for much smaller, lighter and more efficient implantable stimulation systems.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature. Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, as used herein, “about” and “approximately” can mean within 5, 10, 15, 20, 25, or 30 percent.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/467,928 filed May 9, 2012, titled “SINGLE-PULSE ACTIVATION OF THE CHOLINERGIC ANTI-INFLAMMATORY PATHWAY TO TREAT CHRONIC INFLAMMATION,” Publication No. US-2012-0290035-A1, which claims the benefit of U.S. Provisional Patent Application No. 61/484,112, filed May 9, 2011, each of which is hereby incorporated by reference in its entirety. This patent application may be related to any of the following patent and pending patent applications: U.S. patent application Ser. No. 12/434,462, filed May 1, 2009, titled “VAGUS NERVE STIMULATION ELECTRODES AND METHODS OF USE,” Publication No. US-2009-0275997-A1; U.S. patent application Ser. No. 12/620,413, filed Nov. 17, 2009, entitled “DEVICES AND METHODS FOR OPTIMIZING ELECTRODE PLACEMENT FOR ANTI-INFLAMMATORY STIMULATION,” now U.S. Pat. No. 8,412,338; U.S. patent application Ser. No. 12/874,171, filed Sep. 1, 2010, titled “PRESCRIPTION PAD FOR TREATMENT OF INFLAMMATORY DISORDERS,” Publication No. US-2011-0054569-A1; U.S. patent application Ser. No. 12/917,197, filed Nov. 1, 2010, titled “MODULATION OF THE CHOLINERGIC ANTI-INFLAMMATORY PATHWAY TO TREAT PAIN OR ADDICTION,” Publication No. US-2011-0106208-A1; U.S. patent application Ser. No. 12/978,250, filed Dec. 23, 2010, titled “NEURAL STIMULATION DEVICES AND SYSTEMS FOR TREATMENT OF CHRONIC INFLAMMATION,” now U.S. Pat. No. 8,612,002; and U.S. patent application Ser. No. 12/797,452, filed Jun. 9, 2010 and entitled “NERVE CUFF WITH POCKET FOR LEADLESS STIMULATOR,” Publication No. US-2010-0312320-A1.
Number | Name | Date | Kind |
---|---|---|---|
2164121 | Pescador | Jun 1939 | A |
3363623 | Atwell | Jan 1968 | A |
4073296 | McCall | Feb 1978 | A |
4098277 | Mendell | Jul 1978 | A |
4305402 | Katims | Dec 1981 | A |
4503863 | Katims | Mar 1985 | A |
4573481 | Bullara | Mar 1986 | A |
4590946 | Loeb | May 1986 | A |
4632095 | Libin | Dec 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4702254 | Zabara | Oct 1987 | A |
4840793 | Todd, III et al. | Jun 1989 | A |
4867164 | Zabara | Sep 1989 | A |
4929734 | Coughenour et al. | May 1990 | A |
4930516 | Alfano et al. | Jun 1990 | A |
4935234 | Todd, III et al. | Jun 1990 | A |
4979511 | Terry, Jr. | Dec 1990 | A |
4991578 | Cohen | Feb 1991 | A |
5019648 | Schlossman et al. | May 1991 | A |
5025807 | Zabara | Jun 1991 | A |
5038781 | Lynch | Aug 1991 | A |
5049659 | Cantor et al. | Sep 1991 | A |
5073560 | Wu et al. | Dec 1991 | A |
5106853 | Showell et al. | Apr 1992 | A |
5111815 | Mower | May 1992 | A |
5154172 | Terry, Jr. et al. | Oct 1992 | A |
5175166 | Dunbar et al. | Dec 1992 | A |
5179950 | Stanislaw | Jan 1993 | A |
5186170 | Varrichio et al. | Feb 1993 | A |
5188104 | Wernicke et al. | Feb 1993 | A |
5203326 | Collins | Apr 1993 | A |
5205285 | Baker, Jr. | Apr 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5215089 | Baker, Jr. | Jun 1993 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5235980 | Varrichio et al. | Aug 1993 | A |
5237991 | Baker et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5344438 | Testerman et al. | Sep 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5403845 | Dunbar et al. | Apr 1995 | A |
5458625 | Kendall | Oct 1995 | A |
5472841 | Jayasena et al. | Dec 1995 | A |
5487756 | Kallesoe et al. | Jan 1996 | A |
5496938 | Gold et al. | Mar 1996 | A |
5503978 | Schneider et al. | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5567588 | Gold et al. | Oct 1996 | A |
5567724 | Kelleher et al. | Oct 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5580737 | Polisky et al. | Dec 1996 | A |
5582981 | Toole et al. | Dec 1996 | A |
5604231 | Smith et al. | Feb 1997 | A |
5611350 | John | Mar 1997 | A |
5618818 | Ojo et al. | Apr 1997 | A |
5629285 | Black et al. | May 1997 | A |
5637459 | Burke et al. | Jun 1997 | A |
5651378 | Matheny et al. | Jul 1997 | A |
5654151 | Allen et al. | Aug 1997 | A |
5683867 | Biesecker et al. | Nov 1997 | A |
5690681 | Geddes et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5705337 | Gold et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5709853 | Lino et al. | Jan 1998 | A |
5712375 | Jensen et al. | Jan 1998 | A |
5718912 | Thomspon et al. | Feb 1998 | A |
5726017 | Lochrie et al. | Mar 1998 | A |
5726179 | Messer, Jr. et al. | Mar 1998 | A |
5727556 | Weth et al. | Mar 1998 | A |
5733255 | Dinh et al. | Mar 1998 | A |
5741802 | Kem et al. | Apr 1998 | A |
5773598 | Burke et al. | Jun 1998 | A |
5786462 | Schneider et al. | Jul 1998 | A |
5788656 | Mino | Aug 1998 | A |
5792210 | Wamubu et al. | Aug 1998 | A |
5853005 | Scanlon | Dec 1998 | A |
5854289 | Bianchi et al. | Dec 1998 | A |
5902814 | Gordon et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919216 | Houben et al. | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5964794 | Bolz et al. | Oct 1999 | A |
5977144 | Meyer et al. | Nov 1999 | A |
5994330 | El Khoury | Nov 1999 | A |
6002964 | Feler et al. | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6017891 | Eibl et al. | Jan 2000 | A |
6028186 | Tasset et al. | Feb 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6083696 | Biesecker et al. | Jul 2000 | A |
6083905 | Voorberg et al. | Jul 2000 | A |
6096728 | Collins et al. | Aug 2000 | A |
6104956 | Naritoku et al. | Aug 2000 | A |
6110900 | Gold et al. | Aug 2000 | A |
6110914 | Phillips et al. | Aug 2000 | A |
6117837 | Tracey et al. | Sep 2000 | A |
6124449 | Gold et al. | Sep 2000 | A |
6127119 | Stephens et al. | Oct 2000 | A |
6140490 | Biesecker et al. | Oct 2000 | A |
6141590 | Renirie et al. | Oct 2000 | A |
6147204 | Gold et al. | Nov 2000 | A |
6159145 | Satoh | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6166048 | Bencherif | Dec 2000 | A |
6168778 | Janjic et al. | Jan 2001 | B1 |
6171795 | Korman et al. | Jan 2001 | B1 |
6205359 | Boveja | Mar 2001 | B1 |
6208902 | Boveja | Mar 2001 | B1 |
6210321 | Di Mino et al. | Apr 2001 | B1 |
6224862 | Turecek et al. | May 2001 | B1 |
6233488 | Hess | May 2001 | B1 |
6266564 | Hill et al. | Jul 2001 | B1 |
6269270 | Boveja | Jul 2001 | B1 |
6304775 | Iasemidis et al. | Oct 2001 | B1 |
6308104 | Taylor et al. | Oct 2001 | B1 |
6337997 | Rise | Jan 2002 | B1 |
6339725 | Naritoku et al. | Jan 2002 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6356788 | Boveja | Mar 2002 | B2 |
6381499 | Taylor et al. | Apr 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6407095 | Lochead et al. | Jun 2002 | B1 |
6428484 | Battmer et al. | Aug 2002 | B1 |
6429217 | Puskas | Aug 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6479523 | Puskas | Nov 2002 | B1 |
6487446 | Hill et al. | Nov 2002 | B1 |
6511500 | Rahme | Jan 2003 | B1 |
6528529 | Brann et al. | Mar 2003 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6542774 | Hill et al. | Apr 2003 | B2 |
6556868 | Naritoku et al. | Apr 2003 | B2 |
6564102 | Boveja | May 2003 | B1 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6587727 | Osorio et al. | Jul 2003 | B2 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6602891 | Messer et al. | Aug 2003 | B2 |
6609025 | Barrett et al. | Aug 2003 | B2 |
6610713 | Tracey | Aug 2003 | B2 |
6611715 | Boveja | Aug 2003 | B1 |
6615081 | Boveja | Sep 2003 | B1 |
6615085 | Boveja | Sep 2003 | B1 |
6622038 | Barrett et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6622047 | Barrett et al. | Sep 2003 | B2 |
6628987 | Hill et al. | Sep 2003 | B1 |
6633779 | Schuler et al. | Oct 2003 | B1 |
6656960 | Puskas | Dec 2003 | B2 |
6668191 | Boveja | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690973 | Hill et al. | Feb 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6735475 | Whitehurst et al. | May 2004 | B1 |
6760626 | Boveja | Jul 2004 | B1 |
6778854 | Puskas | Aug 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
RE38654 | Hill et al. | Nov 2004 | E |
6826428 | Chen et al. | Nov 2004 | B1 |
6832114 | Whitehurst et al. | Dec 2004 | B1 |
6838471 | Tracey | Jan 2005 | B2 |
RE38705 | Hill et al. | Feb 2005 | E |
6879859 | Boveja | Apr 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6904318 | Hill et al. | Jun 2005 | B2 |
6920357 | Osorio et al. | Jul 2005 | B2 |
6928320 | King | Aug 2005 | B2 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6937903 | Schuler et al. | Aug 2005 | B2 |
6961618 | Osorio et al. | Nov 2005 | B2 |
6978787 | Broniatowski | Dec 2005 | B1 |
7011638 | Schuler et al. | Mar 2006 | B2 |
7054686 | MacDonald | May 2006 | B2 |
7054692 | Whitehurst et al. | May 2006 | B1 |
7058447 | Hill et al. | Jun 2006 | B2 |
7062320 | Ehlinger, Jr. | Jun 2006 | B2 |
7069082 | Lindenthaler | Jun 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7076307 | Boveja et al. | Jul 2006 | B2 |
7142910 | Puskas | Nov 2006 | B2 |
7142917 | Fukui | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7155279 | Whitehurst et al. | Dec 2006 | B2 |
7155284 | Whitehurst et al. | Dec 2006 | B1 |
7167750 | Knudson et al. | Jan 2007 | B2 |
7167751 | Whitehurst et al. | Jan 2007 | B1 |
7174218 | Kuzma | Feb 2007 | B1 |
7184828 | Hill et al. | Feb 2007 | B2 |
7184829 | Hill et al. | Feb 2007 | B2 |
7191012 | Boveja et al. | Mar 2007 | B2 |
7204815 | Connor | Apr 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7225019 | Jahns et al. | May 2007 | B2 |
7228167 | Kara et al. | Jun 2007 | B2 |
7238715 | Tracey et al. | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7269457 | Shafer et al. | Sep 2007 | B2 |
7345178 | Nunes et al. | Mar 2008 | B2 |
7467016 | Colborn | Dec 2008 | B2 |
7544497 | Sinclair et al. | Jun 2009 | B2 |
7561918 | Armstrong et al. | Jul 2009 | B2 |
7711432 | Thimineur et al. | May 2010 | B2 |
7729760 | Patel et al. | Jun 2010 | B2 |
7751891 | Armstrong et al. | Jul 2010 | B2 |
7776326 | Milbrandt et al. | Aug 2010 | B2 |
7797058 | Mrva et al. | Sep 2010 | B2 |
7819883 | Westlund et al. | Oct 2010 | B2 |
7822486 | Foster et al. | Oct 2010 | B2 |
7829556 | Bemis et al. | Nov 2010 | B2 |
7869885 | Begnaud et al. | Jan 2011 | B2 |
7937145 | Dobak | May 2011 | B2 |
7962220 | Kolafa et al. | Jun 2011 | B2 |
7974701 | Armstrong | Jul 2011 | B2 |
7974707 | Inman | Jul 2011 | B2 |
7996088 | Marrosu et al. | Aug 2011 | B2 |
7996092 | Mrva et al. | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8103349 | Donders et al. | Jan 2012 | B2 |
8165668 | Dacey, Jr. et al. | Apr 2012 | B2 |
8180446 | Dacey, Jr. et al. | May 2012 | B2 |
8195287 | Dacey, Jr. et al. | Jun 2012 | B2 |
8214056 | Hoffer et al. | Jul 2012 | B2 |
8233982 | Libbus | Jul 2012 | B2 |
8391970 | Tracey et al. | Mar 2013 | B2 |
8412338 | Faltys | Apr 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8729129 | Tracey et al. | May 2014 | B2 |
8788034 | Levine et al. | Jul 2014 | B2 |
8855767 | Faltys et al. | Oct 2014 | B2 |
20010002441 | Boveja | May 2001 | A1 |
20020026141 | Houben et al. | Feb 2002 | A1 |
20020040035 | Myers et al. | Apr 2002 | A1 |
20020077675 | Greenstein | Jun 2002 | A1 |
20020086871 | O'Neill et al. | Jul 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020099417 | Naritoku et al. | Jul 2002 | A1 |
20020138075 | Edwards et al. | Sep 2002 | A1 |
20020138109 | Keogh et al. | Sep 2002 | A1 |
20020193859 | Schulman et al. | Dec 2002 | A1 |
20020198570 | Puskas | Dec 2002 | A1 |
20030018367 | DiLorenzo | Jan 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030088301 | King | May 2003 | A1 |
20030191404 | Klein | Oct 2003 | A1 |
20030194752 | Anderson et al. | Oct 2003 | A1 |
20030212440 | Boveja | Nov 2003 | A1 |
20030229380 | Adams et al. | Dec 2003 | A1 |
20030236557 | Whitehurst et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040015202 | Chandler et al. | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040024422 | Hill et al. | Feb 2004 | A1 |
20040024428 | Barrett et al. | Feb 2004 | A1 |
20040024439 | Riso | Feb 2004 | A1 |
20040030362 | Hill et al. | Feb 2004 | A1 |
20040039427 | Barrett et al. | Feb 2004 | A1 |
20040048795 | Ivanova et al. | Mar 2004 | A1 |
20040049121 | Yaron | Mar 2004 | A1 |
20040059383 | Puskas | Mar 2004 | A1 |
20040111139 | McCreery et al. | Jun 2004 | A1 |
20040138517 | Osorio et al. | Jul 2004 | A1 |
20040138518 | Rise et al. | Jul 2004 | A1 |
20040138536 | Frei et al. | Jul 2004 | A1 |
20040146949 | Tan et al. | Jul 2004 | A1 |
20040153127 | Gordon et al. | Aug 2004 | A1 |
20040158119 | Osorio et al. | Aug 2004 | A1 |
20040162584 | Hill et al. | Aug 2004 | A1 |
20040172074 | Yoshihito | Sep 2004 | A1 |
20040172085 | Knudson et al. | Sep 2004 | A1 |
20040172086 | Knudson et al. | Sep 2004 | A1 |
20040172088 | Knudson et al. | Sep 2004 | A1 |
20040172094 | Cohen et al. | Sep 2004 | A1 |
20040176812 | Knudson et al. | Sep 2004 | A1 |
20040178706 | D'Orso | Sep 2004 | A1 |
20040193231 | David et al. | Sep 2004 | A1 |
20040199209 | Hill et al. | Oct 2004 | A1 |
20040199210 | Shelchuk | Oct 2004 | A1 |
20040204355 | Tracey et al. | Oct 2004 | A1 |
20040215287 | Swoyer et al. | Oct 2004 | A1 |
20040236381 | Dinsmoor et al. | Nov 2004 | A1 |
20040236382 | Dinsmoor et al. | Nov 2004 | A1 |
20040240691 | Grafenberg | Dec 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040254612 | Ezra et al. | Dec 2004 | A1 |
20040267152 | Pineda | Dec 2004 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050021101 | Chen et al. | Jan 2005 | A1 |
20050027328 | Greenstein | Feb 2005 | A1 |
20050043774 | Devlin et al. | Feb 2005 | A1 |
20050049655 | Boveja et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050070970 | Knudson et al. | Mar 2005 | A1 |
20050070974 | Knudson et al. | Mar 2005 | A1 |
20050075701 | Shafer | Apr 2005 | A1 |
20050075702 | Shafer | Apr 2005 | A1 |
20050095246 | Shafer | May 2005 | A1 |
20050096707 | Hill et al. | May 2005 | A1 |
20050125044 | Tracey et al. | Jun 2005 | A1 |
20050131467 | Boveja | Jun 2005 | A1 |
20050131486 | Boveja et al. | Jun 2005 | A1 |
20050131487 | Boveja | Jun 2005 | A1 |
20050131493 | Boveja et al. | Jun 2005 | A1 |
20050137644 | Boveja et al. | Jun 2005 | A1 |
20050137645 | Voipio et al. | Jun 2005 | A1 |
20050143781 | Carbunaru et al. | Jun 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050149126 | Libbus | Jul 2005 | A1 |
20050149129 | Libbus et al. | Jul 2005 | A1 |
20050149131 | Libbus et al. | Jul 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154425 | Boveja et al. | Jul 2005 | A1 |
20050154426 | Boveja et al. | Jul 2005 | A1 |
20050165458 | Boveja et al. | Jul 2005 | A1 |
20050177200 | George et al. | Aug 2005 | A1 |
20050182288 | Zabara | Aug 2005 | A1 |
20050182467 | Hunter et al. | Aug 2005 | A1 |
20050187584 | Denker et al. | Aug 2005 | A1 |
20050187586 | David et al. | Aug 2005 | A1 |
20050187590 | Boveja et al. | Aug 2005 | A1 |
20050192644 | Boveja et al. | Sep 2005 | A1 |
20050197600 | Schuler et al. | Sep 2005 | A1 |
20050197675 | David et al. | Sep 2005 | A1 |
20050197678 | Boveja et al. | Sep 2005 | A1 |
20050203501 | Aldrich et al. | Sep 2005 | A1 |
20050209654 | Boveja et al. | Sep 2005 | A1 |
20050216064 | Heruth et al. | Sep 2005 | A1 |
20050216070 | Boveja et al. | Sep 2005 | A1 |
20050216071 | Devlin et al. | Sep 2005 | A1 |
20050240229 | Whitehurst et al. | Oct 2005 | A1 |
20050240231 | Aldrich et al. | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050251220 | Barrett et al. | Nov 2005 | A1 |
20050251222 | Barrett et al. | Nov 2005 | A1 |
20050267542 | David et al. | Dec 2005 | A1 |
20050267547 | Knudson et al. | Dec 2005 | A1 |
20050283198 | Haubrich et al. | Dec 2005 | A1 |
20060009815 | Boveja et al. | Jan 2006 | A1 |
20060015151 | Aldrich | Jan 2006 | A1 |
20060025828 | Armstrong et al. | Feb 2006 | A1 |
20060036293 | Whitehurst et al. | Feb 2006 | A1 |
20060052657 | Zabara | Mar 2006 | A9 |
20060052831 | Fukui | Mar 2006 | A1 |
20060052836 | Kim et al. | Mar 2006 | A1 |
20060058851 | Cigaina | Mar 2006 | A1 |
20060064137 | Stone | Mar 2006 | A1 |
20060064139 | Chung et al. | Mar 2006 | A1 |
20060074450 | Boveja et al. | Apr 2006 | A1 |
20060074473 | Gertner | Apr 2006 | A1 |
20060079936 | Boveja et al. | Apr 2006 | A1 |
20060085046 | Rezai et al. | Apr 2006 | A1 |
20060095081 | Zhou et al. | May 2006 | A1 |
20060095090 | De Ridder | May 2006 | A1 |
20060100668 | Ben-David et al. | May 2006 | A1 |
20060106755 | Stuhec | May 2006 | A1 |
20060111644 | Guttag et al. | May 2006 | A1 |
20060111754 | Rezai et al. | May 2006 | A1 |
20060111755 | Stone et al. | May 2006 | A1 |
20060116739 | Betser et al. | Jun 2006 | A1 |
20060122675 | Libbus et al. | Jun 2006 | A1 |
20060129200 | Kurokawa | Jun 2006 | A1 |
20060129202 | Armstrong | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060142802 | Armstrong | Jun 2006 | A1 |
20060142822 | Tulgar | Jun 2006 | A1 |
20060149337 | John | Jul 2006 | A1 |
20060161216 | John et al. | Jul 2006 | A1 |
20060161217 | Jaax et al. | Jul 2006 | A1 |
20060167497 | Armstrong et al. | Jul 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060167501 | Ben-David et al. | Jul 2006 | A1 |
20060173493 | Armstrong et al. | Aug 2006 | A1 |
20060173508 | Stone et al. | Aug 2006 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20060178703 | Huston et al. | Aug 2006 | A1 |
20060178706 | Lisogurski et al. | Aug 2006 | A1 |
20060190044 | Libbus et al. | Aug 2006 | A1 |
20060200208 | Terry, Jr. et al. | Sep 2006 | A1 |
20060200219 | Thrope et al. | Sep 2006 | A1 |
20060206155 | Ben-David et al. | Sep 2006 | A1 |
20060206158 | Wu et al. | Sep 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060229681 | Fischell | Oct 2006 | A1 |
20060241699 | Libbus et al. | Oct 2006 | A1 |
20060247719 | Maschino et al. | Nov 2006 | A1 |
20060247721 | Maschino et al. | Nov 2006 | A1 |
20060247722 | Maschino et al. | Nov 2006 | A1 |
20060259077 | Pardo et al. | Nov 2006 | A1 |
20060259084 | Zhang et al. | Nov 2006 | A1 |
20060259085 | Zhang et al. | Nov 2006 | A1 |
20060259107 | Caparso et al. | Nov 2006 | A1 |
20060271115 | Ben-Ezra et al. | Nov 2006 | A1 |
20060282121 | Payne et al. | Dec 2006 | A1 |
20060282131 | Caparso et al. | Dec 2006 | A1 |
20060282145 | Caparso et al. | Dec 2006 | A1 |
20060287678 | Shafer | Dec 2006 | A1 |
20060287679 | Stone | Dec 2006 | A1 |
20060292099 | Milburn et al. | Dec 2006 | A1 |
20060293720 | DiLorenzo | Dec 2006 | A1 |
20060293721 | Tarver et al. | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070016262 | Gross et al. | Jan 2007 | A1 |
20070016263 | Armstrong et al. | Jan 2007 | A1 |
20070021785 | Inman et al. | Jan 2007 | A1 |
20070021786 | Parnis et al. | Jan 2007 | A1 |
20070021814 | Inman et al. | Jan 2007 | A1 |
20070025608 | Armstrong | Feb 2007 | A1 |
20070027482 | Parnis et al. | Feb 2007 | A1 |
20070027483 | Maschino et al. | Feb 2007 | A1 |
20070027484 | Guzman et al. | Feb 2007 | A1 |
20070027486 | Armstrong | Feb 2007 | A1 |
20070027492 | Maschino et al. | Feb 2007 | A1 |
20070027496 | Parnis et al. | Feb 2007 | A1 |
20070027497 | Parnis | Feb 2007 | A1 |
20070027498 | Maschino et al. | Feb 2007 | A1 |
20070027499 | Maschino et al. | Feb 2007 | A1 |
20070027500 | Maschino et al. | Feb 2007 | A1 |
20070027504 | Barrett et al. | Feb 2007 | A1 |
20070055324 | Thompson et al. | Mar 2007 | A1 |
20070067004 | Boveja et al. | Mar 2007 | A1 |
20070083242 | Mazgalev et al. | Apr 2007 | A1 |
20070093434 | Rossetti et al. | Apr 2007 | A1 |
20070093870 | Maschino | Apr 2007 | A1 |
20070093875 | Chavan et al. | Apr 2007 | A1 |
20070100263 | Merfeld | May 2007 | A1 |
20070100377 | Armstrong et al. | May 2007 | A1 |
20070100378 | Maschino | May 2007 | A1 |
20070100380 | Fukui | May 2007 | A1 |
20070100392 | Maschino et al. | May 2007 | A1 |
20070106339 | Errico et al. | May 2007 | A1 |
20070112404 | Mann et al. | May 2007 | A1 |
20070118177 | Libbus et al. | May 2007 | A1 |
20070118178 | Fukui | May 2007 | A1 |
20070129780 | Whitehurst et al. | Jun 2007 | A1 |
20070135846 | Knudson et al. | Jun 2007 | A1 |
20070135856 | Knudson et al. | Jun 2007 | A1 |
20070135857 | Knudson et al. | Jun 2007 | A1 |
20070135858 | Knudson et al. | Jun 2007 | A1 |
20070142870 | Knudson et al. | Jun 2007 | A1 |
20070142871 | Libbus et al. | Jun 2007 | A1 |
20070142874 | John | Jun 2007 | A1 |
20070150006 | Libbus et al. | Jun 2007 | A1 |
20070150011 | Meyer et al. | Jun 2007 | A1 |
20070150021 | Chen et al. | Jun 2007 | A1 |
20070150027 | Rogers | Jun 2007 | A1 |
20070156180 | Jaax et al. | Jul 2007 | A1 |
20070239243 | Moffitt et al. | Oct 2007 | A1 |
20070250145 | Kraus et al. | Oct 2007 | A1 |
20070255320 | Inman et al. | Nov 2007 | A1 |
20070255333 | Giftakis | Nov 2007 | A1 |
20080021517 | Dietrich | Jan 2008 | A1 |
20080021520 | Dietrich | Jan 2008 | A1 |
20080046055 | Durand et al. | Feb 2008 | A1 |
20080058871 | Libbus et al. | Mar 2008 | A1 |
20080103407 | Bolea et al. | May 2008 | A1 |
20080140138 | Ivanova et al. | Jun 2008 | A1 |
20080183226 | Buras et al. | Jul 2008 | A1 |
20080183246 | Patel et al. | Jul 2008 | A1 |
20080208266 | Lesser et al. | Aug 2008 | A1 |
20080234790 | Bayer et al. | Sep 2008 | A1 |
20080249439 | Tracey et al. | Oct 2008 | A1 |
20080281365 | Tweden et al. | Nov 2008 | A1 |
20090012590 | Inman et al. | Jan 2009 | A1 |
20090048194 | Aerssens et al. | Feb 2009 | A1 |
20090082832 | Carbunaru et al. | Mar 2009 | A1 |
20090105782 | Mickle et al. | Apr 2009 | A1 |
20090123521 | Weber et al. | May 2009 | A1 |
20090125079 | Armstrong et al. | May 2009 | A1 |
20090143831 | Huston et al. | Jun 2009 | A1 |
20090171405 | Craig | Jul 2009 | A1 |
20090177112 | Gharib et al. | Jul 2009 | A1 |
20090187231 | Errico et al. | Jul 2009 | A1 |
20090247934 | Tracey et al. | Oct 2009 | A1 |
20090248097 | Tracey et al. | Oct 2009 | A1 |
20090254143 | Tweden et al. | Oct 2009 | A1 |
20090275997 | Faltys et al. | Nov 2009 | A1 |
20090276019 | Perez et al. | Nov 2009 | A1 |
20090281593 | Errico et al. | Nov 2009 | A9 |
20100003656 | Kilgard et al. | Jan 2010 | A1 |
20100010603 | Ben-David et al. | Jan 2010 | A1 |
20100042186 | Ben-David et al. | Feb 2010 | A1 |
20100063563 | Craig | Mar 2010 | A1 |
20100191304 | Scott | Jul 2010 | A1 |
20100215632 | Boss et al. | Aug 2010 | A1 |
20100241183 | DiLorenzo | Sep 2010 | A1 |
20100249859 | DiLorenzo | Sep 2010 | A1 |
20100280562 | Pi et al. | Nov 2010 | A1 |
20100280569 | Bobillier et al. | Nov 2010 | A1 |
20100312320 | Faltys et al. | Dec 2010 | A1 |
20110004266 | Sharma | Jan 2011 | A1 |
20110054569 | Zitnik et al. | Mar 2011 | A1 |
20110066208 | Pasricha et al. | Mar 2011 | A1 |
20110092882 | Firlik et al. | Apr 2011 | A1 |
20110106208 | Faltys et al. | May 2011 | A1 |
20110307027 | Sharma et al. | Dec 2011 | A1 |
20120065706 | Vallapureddy et al. | Mar 2012 | A1 |
20120185009 | Kornet et al. | Jul 2012 | A1 |
20130079834 | Levine | Mar 2013 | A1 |
20130253413 | Levine et al. | Sep 2013 | A1 |
20150100100 | Tracey et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
201230913 | May 2009 | CN |
101528303 | Sep 2009 | CN |
101868280 | Oct 2010 | CN |
2628045 | Jan 1977 | DE |
3736664 | May 1989 | DE |
20316509 | Apr 2004 | DE |
0438510 | Aug 1996 | EP |
0726791 | Jun 2000 | EP |
1001827 | Jan 2004 | EP |
2213330 | Aug 2010 | EP |
2073896 | Oct 2011 | EP |
04133 | Jan 1910 | GB |
WO0100273 | Jan 2001 | JP |
WO9301862 | Feb 1993 | WO |
WO9730998 | Aug 1997 | WO |
WO9820868 | May 1998 | WO |
WO0027381 | May 2000 | WO |
WO0047104 | Aug 2000 | WO |
WO0108617 | Feb 2001 | WO |
WO0189526 | Nov 2001 | WO |
WO0244176 | Jun 2002 | WO |
WO02057275 | Jul 2002 | WO |
WO03072135 | Sep 2003 | WO |
WO2004000413 | Dec 2003 | WO |
WO2004064918 | Aug 2004 | WO |
WO2006073484 | Jul 2006 | WO |
WO2006076681 | Jul 2006 | WO |
WO2007133718 | Nov 2007 | WO |
WO2010005482 | Jan 2010 | WO |
WO2010067360 | Jun 2010 | WO |
Entry |
---|
US 6,184,239, 02/2001, Puskas (withdrawn) |
Faltys et al.; U.S. Appl. No. 14/508,940 entitled “Neural stimulation devices and systems for treatment of chronic inflammation,” filed Oct. 7, 2014. |
Faltys et al.; U.S. Appl. No. 14/536,461 entitled “Nerve cuff with pocket for leadless stimulator,” filed Nov. 7, 2014. |
Zhang et al.; Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model; Circulation Heart Fail.; 2; pp. 692-699; Nov. 2009. |
Abraham, Coagulation abnormalities in acute lung injury and sepsis, Am. J. Respir. Cell Mol. Biol., vol. 22(4), pp. 401-404, Apr. 2000. |
Aekerlund et al., Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-Alpha) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats, Clinical & Experimental Immunology, vol. 115, No. 1, pp. 32-41, Jan. 1, 1999. |
Antonica, A., et al., Vagal control of lymphocyte release from rat thymus, J. Auton. Nerv. Syst., vol. 48(3), pp. 187-197, Aug. 1994. |
Asakura et al., Non-surgical therapy for ulcerative colitis, Nippon Geka Gakkai Zasshi, vol. 98, No. 4, pp. 431-437, Apr. 1997 (abstract only). |
Beliavskaia et al.,“On the effects of prolonged stimulation of the peripheral segment of the vagus nerve . . . ,” Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova., vol. 52(11); pg. 1315-1321, Nov. 1966. |
Ben-Noun et al.; Neck circumference as a simple screening measure for identifying overweight and obese patients; Obesity Research; vol. 9; No. 8; pp. 470-477; Aug. 8, 2001. |
Benoist, et al., “Mast cells in autoimmune disease” Nature., vol. 420(19): pp. 875-878, Dec. 2002. |
Benthem et al.; Parasympathetic inhibition of sympathetic neural activity to the pancreas; Am.J.Physiol Endocrinol.Metab; 280(2); pp. E378-E381; Feb. 2001. |
Bernik et al., Vagus nerve stimulation attenuates cardiac TNF production in endotoxic shock, (supplemental to Shock, vol. 15, 2001, Injury, inflammation and sepsis: laboratory and clinical approaches, Shock, Abstracts, 24th Annual Conference on Shock, Marco Island, FL, Jun. 9-12, 2001), Abstract No. 81. |
Bernik et al., Vagus nerve stimulation attenuates endotoxic shock and cardiac TNF production, 87th Clinical Congress of the American College of Surgeons, New Orleans, LA, Oct. 9, 2001. |
Bernik et al., Vagus nerve stimulation attenuates LPS-induced cardiac TNF production and myocardial depression in shock, New York Surgical Society, New York, NY, Apr. 11, 2001. |
Bernik, et al., Pharmacological stimulation of the cholinergic anti-inflammatory pathway, The Journal of Experimental Medicine, vol. 195, No. 6, pp. 781-788, Mar. 18, 2002. |
Besedovsky, H., et al., Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science, vol. 233, No. 4764, pp. 652-654, Aug. 1986. |
Bhattacharya, S.K. et al., Central muscarinic receptor subtypes and carrageenin-induced paw oedema in rats, Res. Esp. Med. vol. 191(1), pp. 65-76, Dec. 1991. |
Bianchi et al., Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone, Journal of Experimental Medicine, vol. 183, pp. 927-936, Mar. 1996. |
Biggio et al.; Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus; Int. J. Neurpsychopharmacol.; vol. 12; No. 9; pp. 1209-1221; Oct. 2009. |
Blackwell, T. S. et al., Sepsis and cytokines: current status, Br. J. Anaesth., vol. 77(1), pp. 110-117, Jul. 1996. |
Blum, A. et al., Role of cytokines in heart failure, Am. Heart J., vol. 135 (2), pp. 181-186, Feb. 1998. |
Boldyreff, Gastric and intestinal mucus, its properties and physiological importance, Acta Medica Scandinavica (journal), vol. 89, Issue 1-2, pp. 1-14, Jan./Dec. 1936. |
Borovikova et al., Acetylcholine inhibition of immune response to bacterial endotoxin in human macrophages, Abstracts, Society for Neuroscience, 29th Annual Meeting, Miami Beach, FL, Oct. 23-28, 1999, Abstract No. 624.6. |
Borovikova et al., Efferent vagus nerve activity attenuates cytokine-mediated inflammation, Society for Neuroscience Abstracts, vol. 26, No. 102, Nov. 4-9, 2000 (abstract only). |
Borovikova et al., Intracerebroventricular CNI-1493 prevents LPS-induced hypotension and peak serum TNF at a four-log lower dose than systemic treatment, 21st Annual Conference on Shock, San Antonio, TX, Jun. 14-17, 1998, Abstract No. 86. |
Borovikova et al., Role of the efferent vagus nerve signaling in the regulation of the innate immune response to LPS, (supplemental to Shock, vol. 13, 2000, Molecular, cellular, and systemic pathobiological aspects and therapeutic approaches, abstracts, 5th World Congress on Trauma, Shock inflammation and sepsis-pathophysiology, immune consequences and therapy, Feb. 29-Mar. 4, 2000, Munich, DE), Abstract No. 166. |
Borovikova et al., Role of the vagus nerve in the anti-inflammatory effects of CNI-1493, the FASEB journal, vol. 14, No. 4, 2000 (Experimental Biology 2000, San Diego, CA, Apr. 15-18, 2000, Abstract No. 97.9). |
Borovikova et al., Vagotomy blocks the protective effects of I.C.V. CNI-1493 against LPS-induced shock, (Supplemental to Shock, vol. 11, 1999, Molecular, cellular, and systemic pathobioloigal aspects and therapeutic approaches, abstacts and program, Fourth International Shock Congress and 22nd Annual Conference on Shock, Philadelphia, PA, Jun. 12-16, 1999), Abstract No. 277. |
Borovikova, L. V., et al., Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation, Autonomic Neuroscience, vol. 85, No. 1-3, pp. 141-147, Dec. 20, 2000. |
Borovikova, L. V., et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol. 405, No. 6785: pp. 458-462, May 25, 2000. |
Bulloch et al.; Characterization of choline O-acetyltransferase (ChAT) in the BALB/C mouse spleen; Int.J.Neurosci.; 76(1-2); pp. 141-149; May 1994. |
Bumgardner, G. L. et al., Transplantation and cytokines, Seminars in Liver Disease, vol. 19, No. 2, pp. 189-204, (year of pub. Sufficiently earlier than effective US filing date and any foreign priority date) 1999. |
Burke et al., Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase, J. Mol. Biol., vol. 264(4); pp. 650-666, Dec. 1996. |
Bushby et al; Centiles for adult head circumference; Archives of Disease in Childhood; vol. 67(10); pp. 1286-1287; Oct. 1992. |
Cano et al.; Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing; J.Comp Neurol.; 439(1); pp. 1-18; Oct. 2001. |
Carteron, N. L., Cytokines in rheumatoid arthritis: trials and tribulations, Mol. Med. Today, vol. 6(8), pp. 315-323, Aug. 2000. |
Cicala et al., “Linkage between inflammation and coagulation: An update on the molecular basis of the crosstalk,” Life Sciences, vol. 62(20); pp. 1817-1824, Apr. 1998. |
Cohen, “The immunopathogenesis of sepsis,” Nature., vol. 420(6917): pp. 885-891, Dec. 2002. |
Corcoran, et al., The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report, NeuroImmunoModulation, vol. 12(5), pp. 307-309, Sep. 2005. |
Das, Critical advances in spticemia and septic shock, Critical Care, vol. 4, pp. 290-296, Sep. 7, 2000. |
Del Signore et al; Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush; J.Neuropathol.Exp.Neurol.; 63(2); pp. 138-150; Feb. 2004. |
Dibbs, Z., et al., Cytokines in heart failure: pathogenetic mechanisms and potential treatment, Proc. Assoc. Am. Physicians, vol. 11, No. 5, pp. 423-428, Sep.-Oct. 1999. |
Dinarello, C. A., The interleukin-1 family: 10 years of discovery, FASEB J., vol. 8, No. 15, pp. 1314-1325, Dec. 1994. |
Doshi et al., Evolving role of tissue factor and its pathway inhibitor, Crit. Care Med., vol. 30, suppl. 5, pp. S241-S250, May 2002. |
Ellington et al., In vitro selection of RNA molecules that bind specific ligands, Nature, vol. 346, pp. 818-822, Aug. 30, 1990. |
Esmon, The protein C pathway, Crit. Care Med., vol. 28, suppl. 9, pp. S44-S48, Sep. 2000. |
Fields; New culprits in chronic pain; Scientific American; pp. 50-57; Nov. 2009. |
Fleshner, M., et al., Thermogenic and corticosterone responses to intravenous cytokines (IL-1? and TNF-?) are attenuated by subdiaphragmatic vagotomy, J. Neuroimmunol., vol. 86(2), pp. 134-141, Jun. 1998. |
Fox, D. A., Cytokine blockade as a new strategy to treat rheumatoid arthritis, Arch. Intern. Med., vol. 160, pp. 437-444, Feb. 28, 2000. |
Fox, et al., Use of muscarinic agonists in the treatment of Sjorgren' syndrome, Clin. Immunol., vol. 101, No. 3; pp. 249-263, Dec. 2001. |
Fujii et al.; Simvastatin regulates non-neuronal cholinergic activity in T lymphocytes via CD11a-mediated pathways; J. Neuroimmunol.; 179(1-2); pp. 101-107; Oct. 2006. |
Gattorno, M., et al., Tumor necrosis factor induced adhesion molecule serum concentrations in henoch-schoenlein purpura and pediatric systemic lupus erythematosus, J. Rheumatol., vol. 27, No. 9, pp. 2251-2255, Sep. 2000. |
Gaykema, R. P., et al., Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion, Endocrinology, vol. 136, No. 10, pp. 4717-4720, Oct. 1995. |
Ghelardini et al., S-(−)-ET 126: A potent and selective M1 antagonist in vitro and in vivo, Life Sciences, vol. 58, No. 12, pp. 991-1000, Feb. 1996. |
Ghia, et al., The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model, Gastroenterology, vol. 131, No. 4, pp. 1122-1130, Oct. 2006. |
Giebelen, et al., Stimulation of ?7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor ?-independent mechanism, Shock, vol. 27, No. 4, pp. 443-447, Apr. 2007. |
Loyal et al., Nature of the vagal inhibitory innervation to the lower esophageal sphincter, Journal of Clinical Investigation, vol. 55, pp. 1119-1126, May 1975. |
Gracie, J. A., et al., A proinflammatory role for IL-18 in rheumatoid arthritis, J. Clin. Invest., vol. 104, No. 10, pp. 1393-1401, Nov. 1999. |
Granert et al., Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic haemophilus influenzae infection, Infection and Immunity, vol. 68, No. 9, pp. 5329-5334, Sep. 2000. |
Green et al., Feedback technique for deep relaxation, Psycophysiology, vol. 6, No. 3, pp. 371-377, Nov. 1969. |
Gregory et al., Neutrophil-kupffer-cell interaction in host defenses to systemic infections, Immunology Today, vol. 19, No. 11, pp. 507-510, Nov. 1998. |
Guarente, Leonard, Ph. D.; Sirtuins, Aging, and Medicine; N Engl J Med ; vol. 364:pp. 2235-2244; Jun. 2011. |
Guslandi, M., Nicotine treatment for ulcerative colitis, Br. J. Clin. Pharmacol., vol. 48(4), pp. 481-484, Oct. 1999. |
Hansson, E.; Could chronic pain and spread of pain sensation be induced and maintained by glial activation?. Acta Physiologica, vol. 187, Issue 1-2; pp. 321R327, May/Jun. 2006. |
Harrison's Principles of Internal Medicine, 13th Ed., pp. 511-515 and 1433-1435, Mar. 1994. |
Hatton et al.; Vagal nerve stimulation: overview and implications for anesthesiologists; Int'l Anesthesia Research Society; vol. 103; No. 5; pp. 1241-1249; Nov. 2006. |
Hirano, T., Cytokine suppresive agent improves survival rate in rats with acute pancreatitis of closed duodenal loop, J. Surg. Res., vol. 81, No. 2, pp. 224-229, Feb. 1999. |
Hirao et al., The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants, Mol. Divers., vol. 4, No. 2, pp. 75-89, 1999 (Accepted Jan. 13, 1999). |
Hoffer et al.; Implantable electrical and mechanical interfaces with nerve and muscle; Annals of Biomedical Engineering; vol. 8; pp. 351-360; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980. |
Holladay et al., Neuronal nicotinic acetylcholine receptors as targets for drug discovery, Journal of Medicinal Chemistry, 40(26), pp. 4169-4194, Dec. 1997. |
Hommes, D. W. et al., Anti- and Pro-inflammatory cytokines in the pathogenesis of tissue damage in Crohn's disease, Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3(3), pp. 191-195, May 2000. |
Hsu, et al., Analysis of efficiency of magnetic stimulation, IEEE Trans. Biomed. Eng., vol. 50(11), pp. 1276-1285, Nov. 2003. |
Hsu, H. Y., et al., Cytokine release of peripheral blood monoculear cells in children with chronic hepatitis B virus infection, J. Pediatr. Gastroenterol., vol. 29, No. 5, pp. 540-545, Nov. 1999. |
Hu, et al., The effect of norepinephrine on endotoxin-mediated macrophage activation, J. Neuroimmunol., vol. 31(1), pp. 35-42, Jan. 1991. |
Huston et al.; Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis; J. Exp. Med. 2006; vol. 203, No. 7; pp. 1623-1628; Jun. 19, 2006. |
Hutchinson et al.; Proinflammatory cytokines oppose opioid induced acute and chronic analgesia; Brain Behav Immun.; vol. 22; No. 8; pp. 1178-1189; Nov. 2008. |
Ilton et al., “Differential expression of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass” Journal of Thoracic and Cardiovascular Surgery, Mosby-Year Book, inc., St. Louis, Mo, US, pp. 930-937, Nov. 1, 1999. |
Jaeger et al., The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor, The EMBO Journal, 17(15), pp. 4535-4542, Aug. 1998. |
Jander, S. et al., Interleukin-18 is induced in acute inflammatory demyelinating polymeuropathy, J. Neuroimmunol., vol. 114, pp. 253-258, Mar. 2001. |
Joshi et al., Potent inhibition of human immunodeficiency virus type 1 replection by template analog reverse transcriptase , J. Virol., 76(13), pp. 6545-6557, Jul. 2002. |
Kawahara et al.; SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.; Cell. ; vol. 136; No. 1; pp. 62-74; Jan. 2009. |
Kalishevskaya et al. “The character of vagotomy-and atropin-induced hypercoagulation,” Sechenov Physiological Journal of the USSR, 65(3): pp. 398-404, Mar. 1979. |
Kalishevskaya et al.; Nervous regulation of the fluid state of the blood; Usp. Fiziol. Nauk;,vol. 13; No. 2; pp. 93-122; Apr.-Jun. 1982. |
Kanai, T. et al., Interleukin-18 and Crohn's disease, Digestion, vol. 63, suppl. 1, pp. 37-42, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2001. |
Katagiri, M., et al., Increased cytokine production by gastric mucosa in patients with helicobacter pylon infection, J. Clin, Gastroenterol., vol. 25, Suppl. 1, pp. S211-S214, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997. |
Kawashima, et al., Extraneuronal cholinergic system in lymphocytes, Pharmacology & Therapeutics, vol. 86, pp. 29-48, Apr. 2000. |
Kees et al; Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen; J.Neuroimmunol.; 145(1-2); pp. 77-85; Dec. 2003. |
Kensch et al., HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity, J. Biol. Chem., 275(24), pp. 18271-18278, Jun. 16, 2000. |
Khatun, S., et al., “Induction of hypercoagulability condition by chronic localized cold stress in rabbits,” Thromb. and Haemost., 81(3): pp. 449-455, Mar. 1999. |
Kimball, et al., Levamisole causes differential cytokine expression by elicited mouse peritoneal macrophases, Journal of Leukocyte Biology, vol. 52, No. 3, pp. 349-356, Sep. 1992 (abstract only). |
Kimmings, A. N., et al., Systemic inflammatory response in acute cholangitis and after subsequent treatment, Eur. J. Surg., vol. 166, pp. 700-705, Sep. 2000. |
Kirchner et al.; Left vagus nerve stimulation suppresses experimentally induced pain; Neurology; vol. 55; pp. 1167-1171; Oct. 2000. |
Kokkula, R. et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity, Arthritis Rheum., 48(7), pp. 2052-2058, Jul. 2003. |
Krarup et al; Conduction studies in peripheral cat nerve using implanted electrodes: I. methods and findings in controls; Muscle & Nerve; vol. 11; pp. 922-932; Sep. 1988. |
Kudrjashov, et al. “Reflex nature of the physiological anticoagulating system,” Nature, vol. 196(4855): pp. 647-649; Nov. 17, 1962. |
Kumins, N. H., et al., Partial hepatectomy reduces the endotoxin-induced peak circulating level of tumor necrosis factor in rats, Shock, vol. 5, No. 5, pp. 385-388, May 1996. |
Kuznik, “Role of the vascular wall in the process of hemostatis,” Usp Sovrem Biol., vol. 75(1): pp. 61-85, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1973. |
Kuznik, et al., “Blood Coagulation in stimulation of the vagus nerve in cats,” Biull. Eskp. Biol. Med., vol. 78 (7): pp. 7-9, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1974. |
Kuznik, et al., “Heart as an efferent regulator of the process of blood coagulation and fibrinolysis,” Kardiologiia, vol. 13(3): pp. 10-17, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1973. |
Kuznik, et al., “Role of the heart and vessels in regulating blood coagulation and fibrinolysis,” Kagdiologiia, vol. 13 (4): pp. 145-154, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1973. |
Kuznik, et al., “Secretion of blood coagulation factors into saliva under conditions of hypo-and hypercoagulation,” Voprosy Meditsinskoi Khimii, vol. 19(1): pp. 54-57; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1973. |
Kuznik, et al., “The dynamics of procoagulatible and fibrinolytic activities during electrical stimulation of peripheral nerves,” Sechenov Physiological Journal of the USSR, vol. 65; No. 3: pp. 414-420, Mar. 1979. |
Kuznik, et al., “The role of the vascular wall in the mechanism of control of blood coagulation and fibrinolysis on stimulation of the vagus nerve,” Cor Vasa, vol. 17(2): pp. 151-158, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1975. |
Lang, et al., “Neurogienic control of cerebral blood flow,” Experimental Neurology, 43(1): pp. 143-161, Apr. 1974. |
Lee, H. G., et al., Peritoneal lavage fluids stimulate NIH3T3 fibroblast proliferation and contain increased tumour necrosis factor and IL6 in experimental silica-induced rat peritonitis, Clin. Exp. Immunol., vol. 100, pp. 139-144, Apr. 1995. |
LeNovere, N. et al., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells, J. Mol. Evol., 40, pp. 155-172, Feb. 1995. |
Leonard, S. et al., Neuronal nicotinic receptors: from structure to function, Nicotine & Tobacco Res. 3:203-223, Aug. 2001. |
Lips et al.; Coexpression and spatial association of nicotinic acetylcholine receptor subunits alpha7 and alpha10 in rat sympathetic neurons; J.Mol.Neurosci.; 30; pp. 15-16; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006. |
Lipton, J. M. et al.; Anti-inflammatory actions of the neuroimmunomodulator ?-MSH, Immunol. Today, vol. 18, pp. 140-145, Mar. 1997. |
Loeb et al.; Cuff electrodes for chronic stimulation and recording of peripheral nerve activity; Journal of Neuroscience Methods; vol. 64; pp. 95-103; Jan. 1996. |
Madretsma, G. S., et al., Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-alpha by human monocuclear cells, Immunopharmacology, vol. 35, No. 1, pp. 47-51, Oct. 1996. |
Martindale: The Extra Pharmacopoeia; 28th Ed. London; The pharmaceutical press; pp. 446-485; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982. |
Martiney et al., Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent, Journal of Immunology, vol. 160, No. 11, pp. 5588-5595, Jun. 1, 1998. |
McGuinness, P. H., et al., Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particulary interleukin 18) in chronic hepatitis C infection, Gut, vol. 46, pp. 260-269, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000. |
Miguel-Hidalgo, J.J.; The role of glial cells in drug abuse; Current Drug Abuse Reviews; vol. 2; No. 1; pp. 76-82; Jan. 2009. |
Milligan et al.; Pathological and protective roles of glia in chronic pain; Nat Rev Neurosci.; vol. 10; No. 1; pp. 23-26; Jan. 2009. |
Minnich et al.; Anti-cytokine and anti-inflammatory therapies for the treatment of severe sepsis: progress and pitfalls; Proceedings of the Nutrition Society; vol. 63(3); pp. 437-441; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2004. |
Mishchenko, et al., “Coagulation of the blood and fibrinolysos in dogs during vagal stimulation,” Sechenov Physiological Journal of the USSR, vol. 61(1): pp. 101-107, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1975. |
Mishchenko, “The role of specific adreno-and choline-receptors of the vascular wall in the regulation of blood coagulation in the stimulation of the vagus nerve,” Biull. Eskp. Biol. Med., vol. 78(8): pp. 19-22, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1974. |
Molina et al., CNI-1493 attenuates hemodynamic and pro-inflammatory responses to LPS, Shock, vol. 10, No. 5, pp. 329-334, Nov. 1998. |
Nadol et al., “Surgery of the Ear and Temporal Bone,” Lippinkott Williams & Wilkins, 2nd Ed., 2005, (Publication date: Sep. 21, 2004), p. 580. |
Nagashima et al., Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life, J. Clin. Invest., 109, pp. 101-110, Jan. 2002. |
Nathan, C. F., Secretory products of macrophages, J. Clin. Invest., vol. 79(2), pp. 319-326, Feb. 1987. |
Navalkar et al.; Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis; Journal of the American College of Cardiology; vol. 37; No. 2; pp. 440-444; Feb. 2001. |
Noguchi et al., Increases in Gastric acidity in response to electroacupuncture stimulation of hindlimb of anesthetized rats, Jpn. J. Physiol., 46(1), pp. 53-58, Feb. 1996. |
Norton, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering OnLine, 2(1), pp. 6, Mar. 4, 2003. |
Palmblad et al., Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis: a thereapeutic study unding a macrophage-deactivation compound, American Journal of Pathology, vol. 158, No. 2, pp. 491-500, Feb. 2, 2001. |
Pateyuk, et al.,“Treatment of Botkin's disease with heparin,” Klin. Med., vol. 51(3): pp. 113-117, Mar. 1973. |
Payne, J. B. et al., Nicotine effects on PGE2 and IL-1 beta release by LPS-treated human monocytes, J. Perio. Res., vol. 31, No. 2, pp. 99-104, Feb. 1996. |
Prystowsky, J. B. et al., Interleukin-1 mediates guinea pig gallbladder inflammation in vivo, J. Surg. Res., vol. 71, No. 2, pp. 123-126, Aug. 1997. |
Pulkki, K. J., Cytokines and cardiomyocyte death, Ann. Med., vol. 29(4), pp. 339-343, Aug. 1997. |
Pullan, R. D., et al., Transdermal nicotine for active ulceratiive colitis, N. Engl. J. Med., vol. 330, No. 12, pp. 811-5, Mar. 24, 1994. |
Pulvirenti et al; Drug dependence as a disorder of neural plasticity:focus on dopamine and glutamate; Rev Neurosci.; vol. 12; No. 2; pp. 141-158; Apr./Jun. 2001. |
Rahman et al.; Mammalian Sirt 1: Insights on its biological functions; Cell Communications and Signaling; vol. 9; No. 11; pp. 1-8; May 2011. |
Rayner, S. A. et al., Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation, Clin. Exp. Immunol., vol. 122, pp. 109-116, Oct. 2000. |
Rinner et al.; Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation; J.Neuroimmunol.; 81(1-2); pp. 31-37; Jan. 1998. |
Robinson et al.; Studies with the Electrocardiograph on the Action of the Vagus Nerve on the Human Heart; J Exp Med; 14(3):217-234; Sep. 1911. |
Romanovsky, A. A., et al.,The vagus nerve in the thermoregulatory response to systemic inflammation, Am. J. Physiol., vol. 273, No. 1 (part 2), pp. R407-R413, Jul. 1, 1997. |
Saghizadeh et al.; The expression of TNF? by human muscle; J. Clin. Invest.; vol. 97; No. 4; pp. 1111-1116; Feb. 15, 1996. |
Saindon et al.; Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta; Auton.Neuroscience Basic and Clinical; 87; pp. 243-248; Mar. 23, 2001. |
Saito, Involvement of muscarinic M1 receptor in the central pathway of the serotonin-induced bezold-jarisch reflex in rats, J. Autonomic Nervous System, vol. 49, pp. 61-68, Sep. 1994. |
Sandborn, W. J., et al., Transdermal nicotine for mildly to moderately active ulcerative colitis, Ann. Intern. Med, vol. 126, No. 5, pp. 364-371, Mar. 1, 1997. |
Sato, E., et al., Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity, Am. J. Physiol., vol. 274, pp. L970-L979, Jun. 1998. |
Sato, K.Z., et al., Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukosytes and leukemic cell lines, Neuroscience Letters, vol. 266, pp. 17-20, Apr. 30, 1999. |
Scheinman, R. I., et al., Role of transcriptional activation of I?B? in mediation of immunosuppression by glucocorticoids, Science, vol. 270, No. 5234, pp. 283-286, Oct. 13, 1995. |
Schneider et al., High-affinity ssDNA inhibitors of the review transcriptase of type 1 human immunodeficiency virus, Biochemistry, 34(29), pp. 9599-9610, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1995. |
Shafer, Genotypic testing for human immunodeficiency virus type 1 drug resistance, Clinical Microbiology Reviews, vol. 15, pp. 247-277, Apr. 2002. |
Shapiro et al.; Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery; Thromb Haemost; vol. 80(5); pp. 773-778; Nov. 1998. |
Sher, M. E., et al., The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease, Inflamm. Bowel Dis., vol. 5, No. 2, pp. 73-78, May 1999. |
Shi et al.; Effects of efferent vagus nerve excitation on inflammatory response in heart tissue in rats with endotoxemia; vol. 15, No. 1; pp. 26-28; Jan. 2003 (Eng. Abstract). |
Snyder et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors; Nature Medicine, 5(1), pp. 64-70, Jan. 1999. |
Sokratov, et al. “The role of choline and adrenegic structures in regulation of renal excretion of hemocoagulating compounds into the urine,” Sechenov Physiological Journal of the USSR, vol. 63(12): pp. 1728-1732, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977. |
Stalcup et al., Endothelial cell functions in the hemodynamic responses to stress, Annals of the New York Academy of Sciences, vol. 401, pp. 117-131, Dec. 1982. |
Steinlein, New functions for nicotine acetylcholine receptors?, Behavioural Brain Res., vol. 95, pp. 31-35, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998. |
Sternberg, E. M., Perspectives series: cytokines and the brain ‘neural-immune interactions in health and disease,’ J. Clin. Invest., vol. 100, No. 22, pp. 2641-2647, Dec. 1997. |
Strojnik et al.; Treatment of drop foot using and implantable peroneal underknee stimulator; Scand. J. Rehab. Med.; vol. 19(1); pp. 37R43; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987. |
Sugano et al., Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaβ activation, Biochemical and Biophysical Research Communications, vol. 252, No. 1, pp. 25-28, Nov. 9, 1998. |
Suter et al.; Do glial cells control pain?; Neuron Glia Biol.; vol. 3; No. 3; pp. 255-268; Aug. 2007. |
Sykes, et al., An investigation into the effect and mechanisms of action of nicotine in inflammatory bowel disease, Inflamm. Res., vol. 49, pp. 311-319, Jul. 2000. |
Takeuchi et al., A comparision between chinese blended medicine “Shoseiryuto” tranilast and ketotifen on the anit-allergic action in the guinea pigs, Allergy, vol. 34, No. 6, pp. 387-393, Jun. 1985 (eng. abstract). |
Toyabe, et al., Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice, Immunology, vol. 92(2), pp. 201-205, Oct. 1997. |
Tracey et al., Mind over immunity, Faseb Journal, vol. 15, No. 9, pp. 1575-1576, Jul. 2001. |
Tracey, K. J. et al., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia; Nature, 330: pp. 662-664, Dec. 23, 1987. |
Tracey, K. J. et al., Physiology and immunology of the cholinergic antiinflammatory pathway; J Clin Invest.; vol. 117: No. 2; pp. 289-296; Feb. 2007. |
Tracey, K. J.; Reflex control of immunity; Nat Rev Immunol; 9(6); pp. 418-428; Jun. 2009. |
Tracey, K. J. et al., Shock and tissue injury induced by recombinant human cachectin, Science, vol. 234, pp. 470-474, Oct. 24, 1986. |
Tracey, K.J., The inflammatory reflex, Nature, vol. 420, pp. 853-859, Dec. 19-26, 2002. |
Tsutsui, H., et al., Pathophysiolocical roles of interleukin-18 in inflammatory liver diseases; Immunol. Rev., 174:192-209, Apr. 2000. |
Tuerk et al., RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase; Proc. Natl. Acad. Sci. USA, 89, pp. 6988-6992, Aug. 1992. |
Tuerk et al., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase; Science, 249(4968), pp. 505-510, Aug. 3, 1990. |
Van Dijk, A. P., et al., Transdermal nictotine inhibits interleukin 2 synthesis by mononuclear cells derived from healthy volunteers, Eur. J. Clin. Invest, vol. 28, pp. 664-671, Aug. 1998. |
Van Der Horst et al.; Stressing the role of FoxO proteins in lifespan and disease; Nat Rev Mol Cell Biol.; vol. 8; No. 6; pp. 440-450; Jun. 2007. |
Vanhoutte, et al., Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall, Gen Pharmac., vol. 14, pp. 35-37, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983. |
vanWesterloo, et al., The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis, The Journal of Infectious Diseases, vol. 191, pp. 2138-2148, Jun. 15, 2005. |
Ventureyra, Transcutaneous vagus nerve stimulation for partial onset seizure therapy, Child's Nerv Syst, vol. 16(2), pp. 101-102, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000. |
Vijayaraghavan, S.; Glial-neuronal interactions-implications for plasticity anddrug addictionl AAPS J.; vol. 11; No. 1; pp. 123-132; Mar. 2009. |
Villa et al., Protection against lethal polymicrobial sepsis by CNI-1493, an inhibitor of pro-inflammatory cytokine synthesis, Journal of Endotoxin Research, vol. 4, No. 3, pp. 197-204, Jun. 1997. |
Von Känel, et al., Effects of non-specific ?-adrenergic stimulation and blockade on blood coagulation in hypertension, J. Appl. Physiol., vol. 94, pp. 1455-1459, Apr. 2003. |
Von Känel, et al., Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo, Eur. J. Haematol., vol. 65: pp. 357-369, Dec. 2000. |
Walland et al., Compensation of muscarinic brochial effects of talsaclidine by concomitant sympathetic activation in guinea pigs; European Journal of Pharmacology, vol. 330(2-3), pp. 213-219, Jul. 9, 1997. |
Wang et al; Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation; Nature; 421; 384-388; Jan. 23, 2003. |
Wang, H., et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, vol. 285, pp. 248-251, Jul. 9, 1999. |
Waserman, S. et al., TNF-? dysregulation in asthma: relationship to ongoing corticosteroid therapy, Can. Respir. J., vol. 7, No. 3, pp. 229-237, May-Jun. 2000. |
Watanabe, H. et al., The significance of tumor necrosis factor (TNF) levels for rejection of joint allograft, J. Reconstr. Microsurg., vol. 13, No. 3, pp. 193-197, Apr. 1997. |
Wathey, J.C. et al., Numerical reconstruction of the quantal event at nicotinic synapses; Biophys. J., vol. 27: pp. 145-164, Jul. 1979. |
Watkins, L.R. et al., Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication, Neurosci. Lett., vol. 183(1-2), pp. 27-31, Jan. 1995. |
Watkins, L.R. et al., Implications of immune-to-brain communication for sickness and pain, Proc. Natl. Acad. Sci. U.S.A., vol. 96(14), pp. 7710-7713, Jul. 6, 1999. |
Webster's Dictionary, definition of “intrathecal”, online version accessed Apr. 21, 2009. |
Weiner, et al., “Inflammation and therapeutic vaccination in CNS diseases,” Nature., vol. 420(6917): pp. 879-884, Dec. 19-26, 2002. |
Westerheide et al.; Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.; Science; vol. 323; No. 5717; pp. 1063-1066; Feb. 2009. |
Whaley, K. et al., C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor, Nature, vol. 293, pp. 580-582, Oct. 15, 1981. |
Woiciechowsky, C. et al., Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury, Nature Med., vol. 4, No. 7, pp. 808-813, Jul. 1998. |
Yeh, S.S. et al., Geriatric cachexia: the role of cytokines, Am. J. Clin. Nutr., vol. 70(2), pp. 183-197, Aug. 1999. |
Zhang et al., Tumor necrosis factor, The Cytokine Handbook, 3rd ed., Ed. Thompson, Academic Press, pp. 517-548, Jul. 1, 1998. |
Zhang et al.; Roles of SIRT1 in the acute and restorative phases following induction of inflammation.; J Biol Chem.; vol. 285; No. 53; pp. 41391-401; Dec. 2010. |
Anderson et al.; Reflex principles of immunological homeostasis; Annu. Rev. Immunol.; 30; pp. 313-335; Apr. 2012. |
Bruchfeld et al.; Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis; J. Int. Med.; 268(1); pp. 94-101; Jul. 2010. |
Dake; Chronic cerebrospinal venous insufficiency and multiple sclerosis: Hostory and background; Techniques Vasc. Intervent. Radiol.; 15(2); pp. 94-100; Jun. 2012. |
Ellrich et al.; Transcutaneous vagus nerve stimulation; Eur. Neurological Rev.; 6(4); pp. 254-256; 2011 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date). |
Gao et al.; Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats; Autonomic Neurosc.; 88(1-2); pp. 109-116; Feb. 29, 2008. |
Huston et al.; Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis; Crit. Care Med.; 35(12); pp. 2762-2768; Dec. 2007. |
Koopman et al.; Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis; Arth. Rheum.; 64(10 suppl.); pp. S195; Oct. 2012. |
Oshinsky et al.; Non-invasive vagus nerve stimulation as treatment for trigeminal allodynia; Pain; 155(5); pp. 1037-1042; May 2014. |
Peuker; The nerve supply of the human auricle; Clin. Anat.; 15(1); pp. 35-37; Jan. 2002. |
Tekdemir et al.; A clinico-anatomic study of the auricular branch of the vagus nerve and arnold's ear-cough reflex; Surg. Radiol. Anat.; 20(4); pp. 253-257; Mar. 1998. |
Yu et al.; Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a non-invasive approach to treat the initial phase of atrial fibrillation; Heart Rhythm; 10(3); pp. 428-435; Mar. 2013. |
Zamotrinsky et al.; Vagal neurostimulation in patients with coronary artery disease; Auton. Neurosci.; 88(1-2); pp. 109-116; Apr. 2001. |
Zhao et al.; Transcutaneous auricular vagus stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation; Evid. Based Complement Alternat. Med.; vol. 2012; Article ID 627023; 10 pages; Dec. 29, 2012. |
Zitnik et al.; U.S. Appl. No. 14/630,613 entitled “Vagus nerve stimulation screening test,” filed Feb. 24, 2015. |
Elenkov et al.; Stress, corticotropin-releasing hormone, glucocorticoids, and the immune / inflammatory response: acute and chronic effects; Ann. N.Y. Acad. Sci.; 876; pp. 1-13; Jun. 22, 1999. |
Pavlov et al; Controlling inflammation: the cholinergic anti-inflammatory pathway; Biochem. Soc. Trans.; 34(Pt 6); pp. 1037-1040; Dec. 2006. |
Reale et al.; Treatment with an acetylcholinesterase inhibitor in alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines; J. Neuroimmunology; 148(1-2); pp. 162-171; Mar. 2004. |
Stevens et al.; The anti-inflammatory effect of some immunosuppressive agents; J. Path.; 97(2); pp. 367-373; 1969 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date). |
Number | Date | Country | |
---|---|---|---|
20140330349 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61484112 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13467928 | May 2012 | US |
Child | 14336942 | US |