The present invention relates generally to the field of composite materials and, more particularly, to extruded cement-based materials.
Cement-based materials are generally produced using large amount of water to form a slurry that is too wet to extrude.
The present invention provides an extrudable cement-based material formed from a mixture that includes cement, water, gypsum, secondary materials, reinforcement fibers and rheology modifying agent. Note that the cement may contain the gypsum such that gypsum is not added to the mixture. The extrudable cement-based material is a lightweight material that has a density in the range of about 1.4 to 2.4 g/cm3, a compressive strength in the range of about 5 to 100 MPa, and a flexural strength in the range of about 5 to 35 MPa.
In addition, the present invention provides an extrudable cement-based material that is formed from a mixture that includes cement in the range of about 0.1 to 90% by wet weight percent, water in the range of about 10 to 60%, gypsum in the range of about 0.1 to 90% by wet weight percent, a secondary material (e.g., sand, rock, fly ash, slag, silica fume, calcium carbonate, etc.) in the range of about 0.1 to 50% by wet weight percent, a reinforcement fiber in the range of about 1 to 20% by wet weight percent and a rheology modifying agent in the range of about 0.5 to 10% by wet weight percent. Note that the cement may contain the gypsum such that gypsum is not added to the mixture.
Moreover, the present invention provides a method for manufacturing an extrudable cement-based material by mixing cement, gypsum, a secondary material, a reinforcement fiber and a rheology modifying agent with water, extruding the mixture through a die using an extruder, and allowing the extruded mixture to set. Note that the cement may contain the gypsum such that gypsum is not added to the mixture.
Furthermore, the present invention provides a method of making the extrudable cement-based material (composite) by the following steps: (1) mixing about 0.1 to 90% Wt. wet cement and 0.1 to 90% Wt. wet gypsum with about 10 to 60% Wt. wet water; (2) blending the cement-gypsum-water mixture with about 0.1 to 50% Wt. wet secondary material (e.g., sand, rock, fly ash, slag, silica fume, calcium carbonate, etc.), and about 1 to 20% Wt. wet reinforcement fiber; and (3) adding about 0.5 to 10% Wt. wet rheology modifying agent to the mixture. The resulting extrudable cement-based material can then be extruded and cured (e.g., allowed to sit, heating, steam, etc.). Note that the cement may contain the gypsum such that gypsum is not added to the mixture.
The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which:
None.
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
Ordinary Portland cement (OPC), calcium aluminate cement (CAC), Sorel cement (magnesium oxide and magnesium chloride cements), CSA cement (calcium sulphate aluminate cement), phosphate cement or other cement type known in the State-of-the-Art, in its wet state with water added before setting, can be rheologically modified into a clay-like material, which allows the use of the conventional clay production method known as extrusion.
The cement can be used as a binder with water in a composite composition in combination with a multitude of materials such as fine limestone, sand, gypsum, silica fume, fumed silica, plaster of Paris, fly ash, slag, rock, cellulose fiber, glass fiber, plastic fiber, PVA fiber, Dolanit fiber, etc., which when rheologically modified can be extruded as described above. Note that the cement may contain small amounts of gypsum (e.g., 0.3%, etc.), so adding gypsum to the mixture may not be necessary when the desired gypsum content is in the lower end of the range (see below).
The cement-gypsum-water mixture is stabilized by the addition of a rheology modifying agent typically in an amount of about 0.5 to 10% Wt. wet.
The rheology-modifying agents fall into the following categories: (1) polysaccharides and derivatives thereof, (2) proteins and derivatives thereof, and (3) synthetic organic materials. Polysaccharide rheology-modifying agents can be further subdivided into (a) cellulose-based materials and derivatives thereof, (b) starch based materials and derivatives thereof, and (c) other polysaccharides.
Suitable cellulose-based rheology-modifying agents include, for example, methylhydroxyethylcellulose, hydroxymethylethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxyethylpropylcellulose, etc.
Suitable starch based materials include, for example, wheat starch, pre-gelled wheat starch, potato starch, pre-gelled potato starch, amylopectin, amylose, seagel, starch acetates, starch hydroxyethyl ethers, ionic starches, long-chain alkylstarches, dextrins, amine starches, phosphate starches, and dialdehyde starches.
The currently preferred rheology-modifying agent is hydroxypropylmethylcellulose, examples of which are Methocel 240 and Methocel 240S.
For extrusion, the cement-based composite with approx. 10-60 Wt. % water of the total wet material and a suitable rheology modifying admixture is made to feel and behave similar to plastic clay. The material feels plastic/deformable to the touch and can be extruded similar to clay with the use of a clay extruder where the material is conveyed forward by an auger through a barrel and is formed continuously through a die into a final shape with form stability.
Depending on the water content and the amount of rheology modifying admixture, the extruded material can have more or less form stability.
By adding a reinforcement fiber to the material increased stability will be achieved before setting of the cement. Further, the fiber addition has been found to reduce or eliminate material shrinkage and drying shrinkage cracks during the drying phase of the production process, and further provide increased flexural strength and toughness of the dry material. The preferred type of fiber is cellulose (hardwood or softwood), plastic (based on poly vinyl alcohol or acrylic) and glass fiber; cellulose and plastic fiber is primarily used for insulation intended for below freezing or ambient temperatures, whereas glass fiber is primarily used for insulation intended for temperatures above ambient or where fire resistance is required. Also, combinations of fiber types can be applied. The preferred fiber length is from about 1 to 2 mm for the cellulose fiber, about 4 to 10 mm for the plastic fiber and about 6 to 20 mm for the glass fiber. The preferred fiber diameter is about 10 to 40 microns.
To increase the time that the cement-based material can be extruded before setting (hardening), the setting time can be retarded up to several hours with the use of small additions of suitable conventional concrete set retarder (e.g., Delvo from the company BASF). The cement-based material can be extruded by conveying the mixture through a barrel using an auger, and continuously forming the mixture into a final shape having form stability through the die using the extruder. Following extrusion, the material will within a few hours develop the initial and final setting of the finished product.
To develop the final 28 days strength of products made from OPC cement, the product is either allowed to sit around for 28 days in a humid environment, or the strength development can be accelerated within 24-48 hours by heating either by its own internal (exothermic) heat development or by steam curing such as is conventional in the State-of-the-Art.
Products made from CAC cement, Sorel cement, CSA cement, phosphate cement or other cement types will achieve its final strength in 24 hours and does not necessarily require additional curing.
After achieving the final strength development, the product is dried to generate the finished composite material. Following hardening, the hardened material can be finished as desired (e.g., cut to size, sanded, trimmed, painted, sealed, textured, imaged, etc.).
In one embodiment, the finished product can be made water repellent by spraying the product with water or solvent based silane. Such product, Protectosil BHN, is typically sold by BASF. The finished product can also be sprayed with anti-fungal or anti-microbial coatings. Moreover, the finished product can be painted, stained or textured.
The finished lightweight cement-based composite will have a density in the range of about 1.4 to 2.4 g/cm3, a compressive strength in the range of about 5 to 100 MPa, and a flexural strength in the range of about 5 to 35 MPa.
The compositional ranges are shown below:
The cement can be 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89% or 90% by weight or other incremental percentage between.
The water can be 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60% by weight or other incremental percentage between.
The gypsum can be 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89% or 90% by weight or other incremental percentage between.
The secondary material can be 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49% or 50% by weight or other incremental percentage between.
The reinforcement fiber can be 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20% by weight or other incremental percentage between.
The rheology modifying agent can be 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9% 4.0% 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, 5.0%, 5.1%, 5.2%, 5.3%, 5.4%, 5.5%, 5.6%, 5.7%, 5.8%, 5.9%, 6.0%, 6.1%, 6.2%, 6.3%, 6.4%, 6.5%, 6.6%, 6.7%, 6.8%, 6.9%, 7.0%, 7.1%, 7.2%, 7.3%, 7.4%, 7.5%, 7.6%, 7.7%, 7.8%, 7.9%, 8.0%, 8.1%, 8.2%, 8.3%, 8.4%, 8.5%, 8.6%, 8.7%, 8.8%, 8.9%, 9.0%, 9.1%, 9.2%, 9.3%, 9.4%, 9.5%, 9.6%, 9.7%, 9.8%, 9.9% or 10% by weight or other incremental percentage between.
The retarder can be 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.9%, 3.0%, 3.1%, 3.2%, 3.3%, 3.4%, 3.5%, 3.6%, 3.7%, 3.8%, 3.9%, 4.0%, 4.1%, 4.2%, 4.3%, 4.4%, 4.5%, 4.6%, 4.7%, 4.8%, 4.9%, 5.0%, 5.1%, 5.2%, 5.3%, 5.4%, 5.5%, 5.6%, 5.7%, 5.8%, 5.9%, 6.0%, 6.1%, 6.2%, 6.3%, 6.4%, 6.5%, 6.6%, 6.7%, 6.8%, 6.9%, 7.0%, 7.1%, 7.2%, 7.3%, 7.4%, 7.5%, 7.6%, 7.7%, 7.8%, 7.9%, or 8.0% by weight or other incremental percentage between.
As a result, the present invention provides an extrudable cement-based material formed from a mixture that includes cement, water, gypsum, secondary materials, reinforcement fibers and rheology modifying agent. The extrudable cement-based material is a lightweight material that has a density in the range of about 1.4 to 2.4 g/cm3, a compressive strength in the range of about 5 to 100 MPa, and a flexural strength in the range of about 5 to 35 MPa. Note that the cement may contain the gypsum such that gypsum is not added to the mixture. In some embodiments, a retarder can be added to the mixture.
In addition, the present invention provides an extrudable cement-based material that is formed from a mixture that includes cement in the range of about 0.1 to 90% by wet weight percent, water in the range of about 10 to 60%, gypsum in the range of about 0.1 to 90% by wet weight percent, a secondary material (e.g., sand, rock, fly ash, slag, silica fume, calcium carbonate, etc.) in the range of about 0.1 to 50% by wet weight percent, a reinforcement fiber in the range of about 0.5 to 20% by wet weight percent and a rheology modifying agent in the range of about 0.5 to 10% by wet weight percent. Note that the cement may contain the gypsum such that gypsum is not added to the mixture. In some embodiments, a retarder in the range of about 0.1 to 8% Wt. wet can be added to the mixture.
Moreover, the present invention provides a method for manufacturing an extrudable cement-based material by mixing cement, a secondary material, a reinforcement fiber and a rheology modifying agent with water, extruding the mixture through a die using an extruder, and allowing the extruded mixture to set. Note that cement may contain gypsum such that gypsum is not added to the mixture, or the gypsum is mixed with the water, or both. In some embodiments, a retarder can be added to the mixture.
Furthermore, the present invention provides a method of making the extrudable cement-based material (composite) by the following steps: (1) mixing about 0.1 to 90% Wt. wet cement and 0.1 to 90% Wt. wet gypsum with about 10 to 60% Wt. wet water, wherein the cement contains the gypsum, or the gypsum is mixed with the cement and water, or both; (2) blending the cement-gypsum-water mixture with about 0.1 to 50% Wt. wet secondary material (e.g., sand, rock, fly ash, slag, silica fume, calcium carbonate, etc.), and about 0.5 to 20% Wt. wet reinforcement fiber; and (3) adding about 0.5 to 10% Wt. wet rheology modifying agent to the mixture. The resulting extrudable cement-based material can then be extruded and cured (e.g., allowed to sit, heating, steam, etc.). In some embodiments, a retarder in the range of about 0.1 to 8% Wt. wet can be added to the mixture.
In another embodiment, the extrudable cement-based material (composite) can be made by the following steps: (1) metering all the ingredients for a batch into a mixer (e.g., Eirich intensive mixer, etc.) at the same time and mixing the ingredients; (2) dumping the mixture into a hopper and extruding the mixture through a die to form an elongated sheet; (3) rolling the elongated sheet through one or more sets of calenders (e.g., two sets, etc.) to a final thickness; (4) cutting the elongated sheet into a set of individual sheets having specified lengths; (5) picking up one or more of the individual sheets and placing them in a stack on a pallet; (6) covering the stack in a plastic and an insulating cover, and placing the stacks in a curing room for a specified period of time (e.g., 24 to 48 hours or other time period necessary to cure the individual sheets); (7) finishing each individual sheet (e.g., squaring up edges, sanding to smooth surfaces and exact dimensions; and (8) applying one or more coatings or inks to each individual sheet (e.g., UV coatings, fire resistant coatings, colors, images, texturing or a combination thereof via coating or printing processes).
Although preferred embodiments of the present invention have been described in detail, it will be understood by those skilled in the art that various modifications can be made therein without departing from the spirit and scope of the invention as set forth in the appended claims.
This application claims priority to, and is the National Stage of International Application No. PCT/US2015/034397 filed on Jun. 5, 2015 and claims priority to U.S. Provisional Patent Application Ser. No. 62/007,984, filed on Jun. 5, 2014. The contents of both applications are hereby incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/034397 | 6/5/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/188054 | 12/10/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
570391 | Fox | Oct 1896 | A |
1048923 | Wheeler | Dec 1912 | A |
3517468 | Woods | Jun 1970 | A |
3852083 | Yang | Dec 1974 | A |
3908062 | Roberts | Sep 1975 | A |
3987600 | Baehr | Oct 1976 | A |
3994110 | Ropella | Nov 1976 | A |
4014149 | Yamamoto | Mar 1977 | A |
4045937 | Stucky | Sep 1977 | A |
4075804 | Zimmerman | Feb 1978 | A |
4084571 | McFarland | Apr 1978 | A |
4159302 | Greve et al. | Jun 1979 | A |
4171985 | Motoki | Oct 1979 | A |
4225247 | Hodson | Sep 1980 | A |
4225357 | Hodson | Sep 1980 | A |
4284119 | Martin et al. | Aug 1981 | A |
4302127 | Hodson | Nov 1981 | A |
4308065 | Walls-Muycelo | Dec 1981 | A |
4339487 | Mullet | Jul 1982 | A |
4343127 | Greve et al. | Aug 1982 | A |
4347653 | Martin et al. | Sep 1982 | A |
4398842 | Hodson | Aug 1983 | A |
4428775 | Johnson et al. | Jan 1984 | A |
4434899 | Rivkin | Mar 1984 | A |
4443992 | Shechter | Apr 1984 | A |
4489121 | Luckanuck | Dec 1984 | A |
4552463 | Hodson | Nov 1985 | A |
4660338 | Wagner | Apr 1987 | A |
4664707 | Wilson et al. | May 1987 | A |
4695494 | Fowler et al. | Sep 1987 | A |
4704834 | Turner | Nov 1987 | A |
4716700 | Hagemeyer | Jan 1988 | A |
4716702 | Dickson | Jan 1988 | A |
4800538 | Passmore et al. | Jan 1989 | A |
4811538 | Lehnert et al. | Mar 1989 | A |
4864789 | Thorn | Sep 1989 | A |
4889428 | Hodson | Dec 1989 | A |
4896471 | Turner | Jan 1990 | A |
4922674 | Thorn | May 1990 | A |
4944595 | Hodson | Jul 1990 | A |
4946504 | Hodson | Aug 1990 | A |
4998598 | Mardian et al. | Mar 1991 | A |
5061319 | Hodson | Oct 1991 | A |
5066080 | Woodward | Nov 1991 | A |
5074087 | Green | Dec 1991 | A |
5100586 | Jennings et al. | Mar 1992 | A |
5108677 | Ayres | Apr 1992 | A |
5154358 | Hartle | Oct 1992 | A |
5169566 | Stucky et al. | Dec 1992 | A |
5232496 | Jennings et al. | Aug 1993 | A |
5239799 | Bies et al. | Aug 1993 | A |
5242078 | Haas et al. | Sep 1993 | A |
5250578 | Cornwell | Oct 1993 | A |
5305577 | Richards et al. | Apr 1994 | A |
5311381 | Lee | May 1994 | A |
5317119 | Ayres | May 1994 | A |
5339522 | Paquin et al. | Aug 1994 | A |
5344490 | Roosen et al. | Sep 1994 | A |
5347780 | Richards et al. | Sep 1994 | A |
5356579 | Jennings et al. | Oct 1994 | A |
5358676 | Jennings et al. | Oct 1994 | A |
5376320 | Tiefenbacher et al. | Dec 1994 | A |
5385764 | Andersen et al. | Jan 1995 | A |
5395571 | Symons | Mar 1995 | A |
5401588 | Garvey et al. | Mar 1995 | A |
5417024 | San Paolo | May 1995 | A |
5433189 | Bales et al. | Jul 1995 | A |
5440843 | Langenhorst | Aug 1995 | A |
5453310 | Andersen et al. | Sep 1995 | A |
5482551 | Morris et al. | Jan 1996 | A |
5505987 | Jennings et al. | Apr 1996 | A |
5506046 | Andersen et al. | Apr 1996 | A |
5508072 | Andersen et al. | Apr 1996 | A |
5514430 | Andersen et al. | May 1996 | A |
5522195 | Bargen | Jun 1996 | A |
5527387 | Andersen et al. | Jun 1996 | A |
5540026 | Gartland | Jul 1996 | A |
5543186 | Andersen et al. | Aug 1996 | A |
5545297 | Andersen et al. | Aug 1996 | A |
5545450 | Andersen et al. | Aug 1996 | A |
5549859 | Andersen et al. | Aug 1996 | A |
5557899 | Dube et al. | Sep 1996 | A |
5569514 | Ayres | Oct 1996 | A |
5580409 | Andersen et al. | Dec 1996 | A |
5580624 | Andersen et al. | Dec 1996 | A |
5582670 | Andersen et al. | Dec 1996 | A |
5601888 | Fowler | Feb 1997 | A |
5614307 | Andersen et al. | Mar 1997 | A |
5618341 | Andersen et al. | Apr 1997 | A |
5626954 | Andersen et al. | May 1997 | A |
5631052 | Andersen et al. | May 1997 | A |
5631053 | Andersen et al. | May 1997 | A |
5631097 | Andersen | May 1997 | A |
5635292 | Jennings et al. | Jun 1997 | A |
5637412 | Jennings et al. | Jun 1997 | A |
5641584 | Andersen et al. | Jun 1997 | A |
5644870 | Chen | Jul 1997 | A |
5653075 | Williamson | Aug 1997 | A |
5654048 | Andersen et al. | Aug 1997 | A |
5658603 | Andersen et al. | Aug 1997 | A |
5658624 | Andersen et al. | Aug 1997 | A |
5660900 | Andersen et al. | Aug 1997 | A |
5660903 | Andersen et al. | Aug 1997 | A |
5660904 | Andersen et al. | Aug 1997 | A |
5662731 | Andersen et al. | Sep 1997 | A |
5665439 | Andersen et al. | Sep 1997 | A |
5665442 | Andersen et al. | Sep 1997 | A |
5676905 | Andersen et al. | Oct 1997 | A |
5679145 | Andersen et al. | Oct 1997 | A |
5679381 | Andersen et al. | Oct 1997 | A |
5683772 | Andersen et al. | Nov 1997 | A |
5691014 | Andersen et al. | Nov 1997 | A |
5695811 | Andersen et al. | Dec 1997 | A |
5702787 | Andersen et al. | Dec 1997 | A |
5705203 | Andersen et al. | Jan 1998 | A |
5705237 | Andersen et al. | Jan 1998 | A |
5705238 | Andersen et al. | Jan 1998 | A |
5705239 | Andersen et al. | Jan 1998 | A |
5705242 | Andersen et al. | Jan 1998 | A |
5707474 | Andersen et al. | Jan 1998 | A |
5709827 | Andersen et al. | Jan 1998 | A |
5709913 | Andersen et al. | Jan 1998 | A |
5711908 | Tiefenbacher et al. | Jan 1998 | A |
5714217 | Andersen et al. | Feb 1998 | A |
5716675 | Andersen et al. | Feb 1998 | A |
5720142 | Morrison | Feb 1998 | A |
5720913 | Andersen et al. | Feb 1998 | A |
5736209 | Andersen et al. | Apr 1998 | A |
5738921 | Andersen et al. | Apr 1998 | A |
5740635 | Gil et al. | Apr 1998 | A |
5746822 | Espinoza et al. | May 1998 | A |
5749178 | Garmong | May 1998 | A |
5753308 | Andersen et al. | May 1998 | A |
5766525 | Andersen et al. | Jun 1998 | A |
5776388 | Andersen et al. | Jul 1998 | A |
5782055 | Crittenden | Jul 1998 | A |
5783126 | Andersen et al. | Jul 1998 | A |
5786080 | Andersen et al. | Jul 1998 | A |
5798010 | Richards et al. | Aug 1998 | A |
5798151 | Andersen et al. | Aug 1998 | A |
5800647 | Andersen et al. | Sep 1998 | A |
5800756 | Andersen et al. | Sep 1998 | A |
5810961 | Andersen et al. | Sep 1998 | A |
5830305 | Andersen et al. | Nov 1998 | A |
5830548 | Andersen et al. | Nov 1998 | A |
5843544 | Andersen et al. | Dec 1998 | A |
5849155 | Gasland | Dec 1998 | A |
5851634 | Andersen et al. | Dec 1998 | A |
5868824 | Andersen et al. | Feb 1999 | A |
5879722 | Andersen et al. | Mar 1999 | A |
5887402 | Ruggie et al. | Mar 1999 | A |
5916077 | Tang | Jun 1999 | A |
5928741 | Andersen et al. | Jul 1999 | A |
5976235 | Andersen et al. | Nov 1999 | A |
6030673 | Andersen et al. | Feb 2000 | A |
6067699 | Jackson | May 2000 | A |
6083586 | Andersen et al. | Jul 2000 | A |
6090195 | Andersen et al. | Jul 2000 | A |
6115976 | Gomez | Sep 2000 | A |
6119411 | Mateu Gill et al. | Sep 2000 | A |
6161363 | Herbst | Dec 2000 | A |
6168857 | Andersen et al. | Jan 2001 | B1 |
6180037 | Andersen et al. | Jan 2001 | B1 |
6200404 | Andersen et al. | Mar 2001 | B1 |
6231970 | Andersen et al. | May 2001 | B1 |
6268022 | Schlegel et al. | Jul 2001 | B1 |
6299970 | Richards et al. | Oct 2001 | B1 |
6311454 | Kempel | Nov 2001 | B1 |
6327821 | Chang | Dec 2001 | B1 |
6347934 | Andersen et al. | Feb 2002 | B1 |
6379446 | Andersen et al. | Apr 2002 | B1 |
6402830 | Schaffer | Jun 2002 | B1 |
6434899 | Fortin et al. | Aug 2002 | B1 |
6475275 | Nebesnak et al. | Nov 2002 | B1 |
6485561 | Dattel | Nov 2002 | B1 |
6494704 | Andersen et al. | Dec 2002 | B1 |
6503751 | Hugh | Jan 2003 | B2 |
6528151 | Shah et al. | Mar 2003 | B1 |
6572355 | Bauman et al. | Jun 2003 | B1 |
6573340 | Khemani et al. | Jun 2003 | B1 |
6581588 | Wiedemann et al. | Jun 2003 | B2 |
6619005 | Chen | Sep 2003 | B1 |
6643991 | Moyes | Nov 2003 | B1 |
6665997 | Chen | Dec 2003 | B2 |
6668499 | Degelsegger | Dec 2003 | B2 |
6684590 | Frumkin | Feb 2004 | B2 |
6688063 | Lee et al. | Feb 2004 | B1 |
6696979 | Manten et al. | Feb 2004 | B2 |
6743830 | Soane et al. | Jun 2004 | B2 |
6745526 | Autovino | Jun 2004 | B1 |
6764625 | Walsh | Jul 2004 | B2 |
6766621 | Reppermund | Jul 2004 | B2 |
6773500 | Creamer et al. | Aug 2004 | B1 |
6779859 | Koons | Aug 2004 | B2 |
6818055 | Schelinski | Nov 2004 | B2 |
6843543 | Ramesh | Jan 2005 | B2 |
6866081 | Nordgard et al. | Mar 2005 | B1 |
6886306 | Churchill et al. | May 2005 | B2 |
6890604 | Daniels | May 2005 | B2 |
6961998 | Furchheim et al. | Nov 2005 | B2 |
6964722 | Taylor et al. | Nov 2005 | B2 |
6981351 | Degelsegger | Jan 2006 | B2 |
7059092 | Harkin et al. | Jun 2006 | B2 |
7090897 | Hardesty | Aug 2006 | B2 |
RE39339 | Andersen et al. | Oct 2006 | E |
7185468 | Clark et al. | Mar 2007 | B2 |
7241832 | Khemani et al. | Jul 2007 | B2 |
7279437 | Kai et al. | Oct 2007 | B2 |
7297394 | Khemani et al. | Nov 2007 | B2 |
7386368 | Andersen et al. | Jun 2008 | B2 |
7598460 | Roberts, IV et al. | Oct 2009 | B2 |
7617606 | Robbins et al. | Nov 2009 | B2 |
7669383 | Darnell | Mar 2010 | B2 |
7721500 | Clark et al. | May 2010 | B2 |
7775013 | Bartlett et al. | Aug 2010 | B2 |
7803723 | Herbert et al. | Sep 2010 | B2 |
7832166 | Daniels | Nov 2010 | B2 |
7886501 | Bartlett et al. | Feb 2011 | B2 |
7897235 | Locher et al. | Mar 2011 | B1 |
7927420 | Francis | Apr 2011 | B2 |
7964051 | Lynch et al. | Jun 2011 | B2 |
8037820 | Daniels | Oct 2011 | B2 |
8097544 | Majors | Jan 2012 | B2 |
8209866 | Daniels | Jul 2012 | B2 |
8381381 | Daniels | Feb 2013 | B2 |
8650834 | Hardwick et al. | Feb 2014 | B2 |
8915033 | Daniels | Dec 2014 | B2 |
9027296 | Daniels | May 2015 | B2 |
9475732 | Daniels | Oct 2016 | B2 |
9890083 | Daniels | Feb 2018 | B2 |
20010032367 | Sasage et al. | Oct 2001 | A1 |
20010047741 | Gleeson et al. | Dec 2001 | A1 |
20020053757 | Andersen et al. | May 2002 | A1 |
20020078659 | Hunt | Jun 2002 | A1 |
20020100996 | Moyes et al. | Aug 2002 | A1 |
20020124497 | Fortin et al. | Sep 2002 | A1 |
20020128352 | Soane et al. | Sep 2002 | A1 |
20020166479 | Jiang | Nov 2002 | A1 |
20030015124 | Klus | Jan 2003 | A1 |
20030033786 | Yulkowski | Feb 2003 | A1 |
20030084980 | Seufert et al. | May 2003 | A1 |
20030115817 | Blackwell et al. | Jun 2003 | A1 |
20030205187 | Carlson et al. | Nov 2003 | A1 |
20030209403 | Daniels | Nov 2003 | A1 |
20030211251 | Daniels | Nov 2003 | A1 |
20030211252 | Daniels | Nov 2003 | A1 |
20040025465 | Aldea | Feb 2004 | A1 |
20040026002 | Weldon | Feb 2004 | A1 |
20040231285 | Hunt et al. | Nov 2004 | A1 |
20040258901 | Luckevich | Dec 2004 | A1 |
20050092237 | Daniels | May 2005 | A1 |
20050227006 | Segall | Oct 2005 | A1 |
20050241541 | Hohn et al. | Nov 2005 | A1 |
20050284030 | Autovino et al. | Dec 2005 | A1 |
20060070321 | Au | Apr 2006 | A1 |
20060096240 | Fortin | May 2006 | A1 |
20060168906 | Tonyan et al. | Aug 2006 | A1 |
20060287773 | Andersen et al. | Dec 2006 | A1 |
20070021515 | Glenn et al. | Jan 2007 | A1 |
20070077436 | Naji et al. | Apr 2007 | A1 |
20070092712 | Hodson | Apr 2007 | A1 |
20070095570 | Roberts, IV et al. | May 2007 | A1 |
20070125043 | Clark et al. | Jun 2007 | A1 |
20070125044 | Clark et al. | Jun 2007 | A1 |
20070157537 | Nicolson et al. | Jul 2007 | A1 |
20070175139 | Nicolson et al. | Aug 2007 | A1 |
20070193220 | Daniels | Aug 2007 | A1 |
20070283660 | Blahut | Dec 2007 | A1 |
20080016820 | Robbins, Sr. et al. | Jan 2008 | A1 |
20080027583 | Andersen et al. | Jan 2008 | A1 |
20080027584 | Andersen et al. | Jan 2008 | A1 |
20080027685 | Andersen et al. | Jan 2008 | A1 |
20080041014 | Lynch et al. | Feb 2008 | A1 |
20080066653 | Andersen et al. | Mar 2008 | A1 |
20080086982 | Parenteau et al. | Apr 2008 | A1 |
20080099122 | Andersen et al. | May 2008 | A1 |
20080145580 | McAllister et al. | Jun 2008 | A1 |
20080152945 | Miller | Jun 2008 | A1 |
20080156225 | Bury | Jul 2008 | A1 |
20080286519 | Nicolson et al. | Nov 2008 | A1 |
20090011207 | Dubey | Jan 2009 | A1 |
20090151602 | Francis | Jun 2009 | A1 |
20090197991 | Bury | Aug 2009 | A1 |
20100064943 | Guevara et al. | Mar 2010 | A1 |
20100071597 | Perez-Pena | Mar 2010 | A1 |
20100095622 | Niemoller | Apr 2010 | A1 |
20100136269 | Andersen et al. | Jun 2010 | A1 |
20100251632 | Chen et al. | Oct 2010 | A1 |
20110040401 | Daniels | Feb 2011 | A1 |
20110120349 | Andersen et al. | May 2011 | A1 |
20110131921 | Chen | Jun 2011 | A1 |
20110167753 | Sawyers et al. | Jul 2011 | A1 |
20120164402 | Murakami | Jun 2012 | A1 |
20120208003 | Beard | Aug 2012 | A1 |
20120276310 | Andersen | Nov 2012 | A1 |
20130008115 | Bierman | Jan 2013 | A1 |
20130086858 | Daniels et al. | Apr 2013 | A1 |
20130216802 | Leung et al. | Aug 2013 | A1 |
20130280518 | Stahl et al. | Oct 2013 | A1 |
20140000193 | Daniels et al. | Jan 2014 | A1 |
20140000194 | Daniels | Jan 2014 | A1 |
20140000195 | Daniels et al. | Jan 2014 | A1 |
20140000196 | Daniels et al. | Jan 2014 | A1 |
20150086769 | Daniels et al. | Mar 2015 | A1 |
20150107172 | Daniels et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2799983 | Dec 2012 | CA |
101113077 | Jan 2008 | CN |
101132999 | Feb 2008 | CN |
101239838 | Aug 2008 | CN |
102001832 | Nov 2010 | CN |
102167619 | Aug 2011 | CN |
102220829 | Oct 2011 | CN |
102643013 | Aug 2012 | CN |
102712531 | Oct 2012 | CN |
10200601544 | Oct 2007 | DE |
1266877 | Dec 2002 | EP |
2189612 | May 2010 | EP |
2230075 | Sep 2010 | EP |
2314462 | Apr 2011 | EP |
2583954 | Apr 2013 | EP |
1265471 | Mar 1972 | GB |
1508866 | Apr 1978 | GB |
05-0052075 | Mar 1993 | JP |
H05-097487 | Apr 1993 | JP |
H06-56497 | Mar 1994 | JP |
H11-147777 | Jun 1999 | JP |
2004332401 | Nov 2004 | JP |
2008036549 | Feb 2008 | JP |
2008201613 | Sep 2008 | JP |
2132829 | Jul 1999 | RU |
2411218 | Feb 2011 | RU |
199105744 | May 1991 | WO |
2002031306 | Apr 2002 | WO |
2003004432 | Jan 2003 | WO |
2005105700 | Nov 2005 | WO |
2006138732 | Dec 2006 | WO |
2007051093 | May 2007 | WO |
2007053852 | May 2007 | WO |
2008144186 | Nov 2008 | WO |
2009038621 | Mar 2009 | WO |
2010141032 | Dec 2010 | WO |
2011066192 | Jun 2011 | WO |
2012084716 | Jun 2012 | WO |
2013082524 | Jun 2013 | WO |
Entry |
---|
Supplementary European Search Report for EP 15803724 dated Jan. 23, 2018. |
XP 000375896 6001 Chemical Abstracts 117 (1992) Aug. 24, No. 8, Columbus, Ohio, US. |
Office Action [EP 13809252.3] dated Sep. 3, 2018. |
European Extended Search Report for EP 14854429.9 dated Jun. 1, 2017. |
International Search Report (KIPO) PCT/US2013/048642 dated Sep. 2, 2013, 17 pp. |
International Search Report (KIPO) PCT/US2013/048712 dated Sep. 10, 2013, 20 pp. |
International Search Report [KIPO] PCT/US2014/035313 dated Aug. 19, 2014, 10 pp. |
International Search Report [KIPO] PCT/US2014/035277 dated Sep. 2, 2014, 15 pp. |
Search Report PCT/US07/04605, dated Oct. 4, 2007, 11 pp. |
Search Report PCT/US2012/059053 dated Mar. 21, 2013, 12 pp. |
Extended European Search Report EP 14759514.4 dated Sep. 23, 2016, 10 pp. |
Extended Search Report EP 13845068.9 dated Oct. 12, 2016, 10 pp. |
Kralj, D., “Experimental study of recycling lightweight concrete with aggregates containing expanded glass.” Process Safety and Environmental Protection, vol. 87, No. 4, Jul. 1, 2809 (Jul. 1, 2009), pp. 267-273. |
Office Action [EP 14788791.3] dated Jan. 8, 2019. |
Number | Date | Country | |
---|---|---|---|
20170113971 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
62007984 | Jun 2014 | US |