Not applicable.
Not applicable.
This disclosure relates generally to drilling equipment. More specifically, the disclosure relates to drill bits and cutting elements used for drilling through earthen formations to form wellbores.
A number of operations are performed to locate and recover valuable oil and gas from the subterranean formations in which they reside. Oil rigs are positioned at well sites and downhole tools, such as drilling tools, are deployed into the ground to reach the subsurface fluid reservoirs. The drilling tool may include a drill string having a drill bit that is advanced into the earth to form a wellbore. The drill bit is rotated by rotating the drill string from the surface and/or by a downhole motor that may be powered by drilling fluid (“mud”) that is pumped through the drilling tool.
In oil and gas drilling, the cost of drilling a borehole is very high, and is proportional to the length of time it takes to drill to the desired depth and location. Drilling time, in turn, is greatly dependent on the number of times a drill bit must be changed before the targeted formation is reached. This is the case because each time the bit is changed, the entire string of drill pipe, which may be miles long, must be retrieved from the borehole, section by section. Once the drill string has been retrieved and the new bit installed, the bit must be lowered to the bottom of the borehole on the drill string, which again must be constructed section by section. This process, known as a “trip” of the drill string, requires considerable time, effort and expense. Accordingly, it is always desirable to employ drill bits which will drill faster and longer. The length of time that a drill bit may be employed before it must be changed depends upon its rate of penetration (“ROP”), as well as its durability. The design of the bit's cutting elements greatly impacts bit durability and ROP, and thus is critical to the success of a particular bit design.
The standard in many of today's drilling applications is a drill bit that employs cutting elements having a polycrystalline diamond (“PCD”) layer as the cutting face. Examples of such a drill bit and/or cutting element are provided in U.S. Pat. No. 9,441,422 entitled Cutting Element for a Rock Drill Bit, the entire contents of which are hereby incorporated by reference herein. Other examples of drill bits and/or cutting elements are provided in WO2012/056196, WO2012/012774, and U.S. Pat. Nos. 8,875,812, 8,945,720, 8,721,752, 8,997,900, and 8,910,730, the entire contents of which are hereby incorporated by reference herein.
PCD designs are known that include various diamond faces that adjoin one another and that together, make up the cutting face of the cutter. Some have proven effective; however, enhanced durability remains desired, and substantial manufacturing challenges exist for such cutting elements. Thus, there remains a need for a long lasting PCD cutting element that provides good ROP, is durable, and that can be reliably manufactured at reasonable cost.
These and other needs in the art are addressed by the exemplary embodiments of drill bits and cutting elements disclosed herein. In a first such embodiment, a cutting element for a drill bit comprises: a substrate portion, a central axis extending through the substrate portion, and a PCD layer forming an end of the cutting element, the PCD layer comprising a cutting face bounded by a periphery. The cutting face comprises: an elongate ridge having an upper surface defining the uppermost height of the cutting element, the ridge having a first ridge end and extending from the first ridge end in a direction towards the center of the cutting face and terminating in a second ridge end that is curved; and a surrounding surface consisting of the entire cutting face except for the ridge, the surrounding surface being continuously curved along a curved path extending at least partially about the curved second ridge end.
In some embodiments, the cutting element further comprises a leading edge at the intersection of the cutting face and the periphery, and wherein the first ridge end is offset a distance from the leading edge. The cutting face may further comprise a pair of linear edges at the periphery, the leading edge being curved and positioned between the pair of linear edges. In some embodiments, the upper surface of the ridge is planar, and in other embodiments, the upper surface of the ridge is convex.
In some embodiments, the cutting element further comprises a leading edge at the intersection of the cutting face with the periphery, and wherein the ridge extends from the second ridge end to the leading edge and the length of the ridge is less than 40% of the diameter of the cutting element. The length of the ridge may be less than 10% of the diameter of the cutting element and, in some embodiments, the width of the ridge may be less than 10% of the diameter of the cutting element.
In some embodiments, the surrounding surface, in profile view, is linear from the ridge to the periphery at every location along the curved path, and in other embodiments, the surrounding surface, in profile view, is curved from the ridge to the periphery at every location along the curved path.
In some embodiments, the surrounding surface comprises: a first side region on one side of the ridge and extending from the periphery to a first side of the ridge; a second side region on the opposite side of the ridge from the first side region and extending from the periphery to a second side of the ridge that is opposite from the first side of the ridge; a ramp region extending from the periphery to the second ridge end and extending between the first and second side regions; wherein, in a profile view, a plane that encompasses the planar surface of the ridge forms a slant angle with the first side region and a ramp angle with the ramp region; and wherein the slant angle is different than the ramp angle, and wherein the thickness of the PCD layer varies along the periphery.
The slant angle may be greater than the ramp angle and the thickness of the PCD layer may be thicker in the ramp region than in the first side region. In some embodiments, the slant angle is between 2 and 20 degrees and the slant angle is greater than the ramp angle, and the thickness of the PCD layer varies along the periphery in some embodiments.
In some embodiments, the periphery includes a leading point and a trailing point opposite the leading point, wherein the thickness of the PCD layer at the trailing point is greater than the thickness of the PCD layer at a point 90 degrees from the trailing point. The width of the ridge may be non-uniform along it length.
In some embodiments, the surrounding surface comprises: a first side region on one side of the ridge and extending from the periphery to a first side of the ridge; a second side region on the opposite side of the ridge from the first side region and extending from the periphery to a second side of the ridge that is opposite from the first side of the ridge; a ramp region extending from the periphery to the second ridge end and extending between the first and second side regions; and wherein, in a profile view, each side region is curved having a radius of curvature R1 and the ramp region is curved having a radius of curvature R2 and wherein R1 is the same as R2.
Also disclosed is a cutting element for a drill bit comprising: a generally cylindrically shaped substrate formed about a central axis and having a diameter D and a PCD layer attached to the substrate, the PCD layer comprising a cutting face with center C that is bounded by a periphery. The cutting face consists of an elongate ridge and a continuously curved surrounding surface; wherein the ridge includes a planar upper surface extending radially from a first ridge end that is adjacent to the periphery to a second ridge end disposed at a location that is offset a radial distance from the center C; and wherein the surrounding surface comprises a pair of side regions separated by the ramp region disposed between the side regions, wherein the pair of side regions, the ramp region and the intersection between the ramp region and each side region are all continuously curved; and wherein the highest point on the cutting face lies within the planar upper surface of the ridge.
In some embodiments, in a profile view, a plane that encompasses the planar surface of the ridge forms a slant angle with each side region and forms a ramp angle with the ramp region, and wherein the slant angle is different than the ramp angle.
In some embodiments, in a profile view, a plane that encompasses the planar surface of the ridge forms a ramp angle with the ramp region that is between 2 and 10 degrees.
In some embodiments, the end of the planar upper surface of the ridge that is closest to the central axis is curved.
Also disclosed is a drill bit that is advanceable into a subterranean formation to form a wellbore, where the drill bit comprises: a bit body; and at least one cutting element mounted in the bit body; wherein the cutting element includes a PCD cutting face consisting of an elongate ridge and a continuously curved surrounding surface. The surrounding surface comprises a pair of side regions separated by the ramp region disposed between the side regions, wherein the pair of side regions, the ramp region and the intersection between the ramp region and each side region are all continuously curved; and wherein the highest point on the cutting face lies within the upper surface of the ridge.
These and various other features and characteristics of above-mentioned cutting elements and drill bits are described in more detail below, and will be readily understood and appreciated upon reading the following detailed description of the exemplary embodiments, and by referring to the accompanying drawings.
So that the above-recited features can be best understood and appreciated, a more particular description than what is summarized above may be had by reference to the exemplary embodiments thereof that are illustrated in the appended drawings. Importantly, the examples illustrated are not to be considered as limiting the scope of this disclosure. The Figures are not necessarily to scale and certain features and certain views of the Figures may be shown exaggerated in scale or in schematic form in the interest of clarity and conciseness.
This disclosure is directed to a cutting element (or cutter or cutting insert) for a cutting or drilling tool, such as a bit used to drill wellbores. The cutting element includes a cutting face (or “working surface”) having a ridge that defines the uppermost surface of the cutting element, and also having a nonplanar and continuously curved surface surrounding the ridge. The surrounding surface includes two side regions that are separated on the cutting face by the ridge, and includes a fluid-directing ramp surface trailing behind the ridge and disposed between the two side regions. A chamfer is formed about the cutting face, and the ridge extends from the chamfer at a periphery of the face or, in some cases, from near the periphery toward the center of the cutting face. The ridge is provided to concentrate force against the earthen formation to enhance cutting, and the shape of the cutting face designed to draw the extrudates of formation material down the pair of side regions. The ramp region, extending between the two side regions, directs drilling fluid toward the leading edge of the cutting element during drilling. The ridged cutting elements described herein are intended to provide good cutting and cleaning efficiency (and thus good ROP) and to exhibit enhanced durability (e.g. provide good ROP for substantial periods of time). Further, the cutting elements described herein offer manufacturing advantages as compared to certain known cutting element designs, such as those having multiple planar and adjoining PCD surfaces on a single cutting face.
The “drill string” may be made up of tubulars secured together end to end by any suitable means, such as mating threads, and the drill bit may be secured at or near an end of the tubulars that are secured together. As used herein, the term “wellbore” is synonymous with borehole and means the open hole or uncased portion of a subterranean well including the rock face which bounds the drilled hole. Also, as used herein, the terms “environ” refers to a subterranean area, zone, horizon and/or formation that may contain hydrocarbons.
The wellbore extends from the surface of the earth, including a seabed or ocean platform, and may penetrate one or more environs of interest. The wellbore may have any suitable subterranean configuration, such as generally vertical, generally deviated, generally horizontal, or combinations thereof.
The quantity of energy referred to as “energy of extrusion” means the portion of the total mechanical specific energy (“MSE”) that is expended to extrude crushed rock particles across the faces of the cutting element(s) of the drill bit during drilling. As used herein, the term “extrudate” refers to crushed rock particles that are extruded across the face of the cutting element(s) during drilling.
The cutting elements 101 described herein may be utilized in conjunction with any drill bit rotated by means of a drill string to form a wellbore in environs, such as a rotary drag-type bits.
Cutting elements 101 are mounted in at least one of the blades 216 by positioning a portion of each cutting element 101 within a socket 220 and securing it therein by any suitable means, for example by brazing. The cutting elements 101 may be randomly positioned about the bit body 214 or may be confined to a specific area or areas of the cutting structure, such as only in the cone region 218 of the bit, or only on the shoulder region 217 of the bit, as examples. Further, the cutting elements 101 may be positioned in the sockets 220 at a desired orientation.
The orientation of the cutting elements 101 may optionally be selected so as to ensure that the leading edge of each cutting element 101 may achieve its intended depth of cut, or at least be in contact with the rock during drilling. For example, as shown in
Cutting element 101 is mounted in bit body 214 such that its cutting face 328 (described in detail below) is exposed to the formation material, the cutting face including surface regions or portions having distinct functional roles in abrading/shearing, excavating, and removing rock from beneath the drill bit 112 during rotary drilling operations.
The cutting elements described herein may be formed of various materials. For example, the substrate 326 may be made of tungsten carbide and the diamond layer may be formed of various materials including diamond. Other layers and/or other materials may optionally be provided. Part and/or all of the diamond layer may be leached, finished, polished, and/or otherwise treated to enhance durability, efficiency and/or effectiveness. Examples of materials and/or treatments, such as leaching are described in U.S. Pat. Nos. 9,441,422, 8,875,812, 8,945,720, 8,721,752, 8,997,900, and 8,910,730, and in Patent Publications WO2014/036283, WO2012/056196, and WO2012/012774, the entire contents of which are hereby incorporated by reference herein.
When mounted in a socket 220 of the bit body 214 as shown in
Referring again to
Referring still to
Referring now to
To further explain the continuously curved characteristic of surrounding surface 333 and its constituent regions, it is to be understood that along the various curved paths P shown in
In the exemplary embodiment shown ridge 332 extends from outer end 337 at leading edge 340 toward the center C of the cutting face 328, center C being contained in cutter axis 301. Ridge 332 thus extends along a portion of the diameter of the face 328, for example, extending for a length RL (
In the embodiment shown in
Further, in the embodiment shown in
Chamfer 336 extends along periphery 338 and defines the leading edge 340 and linear edges 331. The leading edge 340 may be dimensioned to achieve a generally predetermined depth-of-cut into the formation. The chamfer 336 may extend around the periphery 338 at a chamfer angle CA (
As described above, in some embodiments, the slant angle and the ramp angle are different on a given cutting element. Given that each such angle is measured relative to the same planar upper surface 350 of ridge 332, the difference in slant angle vs. ramp angle will lead to different thicknesses of the PCD at the periphery 338 of the element's cutting face. This is best shown with reference to cutting element 101 depicted in
In operation, drilling fluid passing through the downhole tool 108 and out the drill bit 112 (
The configuration of the cutting elements may split extrudate in smaller portions without interrupting extrudate formation in such a way that limits the volume and mass (less energy of formation) of the extrudate. In this manner, reduced frictional forces between the cutter working surface and rock extrudate may result in extrudate removal with less energy of extrusion. Accordingly, less input energy may be required to drill at given rate of penetration, thereby reducing MSE while drilling.
Another cutting element 401 suitable for use in the drill bit shown in
Another cutting element 601 suitable for use in the drill bit shown in
Another cutting element 701 suitable for use in the drill bit shown in
Another cutting element 801 suitable for use in the drill bit shown in
Another cutting element 901 suitable for use in the drill bit shown in
The various cutting elements described herein may be manufactured by any desirable method. For example, the cutting elements may be manufactured by known pressing techniques, such as near net pressing, in which the entire cutting element, including the PCD cutting face, is formed into its final shape by pressing at high temperatures and pressures. In other instances, the cutting elements may be manufactured by first forming a cutting element having a PCD layer with a planar upper surface that extends perpendicular to the element's central axis 301. Thereafter, a ridge 332 of predetermined position, height, width and length is defined for the element. Next, a laser is employed to remove (ablate) portions of the PCD surface that do not includes the planar surface of the ridge, thereby forming the continuously curved surrounding surface 333.
While exemplary embodiments have been described above with reference to various depicted implementations and exploitations, it will be understood that these embodiments are illustrative only. Many variations, modifications, and additions to those described above are possible, such that the scope of the invention for which a patent is sought is not limited to those examples, and that, instead, the scope of the invention is to be determined from the literal and equivalent scope of the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
4928777 | Shirley-Fisher | May 1990 | A |
5819861 | Scott | Oct 1998 | A |
6045440 | Johnson | Apr 2000 | A |
6059054 | Portwood et al. | May 2000 | A |
7681673 | Kolachalam | Mar 2010 | B2 |
8037951 | Shen | Oct 2011 | B2 |
8721752 | Fuller | May 2014 | B2 |
8783387 | Durairajan | Jul 2014 | B2 |
8875812 | Setlur | Nov 2014 | B2 |
8910730 | Griffin | Dec 2014 | B2 |
8945720 | Sreshta | Feb 2015 | B2 |
8997900 | Sue | Apr 2015 | B2 |
9074435 | Scott | Jul 2015 | B2 |
9441422 | DiSantis | Sep 2016 | B2 |
10240399 | Rahmani | Mar 2019 | B2 |
10280688 | Dunbar | May 2019 | B2 |
20100300766 | Fan et al. | Dec 2010 | A1 |
20140060934 | DiSantis | Mar 2014 | A1 |
20170356250 | Scott et al. | Dec 2017 | A1 |
20190330928 | Graham | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
WO-2012012774 | Jan 2012 | WO |
WO-2012056196 | May 2012 | WO |
WO-2014036283 | Mar 2014 | WO |
2015161010 | Oct 2015 | WO |
2015161010 | Oct 2015 | WO |
WO-2015161010 | Oct 2015 | WO |
Entry |
---|
International Patent Application No. PCT/US2019/024214 International Search Report and Written Opinion dated Jun. 25, 2019 (16 pages). |
GCC Patent Application No. GC 2019-37365 Examination Report dated Apr. 29, 2020 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20190330928 A1 | Oct 2019 | US |